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Abstract—The rapidly expansion of Internet of Things (IoT)
has ignited renewed interest in energy disaggregation via non-
intrusive load monitoring (NILM). Compared to the more fre-
quent NILM approach of training one model for each appliance,
this paper proposes a multi-label learning approach based on the
widely cited sequence2point convolutional neural network (CNN).
Using the smart meter readings collected in an office building,
we demonstrate the accuracy and practicality of the proposed
network compared to start-of-the-art one-to-one NILM models.

Index Terms—NILM, energy disaggregation, energy efficiency.

I. INTRODUCTION

Non-intrusive load monitoring (NILM) aims at disaggre-
gating the total energy consumption of a building down to
individual appliances using only software tools. NILM [1, 2]
supports smart building automation and provides means of
effective and meaningful energy feedback. Due to practical
demands driven by improving energy efficiency and respond-
ing to global climate change goals, on one hand, and large-
scale smart meter roll-outs, on the other hand, the research on
NILM has intensified recently.

In the past, various signal processing and machine learning
approaches have been used for NILM. These include hidden
Markov models (HMMs) and their variants (Additive) Facto-
rial HMM (AFHMM) with quadratic programming [3, 4, 5, 6],
semi-definite programming relaxation [7], Bayesian nonpara-
metric hidden semi-Markov models [8], etc. Another popular
NILM method is based on semi-supervised learning via label
propagation on graphs, that has its roots in Graph signal
processing (GSP) theory [9], with promising results reported
in [10, 11, 12] for various datasets. More recently, various deep
learning-based architectures have been applied to NILM. Some
contribution include the work of [13] that proposed a CNN
architecture for sequence-to-point and sequence-to-sequence
NILM learning. Furthermore, Michele et al. employed transfer
learning with deep neural network model on NILM in [14].
[15] applied deep non-negative matrix factorization technique
on NILM.

However, though significant progress has been made re-
cently in improving practicality and accuracy of NILM al-
gorithms, NILM has remained a challenging problem. As
the start-of-the-art approach for NILM, HMM is not suitable
when numerous loads are present because of its computa-

tional complexity; furthermore, HMM suffers from the fact
that time duration of the operation of some appliance can
vary significantly [16]. Additionally, HMM could be affected
by unknown appliance noise as indicated in [12]. Similarly,
GSP-based NILM can under-perform if the structure of the
underlying graph does not capture well correlation between
the collected samples [9]. Regarding deep learning approaches,
training a model for each electrical appliance is the most
common method currently, which leads to high complexity
and high storage demands. Regarding to the current multi-
label learning for appliance recognition in NILM, as indicated
in [17], the multi-label learning was found to be competitive
with the state-of-the-arts NILM algorithms.

In this paper, we propose a novel one-to-many CNN struc-
ture that represents the NILM problem as multi-load output
using a single network. This way the complexity of training is
reduced (one model is learned for the whole house instead of
a separate model for each appliance). Our simulation results
on a non-residential dataset with six appliances, demonstrate
that the proposed multi-label network provides accurate dis-
aggregation results.

We organized the rest of the paper as follows. After the
introduction, Section II starts by describing the problem of
NILM and CNN-based architectures, namely, sequence-to-
point network and one-to-many network. Section II-D intro-
duces the proposed CNN framework to address the one-to-
many NILM problem. Section III follows up with detailed
experiment design, experimental dataset, metrics, and results.
Finally, the conclusion and future work are presented in
Section IV.

II. METHODS

A. Problem Formulation

NILM is a technique to estimate the electric consumption of
each appliance while only the main meter is monitored. The
main meter power reading yτ can be expressed as:

yτ =
N∑
i=1

x(i)τ + e, (1)

where τ = 1, ..., T , and i = 1, ..., N . T and N denote the
number of time windows and appliances, respectively. x(i)τ is
the electric consumption of appliance i in time-window τ , and
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Fig. 1. The structure of the model used for multi-objects disaggregation.

e represents the noise recordings that includes unknown loads
and measurement noise. The task of NILM is to estimate x(i)τ
given yτ for each time window τ .

B. Sequence-to-point (seq2point) CNN architecture
In seq2point CNN architecture [13], the input raw data is

split into short time windows (sequences), each represented by
its middle sample (point) [18]. The sequence-to-point model
can be expressed as x(i)t = f(yτ ) + ε, in which yτ is the
input sequence, ε is the bias and x(i)t the output of model, the
true consumption of appliance i at time t which is the middle
sample of window τ . f(·) is a mapping function of yτ to x(i)t
for all appliances. The output of the model is decided based
on maximising aposteriori probability of the model and can
be formulated as:

max p(x
(i)
t | yτ , θ), (2)

where θ denotes the overall network parameters, as described
in the next section.

