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Decay and revival of a transient trapped Fermi condensate
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We study experimentally and theoretically the response of a two-component Fermi condensate in the strongly
interacting regime to a quench of the interaction strength. The quench is realized using a radiofrequency π -pulse
to a third internal level with a different interaction strength. We find that the quench excites the monopole mode
of the trap in the hydrodynamic regime, and that an initial change of the condensate properties takes place on a
timescale comparable or even larger than the quasiparticle relaxation time.
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Understanding the nonequilibrium behavior of superfluids
and superconductors is a very active field of research. One
aspect of particular interest relates to the capacity to switch,
at will, superconductivity on and off. Gaining such an ability
would have clear applications in devices, but would also shed
light on pressing fundamental questions related to the dynam-
ics of the pairing mechanism. Therefore, it is not surprising
that the physics associated with rapid parameter changes in
superfluids and superconductors has intrigued physicists for
decades [1,2]. Famous examples include the strong drive
of superconducting materials by short laser pulses [3–6].
However, measurements and interpretations have remained
challenging. One central difficulty to advancing the fun-
damental understanding is to conduct quench experiments
cleanly. In a real material it often is difficult to couple
specifically to one degree of freedom, for example, to cre-
ate excitations in the electronic sector without accidentally
driving phonon modes simultaneously. This problem is further
enhanced by the need for a very short perturbation necessary
to reveal the (usually short-lived) genuine quantum dynamics.
However, a short perturbation goes hand in hand with a broad
excitation spectrum, which then couples to a wealth of excita-
tions in the material [6].

Ultracold atomic gases in atom traps offer a particu-
larly clean realization of Fermi condensates. Additionally,
the commonly employed technique of interaction control via
Feshbach resonances allows for selective focusing on the
“electronic” (corresponding to the fermionic gas) degree of
freedom of the BCS problem in its purest form without invok-
ing complications due to phonons. Therefore, ultracold Fermi
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condensates have been used to address the nonequilibrium
physics of BCS-type superfluids. For example, an interac-
tion quench lead to the excitation of low-energy collective
modes [7–9] or the formation dynamics of a pair conden-
sate [10]. Yet, an interaction quench in a Fermi superfluid on
timescales faster than the trap period and its ensuing quantum
dynamics has not been studied.

If we focus on the “electronic” sector, the dynamics of a
quenched Fermi condensate can be categorized into two con-
tributions: (1) the dynamics of the perturbed condensate and
(2) the dynamics of quasiparticles, which are created by the
fast parameter change. Initial theoretical work by Volkov and
Kogan [1] considered the dynamics of a BCS superconductor
after an infinitesimally small, abrupt change of the supercon-
ducting gap energy �. In subsequent years, a large amount of
work has been devoted to theoretically study and understand
the effect of rapid quenches of superconducting states [2,11–
21]. Importantly, even though the physical situation is a gen-
uine quantum many-body problem, the time evolution can
exhibit oscillations of the order parameter, which are rem-
iniscent of the physics of collapse and revival known from
few-particle dynamics [22]. Extensions of this work to har-
monically trapped gases–which is most relevant to our present
work–have generally confirmed the qualitative picture [21,23–
26]. Additional features stemming from the confined geome-
try are, for example, collective modes which can be excited by
a quench and govern the slow time evolution of the perturbed
condensate. However, dynamics can occur at slow timescales
also decoupled from the trap frequencies [23,24].

However, real experiments with Fermi condensates in ul-
tracold gases are not in a collisionless regime but typically
close to the unitary regime with, say, |1/(kF a)| � 1, and
correspondingly large quasiparticle scattering rates. Here,
kF denotes the Fermi wave vector and a the s wave scat-
tering length. How much of the physics of the integrable
theory is applicable in this regime is still unclear as the
potential observability of any coherent dynamics of the con-
densate depends critically on the relaxation mechanisms and
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lifetimes of collective and quasiparticle excitations. Only pre-
cisely at unitarity, 1/(kF a) = 0, theoretical predictions have
been made for a so-called holographic superconductor using
AdS/CFT correspondence. These predictions found oscillat-
ing or steady-state final states depending on the strength of the
quench [27].

In this article, we study the nonequilibrium physics of a
fermionic superfluid made from ultracold atomic gases near
the unitary regime. We study the quench from a strongly
interacting initial state to a weakly interacting final state re-
alized by the application of a radiofrequency (rf) π -pulse. In
previous experiments rf pulses were mainly used to investigate
the equilibrium phases of the Fermi gas [28–32], and only
recently the excitation of a Higgs mode [33] has been probed.
We reveal the dynamics of collapse and revival of the conden-
sate together with the appearance of collective modes. The
timescales observed for the collapse and revival of the con-
densate are very long and rather more comparable to the trap
period than to the intrinsic timescales of the superfluid. By
numerical modeling of the full dynamics in a one-dimensional
system, including the third state and final state interactions,
we confirm that this effect results from the interplay between
density inhomogeneity and pairing dynamics.

