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1. Introduction. Networks (or graphs) have become an increasingly popular15

modelling tool in a range of applications, often where the question of interest to16

practitioners is to identify the most important entities (which can be nodes, edges,17

sets of nodes, etc.) within the system under study; see, e.g., [8, 34, 43, 47, 49]. This18

question is commonly answered by means of centrality measures; These are functions19

that assign nonnegative scores to the entities, with the understanding that the higher20

the score, the more important the entity. Several centrality measures have been21

introduced over the years [15, 17, 25, 37]. Here we consider walk-based centrality22

indices [24], where a walk around a graph is a sequence of nodes that can be visited23

in succession following the edges in the graph. These measures can be defined using24

(sums of) entries of matrix functions described in terms of the adjacency matrix A of25

the graph and assign scores to nodes based on how well they spread information to the26

other nodes in the network. Possibly the most widely known measures of centrality in27

this family are Katz centrality [37], defined for node i as the ith entry of (I − γA)−11,28

for 0 < γρ(A) < 1 and 1 the vector of all ones, and subgraph centrality [25], defined29

for node i as (eγA)ii, for γ > 0. The popularity of these measures stems from their30

interpretability in terms of walks around the graph, but it also follows from the fact31

that they are easily computed or approximated; see, e.g., [27, 33]. Another interesting32

feature of these measures was shown in [14], where the authors proved that a special33

class of functions, which includes the exponential and the resolvent, induces centrality34

indices that interpolate between degree centrality, defined as the number of connections35

that a node has, and eigenvector centrality, defined using the entries of the Perron36

eigenvector of A.37

In the following we show that Mittag–Leffler (ML) functions [39], which fall in the38
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2 F. ARRIGO AND F. DURASTANTE

aforementioned class of functions, induce well-defined centrality measures that moreover39

interpolate between resolvent-based and exponential-based indices, thus closing the40

gap between the two induced centralities. Several instances of ML centrality indices41

are scattered throughout the network science literature, but often they are not being42

identified as such. One of the contributions of this work is to provide an exhaustive43

(to the best of our knowledge) review of such appearances. Furthermore, this work44

provides a thorough analysis of the properties of parametric ML centrality indices and a45

characterization of the possible choices of parameters that ensure both interpretability46

and computability of such measures. The results are then extended to the case of47

temporal network, following the contents of [30].48

Our contribution is thus threefold. We provide an extensive review of previous49

appearances of Mittag–Leffler centrality indices in network science; We develop a50

general theory for such measures and further show that they “close the gap” between51

resolvent-based centrality measures and exponential-based centrality measure, and52

we provide guidelines for parameter selection; Finally, we describe extensions of such53

centrality measures to networks that evolve over time.54

The paper is organized as follows. In section 2 we review some basic definitions and55

tools from graph theory that will be used throughout. We also review the definition of56

ML functions and provide some examples of functions in this family. In section 3 we57

review previous appearances of ML centrality and communicability indices, discuss58

interpretability issues, and introduce the new centrality indices. We further perform59

numerical tests on some real-world networks. Section 4 describes how ML centrality60

indices can be adapted to the case of time-evolving networks, extending results from [30]61

to a more general framework. Numerical results on synthetic and real-world networks62

are also discussed. We conclude with some remarks and a brief description of future63

work in section 564

2. Background. This section is devoted to a brief introduction of the main65

concepts that will be used throughout the paper. In particular, we review basic66

concepts from graph theory and network science; we also recall the definition of67

Mittag–Leffler functions and a few of their properties.68

2.1. Graphs. A graph or network G = (V,E) is defined as a pair of sets: a set69

V = {1, 2, . . . , n} of nodes or vertices and a set E ⊂ V × V of edges or links between70

them [10]. If the set E is symmetric, namely if for all (i, j) ∈ E then (j, i) ∈ E, the71

graph is said to be undirected ; directed otherwise. An edge from a node to itself is72

called a loop.73

A popular way of representing a network is via its adjacency matrix A = (aij) ∈74

Rn×n, entrywise defined as75

aij =

{
wij if (i, j) ∈ E
0 otherwise

76

where wij > 0 is the weight of edge (i, j). In this paper we will restrict our attention77

to unweighted simple graphs, i.e., graphs that are undirected and do not contain78

loops or repeated edges between nodes, and for which the weights of the edges are79

all uniform; consequently, the adjacency matrices used throughout this paper will be80

binary, symmetric, and with zeros on the main diagonal. We note however that all the81

results in this paper can be generalized beyond this simple case.82

2.2. Centrality measures. One of the most addressed questions in network83

science concerns the identification of the most important entities within the graph;84
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What is the most vulnerable airport to a terror attack [49]? Which is the road more85

likely to be busy during rush hour [34]? Who is the most influential pupil in the86

school [47]? What proteins are vital to a cell [8]? Several strategies to answer these87

questions have been presented over the years, and these all rely on the idea that an88

entity is more important within the graph if it is better connected than the others89

to the rest of the network. In order to quantify this idea of importance, entities90

are assigned a nonnegative score, or centrality [15]: the higher its value, the more91

important the entity is within the graph. We will focus here on centrality measures for92

nodes, although we note that several centrality measures for edges have been defined93

over the years [3, 20] and that everything discussed here for nodes easily translates to94

address the case of edges by working on the line graph [10]. The simplest measure of95

centrality for nodes is degree centrality. According to this measure, a node i is more96

important the larger the number of its connections di =
∑n
j=1 aij = (A1)i, where 197

is the vector of all ones. This measure is very local, in the sense that it is oblivious98

to the whole topology of the network and thus may misrepresent the role of nodes: a99

node acting as the only bridge between two tightly connected sets of nodes has low100

degree, but it has extremely high importance as its failure would cause the network to101

break into two separate components. A way around this issue is to consider both the102

number of neighbors and their importance when assigning scores to nodes; see, e.g.,103