C. One-to-many model
Most recent NILM works focus on one-to-one model [5,

12, 14], where one model is trained for each appliance to
maximize the probability of predicting a particular type of
appliance, i.e.,

max p
(
x(i) | Yτ , θ

)
= max

T∏
t=1

pt (x
(i)
t | yτ , θ), (3)

where Yτ is a set of T time windows, of fixed length, of the
smart meter readings.

In our work, we adopt the one-to-many (one model for many
appliances) structure to improve the efficiency of disaggre-
gation. The model considers all N appliances at once and
maximises:

max p(x(1),x(2), ...,x(N) | Yτ , θ)

= max

T∏
t=1

pt(x
(1)
t , x

(2)
t , ..., x

(N)
t | yτ , θ),

(4)

where p(x(1), x(2), ..., x(N) | Yτ , θ) is a joint distribution
probability function of all N appliances ∀t ∈ [1, ..., T ].

pt(x
(1)
t , x

(2)
t , ..., x

(N)
t | yτ , θ) is a joint distribution probability

function of all N appliances at particular time t, Yτ is a set
of T time windows of main data, and x(i), i ∈ [1, .., N ] is a
set of T predicted samples (one for each time window ytau
for appliance i.

Fig. 2. A schematic of the smart meters deployed in the non-residential
building room, which consist of a main electricity meter, and six appliance
electricity meters.

D. One-to-many framework

Rather than estimating one appliance each time, we propose
an efficient CNN architecture, which establishes the one-
to-many model to estimate all appliances in the household.
Firstly, we fragment the continuous recorded main power
consumption into T time-windows of length of l samples each,
and the input to the network is a batch of length-l time-series
signals; thus, the network input is a BatchSize ∗ l ∗ 1 tensor.

As illustrated in Fig. 1, the designed CNN architecture
comprises four convolution layers to capture time-dependent
information in the receptive field. The particular filter size,
stride, and padding used in our experiments are indicated in
Fig. 1. The output of the convolution layer is then:

yct =
∑
∀k

yt+kwc + bc, (5)

where ct, a subscript of y, refers to c-th layer and t-th samples.
t is the sample number in the input data, k is the length of the
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receptive field; wc and bc (bias) are the c-th layer parameters
to be learned.

The fully connected layers follow the convolution layers,
and can be formulated as:

ylt = wlyt + bl, (6)

where ylt represents the t-th output sample of the l-th fully
connected layer. wl and bl represents the weight and bias
parameters to be learned.

The loss function is set as:

L(x|f(y)) = 1

T

T∑
t=1

N∑
i=1

(x
(i)
t − f (i)(yτ ))2, (7)

where x(i)t denotes the true consumption of appliance i at time
t, f (i)(yτ ) represents the estimated consumption of appliance
i at time t, and time t is the midpoint of time window τ .

III. EXPERIMENTS

A. Data Sets

We evaluate the proposed method using our own recorded
data. The results are then compared to those from literature
that are based on two open access datasets, namely REDD and
UK-DALE.

1) Own recorded IoT data: In order to evaluate the pro-
posed network in a non-residential building, we deployed a
set of smart electricity meters in an office building. There are
six appliances in the office, namely, freezer, fridge, washer, air
conditioner, central air conditioner (CAC), and server. Each of
the appliances is monitored by a smart meter to provide ground
truth values. The main meter is used as well. This data are
sampled every second, and the dataset covers a period of 3
months. Fig. 2 is a schematic of the smart meters deployed in
the non-residential building room. Fig. 3 shows an example
of the true electric consumption of all appliances. Other
public non-residential electrical datasets such as Commercial
Building Energy Dataset (COMBED), and building-level office
environment dataset (BLOND), etc described in [19], will be
tested as part of the future work.

2) REDD data: Reference Energy Disaggregation Data set
(REDD) contains electricity usage data of 6 American house-
holds. Each house has 2 mains meters, as well as individual
monitoring meters 10 to 25 in each house. The data is sampled
at a frequency of about once a second for a mains and once
every three seconds for the circuits [20]. Appliances in REDD
data set are similar to our own IoT data.

3) UK-DALE data: UK Domestic Appliance-Level Elec-
tricity (UK-DALE) data set [21] contains main meter readings
of current and voltage of 16 kHz collected from three UK
homes and power data of individual devices collected every
six seconds. The low frequency data are often used in neural
network models for NILM.

Fig. 3. The actual power consumption curve of each electrical appliances.

B. Metrics

As in the previous work on NILM [14], three metrics
are used to measure the proposed multi-label disaggrega-
tion model. Usually, mean normalized disaggregation error
(MNDE) is used as a metric as defined:

MNDE =

∑
n,t (xn,t − x̂n,t)

2∑
n,t x

2
n,t

, (8)

where n = 1, ..., N denotes the appliance number, and t is the
time index. xn,t and x̂n,t means the true consumption and the
estimated consumption of appliance n at time t, respectively.