Our measurements are conducted in an ultracold quantum
gas of 106 6Li atoms prepared in a balanced mixture of the
two lowest hyperfine states |1〉 and |2〉 of the electronic ground
state 2S1/2 [33]. The gas is trapped in a harmonic potential
with frequencies of (ωx, ωy, ωz ) = 2π × (110, 151, 234) Hz
and is subjected to a homogeneous magnetic field in the range
of 880 − 1000 G in order to tune the s wave scattering length
a near the Feshbach resonance located at 834 G. This results
in an adjustment of the initial interaction parameter of the
gas in the range of −0.7 � 1/(kF a0) � −0.1, i.e., on the
BCS side of the BCS-BEC crossover. The Fermi energy in
the center of the gas is EF � h × (29 ± 3) kHz at each of
the considered interaction strengths and sets the Fermi wave
vector kF =

√
8π2mEF /h2, where m denotes the mass of the

atom and h is Planck’s constant.
Performing an instantaneous quench of the interaction is

very challenging since, typically, magnetic fields of several
ten or hundred Gauss strength would need to be varied in a
few microseconds, which usually is hindered by practical con-
straints such as eddy currents. In order to obtain a relatively
quick change of the interaction strength, we therefore follow
a different route: we perform a quench from the strongly
interacting superfluid in the |1〉 and |2〉 states to the relatively
weakly interacting mixture of the |1〉 and |3〉 states (see Fig. 1
a) by a rf π pulse with a duration τ = 28(2) μs = 4.8 × h̄/EF

and a transfer efficiency of >97% at 910 G, see Table I. A
quench of this duration is slow as compared to the internal
time scales ∼h̄/EF , but fast as compared to the time scales
of the harmonic trap ∼2π/ω. For values of the magnetic field
smaller than 880 G, i.e., closer to unitarity, we observe atom
losses and we refrain from performing quench experiments
in this domain. Qualitatively, the situation at the quench time
can be considered as follows: The initial state at interaction
strength 1/(kF a0) has a superconducting gap of �i and a
chemical potential μ, which govern the density profile in
the trap. After the quench to a weaker interaction strength

(a)

(b)

FIG. 1. Schematic of the quench experiment. (a) The Feshbach
resonances of the |1〉 , |2〉 and |1〉 , |3〉 mixtures. The grey shaded
region shows the range of considered interaction strengths. The gas
is switched from the strongly interacting 12-mixture of lithium into
the weakly interacting 13-mixture by a rf pulse. This induces a
rapid change of the s wave scattering length a. (b) Sketch of the
equilibrium distributions of the trapped superfluid for the initial and
final interaction strength, including the breaking of pairs.

1/(kF a f ), the gap is reduced to a nominal gap value of � f

and the chemical potential increases, see Figs. 1(b) and 1(c).
Both effects trigger internal dynamics and an adjustment of
the density distribution, and we monitor the subsequent time
evolution. To this end, we perform a magnetic field sweep
(“rapid ramp”) from the BCS side of the Feshbach resonance
to the BEC side, and convert Cooper pairs into tightly bound
molecules [34]. We extract the data from absorption images
taken after a ballistic expansion of 15 ms. To this end, we
rapidly extinguish the optical dipole trap, and apply a rapid
ramp from the final magnetic field to the zero crossing of
the scattering length at 569 G of the 13 mixture. There-
fore, during expansion of the Fermi gas, the distortion of
the momentum distribution due to the interaction effect is
minimized. The density distribution after a quarter period of
the weak Feshbach curvature trap is a mapping of the initial

TABLE I. Measured transfer efficiency of the rf flip from |2〉 to
|3〉 state.

Final magnetic field (G) Transfer efficiency (%)

880 88.0
895 90.7
910 97.2
1000 98.4
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FIG. 2. Time evolution after the quench from 1/(kF a0 ) = −0.74
to 1/(kF a1) = −1.31. (a) Width of the condensate peak (blue points).
The dashed line shows the exponential growth fit in the early stages
of the time evolution, and the solid line shows the damped oscillation
fit to the longer times. (b) Condensate fraction (blue data points)
together with the fit described in the text (solid line).

momentum distribution in the hybrid trap. The magnetic bias
field gives rise to a weak harmonic confinement during the
ballistic expansion and we have chosen the expansion time
corresponding to a quarter oscillation period in this potential,
and hence our data reflects the momentum distribution. To
quantitatively analyze the evolution of the transient trapped
Fermi condensate, a bimodal fitting of the momentum dis-
tribution after the expansion is implemented. In order to fit
the thermal fraction of the sample, initially the center of the
distribution is cut out. The boundary for this cut comes from
a simple bimodal fit, but the size of the masked out center
region can be varied. Then, a two-dimensional Gaussian fit
is implemented to the remaining data. This makes sure that
only the wings, and therefore the thermal part of the cloud, are
fitted. For the next step the thermal background is subtracted,
so that only the condensed part remains. To perform this,
another two-dimensional Gaussian fit is applied. From the
fitted parameters of the Gaussian distributions some important
quantities, such as the condensate fraction N0/N and momen-
tum distributions for both condensate and thermal parts, can
be calculated.