[48] and references therein. The centrality measure formalizing this idea is known as104

eigenvector centrality [16, 17]; it is entrywise defined as:105

xi =
1

ρ(A)

n∑
j=1

aijxj106

where ρ(A) > 0 is the spectral radius of the irreducible adjacency matrix A ≥ 0.107

Existence, uniqueness and nonnegativity of the vector x = (xi) are guaranteed by the108

Perron-Frobenius theorem; see, e.g., [36].109

Degree and eigenvector centrality represent the two limiting behaviors of a wider110

class of parametric centrality measures that can be defined in terms of matrix func-111

tions [24].1 Consider the analytic function f defined via the following power series:112

f(z) =

∞∑
r=0

crz
r

113

with cr ≥ 0 and |z| < Rf , where Rf the radius of convergence of the series, which can114

be either finite or infinite; then under suitable hypothesis on the spectrum of A [33,115

Theorem 4.7], we can write:116

f(A) =
∞∑
r=0

crA
r.117

Recall that a walk of length r is a sequence of r + 1 nodes i1, i2, . . . , ir+1 such that118

(i`, i`+1) ∈ E for all ` = 1, . . . , r; moreover, it is easy to show the number of such walks119

is (Ar)i1,ir+1
[10]. Therefore, entrywise, this matrix function has a clear interpretation120

in terms of walks taking place across the graph: (f(A))ij is a weighted sum of the121

number of all walks of any length that start from node i and end at node j. Since the122

weights are such that cr → 0 as r increases, we are also tacitly assuming that walks123

1This result was shown in a paper by Benzi and Klymko [14] and later extended to the non-
backtracking framework in [7].
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4 F. ARRIGO AND F. DURASTANTE

of longer lengths are considered to be less important. In [25] the authors defined the124

subgraph centrality of a node i ∈ V as125

si(f) = eTi f(A)ei =
∞∑
r=0

cr(A
r)ii.126

This measure accounts for the returnability of information from a node to itself and127

it is a weighted count of all the subgraphs node i is involved in; see, e.g., [22]. We128

will write s(f) = (si(f)) to denote the vector of subgraph centralities induced by the129

function f .130

The most popular functions used in networks science are f(z) = ez [25] and131

f(z) = (1 + z)−1 [37]; however nothing in principle forbids the use of other analytic132

functions [3, 6, 12].133

Subgraph centrality is computationally quite expensive to derive for all nodes,134

since one has to compute all the diagonal entries of f(A) and this is usually unfeasible135

for large networks. However, if only a few top ranked nodes need to be identified,136

approximation techniques are available; see, e.g.,[27].137

In [13] the authors introduced the concept of total (node) communicability. Here,138

the importance of a node depends on how well it communicates with the whole network,139

itself included:140

t(f) = f(A)1.141

Entrywise it is thus defined as142

ti(f) =

n∑
j=1

(f(A))ij =

n∑
j=1

∞∑
r=0

cr(A
r)ij143

Computationally speaking, this measure can be computed more efficiently than144

subgraph centrality, and can also be easily updated after the application of low-rank145

modification of the adjacency matrix A, i.e., after the removal or the addition of few146

edges [11, 45].147

Remark 2.1. All the above definition have been given in the setting of unweighted148

networks where the weight assigned to the edges is assumed to be unitary. If A is149

replaced in the above definition by γA, for some appropriate γ ∈ (0, 1), the definitions150

continue to make sense and we are then working with parametric versions of subgraph151

centrality and total communicability.152

In the next section we recall the definition of the Mittag–Leffler function and a153

few properties that will be used in this paper.154

2.3. Mittag–Leffler Functions. The family of Mittag–Leffler (ML) functions155

is a family of analytic functions Eα,β(z) that were originally introduced in [39]. For156

each choice of α, β > 0 they are defined as follows157

(2.1) Eα,β(z) =
∞∑
r=0

cr(α, β)zr =
∞∑
r=0

zr

Γ(αr + β)
,158

where cr(α, β) = Γ(αr + β)−1 and Γ(z) is the Euler Gamma function:

Γ(z) =

∫ ∞
0

tz−1e−tdt.
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Table 1
Closed form expression of the Mittag–Leffler function Eα,β(z) for selected values of α and β.

α β Function

0 1 (1− z)−1 Resolvent
1 1 exp(z) Exponential

1/2 1 exp(z2) erfc(−z) Error Function2

2 1 cosh(
√
z) Hyperbolic Cosine

2 2 sinh(
√
z)/
√
z Hyperbolic Sine

4 1 1/2[cos(z1/4) + cosh(z1/4)]

1 k = 2, 3, . . . z1−k(ez −
∑k−2
r=0

zr

r!
) ϕk−1(z) =

∑∞
r=0

zr

(r+k−1)!

0 1 2 3

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 1. Plot of Γ(αr + 1)−1 for r = 0, 1, 2, 3 and α = 0, 0.1, . . . , 1.

For particular choices of α, β > 0, the ML function Eα,β(z) have nice closed form159

descriptions. For example, when α = β = 1 we have that E1,1(z) = exp(z), since160

Γ(1) = Γ(2) = 1 and Γ(r + 1) = r Γ(r) = r! for all r ∈ N. We list a few of these closed161

form expressions for ML functions in Table 1.162

Our goal is to use this family of functions to define new walk-based centrality163

indices. We will focus on the case when β = 1 and we will adopt from now on the164

notation Eα(z) = Eα,1(z).165

Before proceeding, we make two remarks. Firstly, Γ(αr + β) > 0 for every α ≥ 0,166

β > 0, and r ≥ 0; secondly, the function g(r) := Γ(αr + β) is not monotonic. In167

Figure 1 we plot the values of Γ(αr + 1)−1 for r = 0, 1, 2, 3 and α = 0, 0.1, . . . , 1.168