Normalized signal aggregate error (SAE) is deployed to
evaluate the difference between the total electric consumption
and estimated electric consumption:

SAE =
∑
n

|r̂n − rn|
rn

. (9)

Energy per day (NDE) is a metric to measure the prediction
error on daily energy consumption:

EpD =
1

D

D∑
n=1

|ê− e|, (10)

where e and ê represent the true energy consumption in a day,
and D denotes the total number of days in the test data.

Fig. 4. The process of data generation.
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TABLE I
METRICS OF MNDE, SAE AND EPD ON EACH APPLIANCE.

Metric Method DataSet Fridge Washing machine
MNDE AFHMM[3] REDD 0.99 84.53

Proposed IoT 0.90 0.99

AFHMM [3] REDD 0.84 0.99
Seq2seq [22] REDD 0.24 0.11
Seq2point[13] REDD 0.06 0.18

SAE AFHMM[3] UK-DALE 0.98 8.28
Seq2seq [22] UK-DALE 0.50 13.83
Seq2point[13] UK-DALE 0.37 0.45
Proposed IoT 0.77 0.73

AFHMM[3] REDD 1.50 0.08
EpD[kW] AFHMM[3] UK-DALE 0.90 0.32

Proposed IoT 0.40 0.20

C. Settings for training neural networks

Our method adopts one (model) to-many (appliances) struc-
ture, in particular, one model for six appliances. Based on
the architecture shown in Fig. 1, a fixed-length window is
adopted for the input data. The window length is set to 599,
which was selected based on experiments. Each window data
is generated by moving a sliding time window one sample
a time. Fig. 4 shows the process of sliding window, where
S is the length of the dataset (power reading samples). The
first 70% of the dataset are selected as training samples, 20%
testing samples, and 10% validation samples. Pytorch is used
as the machine learning framework. The hyper-parameters are
as follows: batchsize is 1024, max epoch is 100, Adam is used
as the optimiser algorithm, learning rate is 0.001, and dropout
is used as well to reduce overfitting.

Fig. 5. Example disaggregation results on IoT data.

D. Results

The proposed one-to-many method is applied to the dis-
aggregation problem using our data set. Fig. 5 shows an
example of the disaggregation results using our IoT dataset.
The left is an example for washing machine, and the right is
an example for fridge which is on non stop. Table. I gives
the results of the three metrics for estimating two appliances
using different methods on the REDD data, UK-DALE data,
and our own IoT data. For the convenience of comparison,
these two appliances are of the same type in the three datasets.

Fig. 6. The proportion of electricity consumed by each electrical appliance
in the IoT dataset over the whole 3 months.

Compared to AFHMM, our method has better MNDE, SAE,
and EpD results. Compared to the one-to-one seq2seq model
and the one-to-one seq2point model, the results of our method
are comparable based MNDE, SAE, and EpD metrics. The
results suggest that while we have improved the effectiveness
and practicality by disaggregating all appliances at once using
a simple one-to-many NILM model, there is no significant
decrease in accuracy.

The pie chart of disaggregation on all six appliances are
shown in Fig. 6. The subgraph on the left is the true energy
consumption of all the six appliances, and the right subgraph
is the disaggregation result of the energy usage. The exact pro-
portions of the six appliances are 58.6%, 8.8%, 4.54%, 9.86%,
4.43%, and 13.89%, respectively. The estimated proportions
of the usage of the six appliances are 50.27%, 8.02%, 3.49%,
10.12%, 17.12%, and 10.97%. This chart shows that the one-
to-many NILM method can provide a reasonable strategy for
disaggregation, and the main disaggregation error comes from
the appliance CAC represented in purple. The reason is that
CAC data are more sparse as it is rarely used, thus the amount
of training data available is insufficient. In the future, we will
further improve the accuracy of disaggregation by few-shot
learning method.
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IV. CONCLUSION

Non-intrusive load monitoring (NILM) is vital for planning
energy demand and developing energy conservation and en-
ergy efficiency tools.

In order to improve the practicality of NILM, we propose
a one-to-many model for multi-label disaggregation. Exper-
imental results on a non-residential dataset that contains 6
appliances, using MNDE, SAE, EpD metrics show that the
proposed disaggregation method can achieve acceptable results
using a single model, this way reducing the training complex-
ity and storage demands. Further work will be perfomed in two
areas, namely improving the accuracy of disaggregation for
rarely-used appliances via few-shot learning, and testing the
proposed method on other public datasets such as COMBED,
BLOND etc.
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