Non-monotonicity of coefficients is not a problem per se, however we note that it is169

customary in network science to define walk-based centrality measures that employ170

analytic functions with monotonically decreasing coefficients. The reason for this171

is to foster the intuition that shorter walks should be given more importance than172

longer ones, because they allow for information to travel faster (i.e., by taking fewer173

steps) from the source to the target. The fact that the coefficients in the power series174

expansion of Eα(z) for α ≥ 0 are not monotonic is something that we will need to be175

aware of when defining centrality indices for entities in networks. In Lemma 3.2 below176

2erfc(z) = 1− erf(z) is complementary to the error function erf(z) = 2√
π

∫ z
0 e
−t2dt.
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6 F. ARRIGO AND F. DURASTANTE

we will describe how to suitably select a scaling of the adjacency matrix A to ensure177

monotonicity of the coefficients.178

3. Mittag–Leffler based network indices. We want to “close the gap” be-179

tween resolvent based centrality measures, defined in terms of f(z) = (1−z)−1 = E0(z)180

and exponential based centrality measures, defined in terms of f(z) = ez = E1(z).181

The former function has a discontinuity at z = 1, whilst the latter is entire; however182

they both can be represented as ML functions. In the following we will183

• review previous appearances of ML functions in network science;184

• show that it is possible to describe centrality measures in terms of entries (or185

sum of entries) of Eα(γA) for values of α other than 0 and 1 and for suitably186

selected γ > 0; and187

• show numerically that careful selection of the parameters α and γ allows188

ML functions to detect information not encoded by degree or eigenvector189

centrality.190

3.1. Previous appearances of Mittag–Leffler functions. We begin by notic-191

ing that ML functions have already been employed in the network science literature,192

often without being recognized as such. The most renowned instances are the pre-193

viously mentioned exponential and resolvent based centrality measures, introduced194

in [25] and [37], respectively. However, other ML functions have been used. In [12] the195

authors introduce new centrality and communicability indices for directed networks196

by exploiting the representation of such networks as bipartite graphs; see [18]. In197

particular, the authors recast the discussion of walk-based centrality measures for198

directed graph with adjacency matrix A in terms of the symmetric block matrix199

A =

[
0 A
AT 0

]
.200

After showing that201

eA =

[
cosh(

√
AAT ) A(

√
ATA)† sinh(

√
ATA)

sinh(
√
ATA)(

√
ATA)†AT cosh(

√
ATA))

]
202

where the superscript † denotes the Moore-Penrose pseudo-inverse, the authors proceed203

to introduce centrality and communicability indices in terms of diagonal and off-204

diagonal elements of this matrix exponential; we refer the interested reader to [12]205

for more details. By referring back to Table 1, it is easy to see that the diagonal206

blocks rewrite as E2(AAT ) and E2(ATA), respectively. As for the off-diagonal blocks,207

these as well can be written using the generalized matrix function induced by E2,2(z);208

see [4, 9, 32, 44] for a complete discussion of generalized matrix functions and their209

computation.210

To the best of our knowledge, the ML function E1,2(z) has appeared at least twice211

in the network science literature. The first appearance is in a paper by Estrada [21],212

where entries of the matrix function ψ1(A) = A−1(eA − I) = E1,2(A) are used as a213

centrality measure for the nodes of an undirected graph represented by the invertible214

matrix A.215

Remark 3.1. We note in passing that E1,2(z) = ψ1(z) =
∑∞
r=0

zr

(r+k−1)! is entire216

and thus, by [33, Theorem 4.7], the matrix function E1,2(A) = ψ1(A) is defined and217

given by ψ1(A) =
∑∞
r=0

Ar

(r+k−1)! even for singular matrices.218

In the same paper, the author actually introduces a larger family of measures, all219

defined in terms of the functions ψk−1(z) = E1,k(z) for k = 2, 3, . . .. As in Remark 3.1,220
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care should be taken when working with the induced matrix function: the power series221

expression is well-defined, while the form A1−k(eA −
∑k−2
r=0 A

r) is only defined for222

invertible matrices.223

A second appearance of the matrix function induced by E1,2(z) = ψ1(z) is in [5],224

where the authors show that the non-backtracking exponential generating function for225

simple graphs is:226
∞∑
r=0

pr(A)

r!
=
[
I 0

]
ψ1(Y )

[
A

A2 −D

]
+ I,227

where pr(A) is a matrix whose entries represent the number of non-backtracking walks228

of length r between any two given nodes, D is the degree matrix, and Y is the first229

companion linearization of the matrix polynomial (D − I)−Aλ+ Iλ2:230

Y =

[
0 I

I −D A

]
;231

see [5] for more details and for the discussion of the directed case.232

Yet another instance of Mittag–Leffler function can be found in [26] (and more233

recently in [23]), where the authors introduce new centrality and communicability234

indices by exploiting entries of the matrix function induced by235

f(z) =
∞∑
r=0

zr

r!!
=

1

2

[√
2π erf

(
z√
2

)
+ 2

]
ez

2/2, r!! =

d r2 e∏
k=0

(r − 2k),236

which, after a simple manipulation, rewrites as:237

f(z) =

√
π

2
E1/2(z/

√
2) +

(√
π

2
+ 1

)
E1(z2/2).238

More recently, the matrix function induced by E1/2(z) was used in [1] to describe239

a model for the transmission of perturbations across the amino acids of a protein240

represented as an interaction network.241

In the following subsection, we discuss two key points concerning interpretation242

and computability of the matrix functions induced by Eα(z).243

3.2. Parameter selection. We want to discuss in this section a few technicalities244

that should be kept in mind when working with Mittag–Leffler functions. We discuss245

two main points: the first concerns the monotonicity of the coefficients (as a function246

of r) appearing in the power series expansion (2.1) defining Eα(z). This will motivate247

the use of parametric ML functions Eα(γz) when defining network indices. Secondly,248

we will discuss issues related to the representability of the entries of Eα(γA) for large249

matrices and, more generally, for matrices with a large leading eigenvalue.250

We begin by discussing the monotonicity of the coefficients in the power series251

expansion (2.1) defining Eα(z). As previously mentioned in subsection 2.3, the function252

g(r) := Γ(αr + 1) is not monotonic for certain values of α ∈ (0, 1); see Figure 1. An253

immediate consequence of this in our framework is that the matrix function254

Eα(A) =
∞∑
r=0

A

Γ(αr + 1)
255

is no longer weighting walks monotonically depending on their length. For example,256

when α = 0.8 walks of length one are weighted by the coefficient c1(0.8) ≈ 0.9, whilst257
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8 F. ARRIGO AND F. DURASTANTE

walks of length five have weight c5(0.8) = 24. We want to stress that this may not be258

an issue in certain application; however, it is usually the case in network science that259

walks are assigned monotonically decreasing weights with their lengths.260

Let us thus consider the following parametric ML function:261

Ẽα(z) = Eα(γz) =
∞∑
r=0

(γz)r

Γ(αr + 1)
=
∞∑
r=0

c̃r(α, γ)zr262

where c̃r(α, γ) = γrcr(α), for suitable values of the weight γ > 0. The next Lemma263

provides conditions on the admissible vales of γ to ensure monotonicity of the coefficients264

c̃r(α, γ).265

Lemma 3.2. Suppose that α ∈ (0, 1). The coefficients c̃r(α, γ) = γrcr(α) defining266

the power series for the entire function Ẽα(z) = Eα(γz) are monotonically decreasing267

as a function of r = 0, 1, 2, . . . for all 0 < γ < Γ(α+ 1).268

Proof. For each α ∈ (0, 1) we want to determine conditions on γ = γ(α) that269

imply that270

c̃r(α, γ) ≥ c̃r+1(α, γ) for all r ∈ N271

From the definition of c̃r(α, γ) we have that the above inequality is equivalent to272

verifying273

γ ≤ Γ(αr + α+ 1)

Γ(αr + 1)
, for all r ≥ 0274

since γ > 0 and Γ(x) > 0 for all x ≥ 0. Since Hx, the Harmonic number for x ∈ R, is275

an increasing function of x, α > 0 by hypothesis, and Γ(x) > 0 for all x ≥ 0, it follows276

that277

d

dx

(
Γ(αx+ α+ 1)

Γ(αx+ 1)

)
=
α
(
Hα(x+1) −Hαx

)
Γ(αx+ α+ 1)

Γ(αx+ 1)
≥ 0,278

and thus the minimum of Γ(αx+α+1)
Γ(αx+1) is achieved at x = 0.279

Two choices of the parameter α require further discussion. Suppose that A ∈ Rn×n280

is the adjacency matrix of a simple non-empty graph.281

• When α = 0, then E0(γA) = (I − γA)−1 admits a convergent series expansion282

if and only if |γλ| < 1 for all λ eigenvalues of A. The coefficients of this283

expansion are γr, which are decreasing for all the admissible 0 < γ ≤ ρ(A)−1.284

• When α = 1, then E1(γA) = exp(γA) and the coefficients γr/r! are decreasing285

for 0 < γ ≤ 1.286

In Figure 2 we display the area of admissible choices of γ as a function of α ∈ (0, 1].287

The take home message of Lemma 3.2 wants to be that Mittag–Leffler functions288

with α ∈ (0, 1) can be employed in network science problems since they have a power289

series expansion that can be interpreted in terms of walks; however, care should be290

taken since the coefficients of the ML may not have the desired monotonic behavior.291

In particular, the choice γ = 1 is not always viable, since it yields non-monotonically292

decreasing coefficients cr(α) for those values of α ∈ (0, 1] that satisfy Γ(α + 1) < 1,293

i.e., for all α 6= 1.294

The second point that we want to address is when the magnitude of the entries of the295

matrix function Eα(γA) exceeds the largest representable number in machine precision.296

Consider the spectral decomposition of the adjacency matrix A = QΛQT . Then,297
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Fig. 2. Admissible values of γ as a function of α ∈ (0, 1].

by definition of matrix function Eα,1(γA) = γ QEα(Λ)QT . For matrices such that298

λmax(A) is large enough, γEα(λmax(A)) may be larger than the largest representable299

number N̄ in machine precision. The following result details the constraint on the300

values of γ ∈ (0, 1] which ensures represenatability of Eα,1(γλmax(A)).301

Lemma 3.3. Suppose that α ∈ (0, 1], and A ∈ Rn×n is symmetric. Then for all302

γ ≤ 1

λmax(A)

(
K̄ log(10) + log(α)

)α
303

it holds that maxi,j(|Eα(γA)|)i,j ≤ N̄ where N̄ ≈ 10K̄ for a given K̄ ∈ N is the largest304

representable number on a given machine.305

Before proceeding with the proof, let us recall the following result, which describes306

an asymptotic expansions for ML functions.307

Proposition 3.4. [29, Proposition 3.6] Let 0 < α < 2 and θ ∈ (πα2 ,min(π, απ)).308

Then we have the following asymptotics for the Mittag–Leffler function for any p ∈ N309

Eα(z) =
1

α
ez

1
α −

p∑
k=1

z−k

Γ(1− αk)
+O(|z|−1−p), |z| → +∞, |arg(z)| ≤ θ,310

Eα(z) = −
p∑
k=1

z−k

Γ(1− αk)
+O(|z|−1−p), |z| → +∞, θ ≤ |arg(z)| ≤ π.311

Proof of Lemma 3.3. We have λmax(γA) = γλmax(A) ∈ R, since A is symmetric;312

then by Proposition 3.4, using the fact that arg(z) = 0 for z ∈ R, for p = 0 we find313

1

α
e(γλmax(A))

1
α ≤ N̄ ≈ 10K̄ ,314

which immediately yields the conclusion.315

Combining the results of Lemma 3.2 and Lemma 3.3, we can thus provide the316

following result which summarizes viable choices of the parameter γ for a given choice317

of α ∈ (0, 1).318

Proposition 3.5. Let A be the adjacency matrix of an undirected network with319

at least one edge and let ρ(A) > 0 be its spectral radius. Moreover, let N̄ ≈ 10K̄ be the320
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largest representable number on a given machine. Then the Mittag–Leffler function321

Ẽα(z) = Eα(γz) is representable in the machine, and admits a series expansion with322

decreasing coefficients when α ∈ (0, 1) and323

(3.1) 0 < γ ≤ µ(α) := min

{
Γ(α+ 1),

(
K̄ log(10) + log(α)

)α
ρ(A)

}
.324

3.3. Mittag–Leffler network indices. In this subsection we define centrality325

indices in terms of functions of the adjacency matrix induced by ML functions. Similarly,326

communicability indices defined in terms of the off-diagonal entries of the relevant327

matrix functions can also be introduced.328

Definition 3.6. Let A be the adjacency matrix of a simple graph G = (V,E). Let329

α ∈ [0, 1] and let 0 < γ < Γ(α + 1), so that Lemma 3.2 holds. Then, for all nodes330

i ∈ V = {1, 2, . . . , n} we define:331

• ML-subgraph centrality:332

si(Ẽα) = Eα(γA)ii333

• ML-total communicability:334

ti(Ẽα) = (Eα(γA)1)i335

Since γ satisfys the hypothesis of Lemma 3.2, the coefficients γr

Γ(αr+1) in the power336

series representation of Eα(γA) are monotonically decreasing. We can thus interpret337

the entries of this matrix function as a weighted sum of the number of walks taking338

place in the network with longer walks being given less weight than shorter ones.339

Remark 3.7. Similarly, an index of subgraph communicability can be defined as340

Cij(Ẽα) = Eα(γA)ij for all i, j ∈ V , i 6= j.341

These centrality indices arise as a straightforward extension of known theory342

for undirected graphs, namely the exponential-based subgraph centrality and total343

communicability and their resolvent-based analogues. The newly introduced indices344

all belong to the class of indices studied in [14]; Indeed, it can be easily shown that345

the rankings induced by the subgraph centrality and total communicability indices346

s(Ẽα(A)) and t(Ẽα(A)) converge to those induced by degree and eigenvector centrality347

as γ → 0 and as γ → ∞ (or γ → ρ(A)−1, when α = 0), respectively. It is worth348

mentioning that the upper limit considered here is the same as it was considered in349

[14], although the results presented in Proposition 3.5 provide a different upper bound350

on the admissible values for γ.351

It can be further shown that the measures here introduced converge to those352

induced by the exponential and by the resolvent as we keep the value of γ fixed and we353

let the parameter α vary in the interval (0, 1). Here, the convergence is actually shown354

for the centrality scores, rather than just for the induced ranking. Indeed, suppose that355

γ < min {Γ(α+ 1), 1/ρ(A)}, so that the power series expansion for Eα(γA) converges356

for all values of α and the coefficients appearing in said series are monotonically357

decreasing. Then it is straightforward to show that,358

• for f(z) = (1− γz)−1,359

lim
α→0

s(Ẽα) = s(f) and lim
α→0

t(Ẽα) = t(f);360

• for f(z) = eγz361

lim
α→1

s(Ẽα) = s(f) and lim
α→1

t(Ẽα) = t(f).362
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Fig. 3. Asymptotic behavior of the new Mittag–Lefller based measures.

Figure 3 schematically summarizes these results.363

3.4. Computing the ML function. The computation of the ML function364

Eα,β(z) is far from being straightforward. Indeed, for different parts of the complex365

plane one has to advocate different numerical techniques with different degrees of366

accuracy. Furthermore, when one wants to compute the induced matrix function for367

the case of non-normal matrices, the derivatives of arbitrary order also need to be368

computed. However, for particular choices of the parameters α and β we could employ369

specialized techniques; for example, when α = β = 1 the ML function reduces to the370

exponential, and for this matrix function there are several techiniques available in the371

literature; see, e.g., [40] and references therein. In this paper we are faced with the372

problem of computing Eα(z) for arbitrary choices of α. To accomplish this task, we373

use the techniques and the code developed in [28]. Furthermore, to compute the total374

communicability t(Eα) we deploy such approach in a standard polynomial Krylov375

method. In a nutshell, we are projecting the problem of computing Eα,β(γA)v on the376

subspace Km(A,v) = {v, Av, . . . , Am−1v}, that is, we compute the approximation377

Eα,β(γA)v ≈ VmEα,β(γV TmAVm)e1, where Vm = [v1, . . . ,vm] is a basis of Km(A,v),378

and e1 the first vector of the canonical basis of Rm. For an analysis of the convergence379

of such method we refer the interested reader to [41, Theorem 3.7]. In fact, one could380

also employ rational Krylov methods pursuing a trade-off between the size of the381

projection subspace and the cost of the construction of the basis Vm. For the analysis382

of this other approach, please see [41, 42].383

In the experiments presented in this paper, as mentioned above, we considered384

polynomial methods, which already gave satisfactory performances.385

3.5. Numerical experiments - centrality measures. In this section we ex-386

plore numerically how the measures introduced in Definition 3.6 compare with eigenvec-387

tor centrality and degree centrality as we let α and γ vary. To make the comparison, we388

use of the Kendall correlation coefficient [38]: the higher the coefficient, the stronger the389

correlation. The networks analysed here are two networks freely available at [19]. The390

network Newman/Dolphins contains n = 62 nodes and m = 139 undirected edges.391

Its largest eigenvalues are λ1 = 7.19 and λ2 = 5.94. The network Gleich/Minnesota392

contains n = 2640 nodes and m = 3302 undirected edges. Its largest eigenvalues are393

λ1 = 3.2324 and λ2 = 3.2319, and therefore this network has a relatively small spectral394
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gap λ1 − λ2. Results are displayed in Figures 4 to 7. In these figures we also plot a395

solid line to display the value of µ(α) in (3.1): this provides an upper bound on the396

admissible values of γ. We note in passing that the function accurately profiles the397

NaN region in each of our plots, which corresponds to values of α and γ for which the398

computed measures exceeded machine precision.399

In Figure 4-5, we observe that, after the maximum of µ(α), the correlation of400

the newly computed measure with eigenvector centrality (Figure 5b and Figure 4b)401

increases as α increases and γ increases, even above the curve µ(α). This demonstrates402

the known fact, proved in [14], that ML functions induce centrality measures that403

provide the same ranking as eigenvector centrality when γ → ∞. In Figure 4a and404

Figure 5a, on the other hand, we achieve larger values of the Kendall τ for small values405

of γ, regardless of the value of α, as expected.406

Similar results were achieved for the network Gleich/Minnesota in Figure 6-7,407

although not strong correlation is observed between the new indices and eigenvector408

centrality. This is again a known result, and it is due to the small spectral gap of409

the adjacency matrix of this network. For this graph it is however interesting to note410

the high degree of correlation between the new measure and eigenvector centrality for411

small values of α.412

Remark 3.8. We visually inspected a few of the top ranked nodes according to413

degree centrality, eigenvector centrality, and ML-subgraph centrality and ML-total414

communicability for different values of α and γ (ten nodes for Gleich/Minnesota415

and 20% of the total number of nodes for Newman/Dolphins). We can confirm that416

the ML measures, where well defined, return results comparable with those presented417

for the whole network when working on Newman/Dolphins. The results are not as418

good for Gleich/Minnesota, as one would expect because of the network’s spectral419

gap. We refer the interested reader to the Supplementary Material for further details.420

One interesting feature of all these plots is that the centrality measures studied421

seem to strongly correlate with either degree centrality or eigenvector centrality, with422

only a small interval of values of γ for each α where the correlation is not strong. This423

in particular has implications when we consider the two most popular Mittag–Leffler424

functions used in the literature: eγx and (1− γx)−1. Indeed, this result shows that425

most of the choices of γ, the downweighting parameter (for resolvent-based measures)426

or inverse temperature (for exponential-based measures), return rankings that can427

be obtained by simply computing the eigenvector centrality or the degree centrality428

of the network. However, if one can hit the “sweet spot”, with values of α and γ429

that return centralities not strongly correlated with the two classical ones, using these430

measures will certainly add value to the analysis. A similar observation was made in the431

Supplementary material of [14], where the authors write:“Thus, the most information432

is gained by using resolvent based centrality measures when 0.5/ρ(A) ≤ γ ≤ 0.9/ρ(A).433

This supports the intuition from section 5 of the accompanying paper that “moderate”434

values of γ provide the most additional information about node ranking beyond that435

provided by degree and eigenvector centrality”. We plan to investigate this phenomenon436

further and to describe ways to select γ for each value of α in future work. We note437

that some work in a similar direction was conducted in [2].438

4. Temporal networks. Networks are often evolving over time, with edges439

appearing, disappearing, or changing their weight as time progresses [35]. Consider a440

time-dependent network G = (V,E(t)) where the nodes remain unchanged over time,441

while the edge set E(t) is time-dependent. This type of graphs can be described using442
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Fig. 4. Network: Newman/Dolphins. Kendall correlation coefficient between the ranking

induced by subgraph centrality vectors s(Ẽα) and by (a) degree centrality or (b) eigenvector centrality
for different values of γ and α. The red line displays the value of µ in (3.1).
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Fig. 5. Network: Newman/Dolphins. Kendall correlation coefficient between the ranking

induced by total communicability vectors t(Ẽα) and by (a) degree centrality or (b) eigenvector
centrality for different values of γ and α. The red line displays the value of µ in (3.1).
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Fig. 6. Network: Gleich/Minnesota. Kendall correlation coefficient between the ranking

induced by subgraph centrality vectors s(Ẽα) and by (a) degree centrality or (b) eigenvector centrality
for different values of γ and α. The red line displays the value of µ in (3.1).
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Fig. 7. Network: Gleich/Minnesota. Kendall correlation coefficient between the ranking

induced by total communicability vectors t(Ẽα) and by (a) degree centrality or (b) eigenvector
centrality for different values of γ and α. The red line displays the value of µ in (3.1).

a time-dependent adjacency matrix A(t) : R→ Rn×n, whose regularity depends on443

the way in which the edges evolve; for example, if one wishes to model phenomena444

characterized by instantaneous activities, then the resulting t 7→ A(t) will be a445

discontinuous and rapidly changing function. This model is suited for, e.g., an e-446

mail communication network, where the different email addresses are the nodes and447

connections among them are present whenever there is an e-mail exchange between448

them at a given time t [46]. On the other hand, suppose that we want to model the449

number of people entering/leaving a train station. We can assign the value 0 to the450

situation where the station is completely empty and value 1 to the station at full451

capacity. Then, the function t 7→ A(t) is at least continuous, and the entries of A(t)452

take values in [0, 1] at all times.453

In the following we will show how the theory of ML functions allows for a gener-454

alization of the model presented in [30]. This generalization will overcome a known455

issue of resolvent-based centrality measure for temporal networks: the choice of the456

downweighting parameter γ; see Remarks 4.1 and 4.2 below. Using ML functions with457

α > 0 will automatically free the choice of γ from any constraint related to the history458

of the network, and this parameter will only need to satisfy the conditions prescribed459

in Proposition 3.5.460

In [30] the authors introduced a real-valued, (possibly) nonsymmetric dynamic461

communicability matrix S(t) ∈ Rn×n which encodes in its (i, j) entry the ability of462

node i to communicate with node j using edges up to time t by counting the walks463

that have appeared until time t. For a small time interval ∆� 1,464

(4.1) S(t+ ∆) = [I + e−b∆S(t)][I − γA(t+ ∆)]−∆ − I, S(0) = 0, γ, b ∈ R>0.465

For any pair on nodes i 6= j and a single time frame such choice reduces to the classical466

Katz resolvent-based measure,467

S(t0) + I = (I − γA(t0))−1,468

and, more generally, for a discrete-time network sequence {ti}Ni=1 and b = 0, to the469
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generalized Katz centrality measure introduced in [31],470

S(tN ) + I =
N∏
i=1

(I − γA(ti))
−1.471

472

Remark 4.1. From the above equation it follows immediately that, for each re-473

solvent to be well defined, γ needs to be smaller than the smallest of all ρ(A(ti))
−1.474

This in turn implies that, in order to compute S(tN ) + I, one needs to have complete475

knowledge of the evolution of the network up to time tN .476

By letting U(t) = I + S(t), expanding in Taylor series to the first order the right-hand477

side of (4.1) and rearranging the terms, one can rewrite the constitutive relation as478

U(t+ ∆)− U(t)

∆
= b(I − U(t))− U(t) log(I − γA(t)) +O(δ),479

and thus, by letting ∆→ 0, obtain the non-autonomous Cauchy problem480

(4.2)

{
U ′(t) = −b(U(t)− I)− U(t) log(I − γA(t)), t > 0,

U(0) = I.
481

482

Remark 4.2. Existence of a principal determination of the matrix logarithm func-483

tion is guaranteed when γ < ρ(A(t))−1 for all t ≥ 0. This implies that, much like in484

the discrete case, the full temporal evolution of our network has to be known before485

deriving U(t).486

As suggested in the original paper, alternative approaches can be considered by487

replacing the resolvent function with an opportune matrix function f(γA(t)), i.e., by488

moving from the Katz centrality measure to a general f -centrality,489 {
W ′(t) = −b(W (t)− I)−W (t) log(f(γA(t))), t > 0,

W (0) = I.
490

Just like in the static case we want to employ Mittag–Leffler functions, i.e., f(γA(t)) =491

Eα(γA(t)) for α ∈ [0, 1]; this will allow us once again to interpolate between the492

resolvent and the exponential behavior;493

(4.3)

{
W ′(t) = −b(W (t)− I)−W (t) log(Eα(γA(t))), t > 0,

W (0) = I,
494

To guarantee the existence of a principal determination of the matrix logarithm function495

in this case, we simply need γ satisfying the requirements in Proposition 3.5. In fact,496

the striking observation here is that, when α ∈ (0, 1], the choice of γ no longer depends497

on the topology of the temporal network, thus overcoming the issue highlighted in498

Remarks 4.1 and 4.2.499

We are now in a position to define centrality measures for nodes in temporal500

networks. We will define two measures of centrality, one to account for the broadcasting501

capability of a node, i.e., its ability to spread information to other nodes as time502

progresses, and one to account for the receiving capability of a node, i.e., its ability503

to gather information from other nodes and previous time stamps. We notice that,504
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Fig. 8. The tree alternates between the solid and dashed edges, i.e., it alternates between two
adjacency matrices A1 and A2 made, respectively, by the continuous and dashed edges. In each time
step extra noise is added in the form of 5 random directed edges connecting any two nodes of the
graph.

even when the time-evolving network displays only undirected edges, the presence of505

time induces a sense of directionality: if information goes from node i to j at time t506

and then from j to k at time t + 1, then the information travelled from i to k, but507

not from k to i. Following [30] we thus define the following measures of centrality for508

temporal networks.509

Definition 4.3. Let A(t) be the adjacency matrix of a time-evolving network G =510

(V,E(t)). Suppose that α ∈ (0, 1] and that γ satisfies the conditions of Proposition 3.5.511

Moreover, let W (t) be the solution to (4.3). Then, for every node i ∈ V we define its512

• dynamic broadcast centrality as the ith entry of the vector: b(t) = W (t)1;513

and its514

• dynamic receive centrality as the ith entry of the vector r(t) = WT (t)1.515

Remark 4.4. These measures reduce to those introduced in [30] when α = 0.516

4.1. Numerical experiments – continuous time network. We consider the517

two synthetic experiments from [30] for which we have a way of interpreting the518

results. The first one models a cascade of information through the directed binary519

tree structure illustrated in Figure 8. On a time interval T = [0, 20], the adjacency520

matrix A(t) of such network switches between two constant values A1 and A2 on each521

sub-interval [i, i+ 1), specifically522

A(t) =

{
A1, mod(btc, 2) = 0

A2, otherwise,
523

where A1 is the adjacency matrix relative to the subgraph with solid edges in Figure 8,524

and A2 the one relative to the subgraph with dashed edges. Noise is added to the525

structure in the form of five extra directed edges chosen uniformly at random at each526

time interval. The maximum of the spectral radii of all the matrices involved in the527

computation is 1, and therefore the solution to (4.2) is well defined for all γ < 1; see528

Remark 4.2. As for the time-invariant case, we consider the Kendall τ correlation529

between the broadcast and receive centrality measures obtained by solving (4.2) and530

the one obtained by solving (4.3). To compare them we fix for both the same value of531

b = 0.01, i.e., a case in which we allow older walks to make a substantial contribution,532

and compare the measure for the corresponding value of γ in Figure 9.533

What we observe for both these measures is that they are more sensitive to the534

This manuscript is for review purposes only.



MITTAG–LEFFLER FUNCTIONS IN NETWORK SCIENCE 17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0.95

0.91

0.86

0.81

0.76

0.72

0.67

0.62

0.57

0.53

0.48

0.43

0.38

0.34

0.29

0.24

0.19

0.15

0.1

0.7

0.75

0.8

0.85

0.9

0.95

NaN

(a) Dynamic Receive

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0.95

0.91

0.86

0.81

0.76

0.72

0.67

0.62

0.57

0.53

0.48

0.43

0.38

0.34

0.29

0.24

0.19

0.15

0.1

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

NaN

(b) Dynamic Broadcast

Fig. 9. We report here the Kendall-τ correlation for the receive and broadcast rankings obtained
with (4.2) and (4.3) with respect to the same γ and varying the values of α for the latter.
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Fig. 10. Snapshots of the cycle of activation of the edges in the synthetic phone graph network
on the time intervals ti = [(i− 1)τ, (i− 1 + 0.9)τ) for τ = 0.1, and i = 1, . . . , 8. The figure reports
the arithmetic average over all the time steps for each combination of the parameters (every couple
of simulation has been performed to march on the same time-grid).

variation of the scaling γ than to the variation of α→ 1.535

We now consider the second synthetic experiment from [30]. This case mimics536

multiple rounds of voice calls along an undirected tree structure in which every node537

has at most one edge at any given time, i.e., there are no “conference” calls. In538

Figure 10 we have reported the snapshots of the adjacency matrix for the network; all539

these matrices have unitary spectral radius. Connections are built in such a way that540

node A talks to node C in the first time interval thus initiating the cascade of phone541

calls in the network. On the other hand, node B waits until the fourth time interval542

to contact node C, and this does not cause any new cascade of calls.543

Even if nodes A and B have an identical behaviour, both contacting nodes C544

and D for the same length of time, the results in Figure 11 (for b = 0.1 and γ = 0.9)545

show that the dynamic broadcast centrality measure is able to capture the knock-on546

This manuscript is for review purposes only.



18 F. ARRIGO AND F. DURASTANTE

0 1 2 3

t

2

4

6

8

10

12

14

B
ro

a
d

c
a

s
t 

C
e

n
tr

a
lit

y
 b

(t
)

 = 0.00

Broadcast of A
Broadcast of B

0 1 2 3

t

2

4

6

8

10

12

B
ro

a
d

c
a

s
t 

C
e

n
tr

a
lit

y
 b

(t
)

 = 0.09

Broadcast of A
Broadcast of B

0 1 2 3

t

2

4

6

8

B
ro

a
d

c
a

s
t 

C
e

n
tr

a
lit

y
 b

(t
)

 = 0.18

Broadcast of A
Broadcast of B

0 1 2 3

t

1

2

3

4

5

6

7

B
ro

a
d

c
a

s
t 

C
e

n
tr

a
lit

y
 b

(t
)

 = 0.27

Broadcast of A
Broadcast of B

0 1 2 3

t

1

2

3

4

5

6

B
ro

a
d

c
a

s
t 

C
e

n
tr

a
lit

y
 b

(t
)

 = 0.36

Broadcast of A
Broadcast of B

0 1 2 3

t

1

2

3

4

5

B
ro

a
d

c
a

s
t 

C
e

n
tr

a
lit

y
 b

(t
)

 = 0.45

Broadcast of A
Broadcast of B

0 1 2 3

t

1

1.5

2

2.5

3

3.5

4

B
ro

a
d

c
a

s
t 

C
e

n
tr

a
lit

y
 b

(t
)

 = 0.55

Broadcast of A
Broadcast of B

0 1 2 3

t

1

1.5

2

2.5

3

3.5

B
ro

a
d

c
a

s
t 

C
e

n
tr

a
lit

y
 b

(t
)

 = 0.64

Broadcast of A
Broadcast of B

0 1 2 3

t

1

1.5

2

2.5

3

B
ro

a
d

c
a

s
t 

C
e

n
tr

a
lit

y
 b

(t
)

 = 0.73

Broadcast of A
Broadcast of B

0 1 2 3

t

1

1.5

2

2.5

3

B
ro

a
d

c
a

s
t 

C
e

n
tr

a
lit

y
 b

(t
)

 = 0.82

Broadcast of A
Broadcast of B

0 1 2 3

t

1

1.5

2

2.5

B
ro

a
d

c
a

s
t 

C
e

n
tr

a
lit

y
 b

(t
)

 = 0.91

Broadcast of A
Broadcast of B

0 1 2 3

t

1

1.5

2

2.5

B
ro

a
d

c
a

s
t 

C
e

n
tr

a
lit

y
 b

(t
)

 = 1.00

Broadcast of A
Broadcast of B

Fig. 11. Telephone cascade communication example with model (4.3) for γ = 0.9 and b = 0.1.

effect enjoyed by node A irrespective of the value of α used in (4.3). As we smoothly547

transition from the resolvent towards the exponential, the same behavior is observed,548

although with different scales for the centrality scores. This confirms that other ML549

functions allow to replicate the results obtained by resolvent-based temporal measures,550

while at the same time overcoming the issue of having to select the downweighting551

parameter γ; cf. Remark 4.2.552
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5. Conclusions. We discussed previous appearances of the Mittag–Leffler func-553

tion Eα(γz) in network science and described a general theory for ML-based centrality554

measures. This new family of functions is parametric, and suitable choices of the555

parameters were discussed. The asymptotics of the centrality measures were discussed556

theoretically and numerically, showing that by varying (α, γ) ∈ [0, 1] × (0,∞) our557

centrality indices move between degree, eigenvector, resolvent, and exponential cen-558

trality indices. We described new ML-based centrality measures for time-evolving559

networks by extending previous results based on the matrix resolvent. We introduced560

two parametric centrality measures for which the parameter no longer depends on the561

underlying dynamic graph, thus allowing for greater flexibility in the implementation562

of these techniques.563

Numerical experiments on both real-world and synthetic networks were presented.564

Future work will focus on exploiting the connection linking Mittag–Leffler functions565

and the evolution of dynamical systems with respect to a time-fractional derivative. In566

particular, we plan to analyze the behavior of networked dynamical systems evolving567

in fractional-time by means of ML functions.568
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