In Fig. 2 we show, exemplarily, the recorded conden-
sate dynamics as a function of the wait time after a quench
from 1/(kF a0) = −0.74 to 1/(kF a1) = −1.31. We consider
the evolution of both the width of the condensate peak and

FIG. 3. Timescales of the condensate dynamics. Orange dia-
monds: measured monopole oscillation period. Solid orange line:
prediction of the hydrodynamic model. Green squares: τ2 (conden-
sate fraction revival time). Blue circles: τ1 (condensate fraction decay
time). Red triangles: τ0 (condensate width initial rise). Red shaded
area: estimate of the quasiparticle relaxation times. Dashed black
line: duration of the quench. For each quantity we show two symbols
corresponding to different spatial directions. Error bars denote the fit
error, where not visible. They are smaller than the data point. The
initial values are 1/(kF a0) = {−0.31, −0.48, −0.65, −0.74}.

the condensate fraction. Qualitatively, we find very similar
behavior for all quenches studied.

First, we observe that the interaction quench induces a fast
increase of the width of the condensate momentum distribu-
tion, which triggers a collective mode displayed as periodic
oscillations in the width of the momentum distribution for
both the condensate and thermal parts. These oscillations are
expected in the harmonic trap, since the interaction quench is
fast as compared to the time scale of the trap and produces
a perturbation proportional to the initial density distribution.
Hence the perturbation has the perfect symmetry to induce a
monopole mode. We fit the dynamics beyond the fast initial
rise with an exponentially decaying harmonic oscillation in
order to extract the frequency. The measured frequencies for
the different final interaction strengths are shown in Fig. 3 and
we do not see a significant variation across the covered inter-
action range. We compare the measured mode frequency with
a hydrodynamic model [35,36], which we solve numerically
for our trap geometry and find ωm = 2π × 168 Hz. The hy-
drodynamic model does not include details of the interaction
but only the equation of state of the unitary gas, and hence
the oscillation frequency we derive is independent of 1/(kF a).
Our finding that the monopole mode frequency is mostly the
same for all considered interaction strengths is in agreement
with previous theoretical findings in this parameter range [37].
The width of the distribution of the thermal pairs also exhibits
oscillations of the same frequency as the condensate part,
which is expected in the hydrodynamic regime. Moreover,
we have experimentally varied the confinement of the gas and
found the corresponding scaling of the monopole frequency.

Second, we study the fast initial rise of the width of the
condensate momentum distribution, the corresponding sig-
nal of which is absent in the thermal cloud. This increase
occurs on a timescale much faster than the period of the
monopole oscillation. In order to extract the timescale of this
dynamic, we fit the first 400 μs of the time evolution with an
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exponentially increasing function w0 + w1 exp(t/τ0). We plot
the extracted timescales τ0 in Fig. 3. The detected timescale
is very much comparable to the quasiparticle relaxation time
h̄EF /�2

f , which we estimate using the mean-field equilibrium
for � f . This suggests that, after the interaction quench, excess
quasiparticles redistribute. This is the fastest dynamic we ob-
serve; it occurs on a timescale approximately 30 times shorter
than the collective mode.

Third, we observe that the condensate fraction shows a pro-
nounced time dependence. Initially, the condensate fraction
decays sharply and goes through a minimum value before re-
viving to reach a steady state on a timescale of ∼500 × h̄/EF .
We fit the data of the condensate fraction with an exponential
decay for the initial period and a stretched exponential for
the revival A exp[−t/τ1] + B(1 − exp[−(t/τ2)γ ]) in order to
extract the decay time τ1 and the rise time τ2 together with
the initial and final values of the condensate fraction A and
B, respectively. The stretching exponent has been fitted to
γ = 2.1 ± 0.1 across all data sets. The decay time τ1 depends
weakly on the interaction strength. It is approximately a fac-
tor of two shorter than the time of the recovery, τ2, and a
factor two to three longer than the quasiparticle relaxation
time.

The observed revival of the condensate is unexpected
according to prior theoretical analysis of a slow quench
of a collisionless superfluid [38,39], which–in contrast to
rapid quenches [1,21]–showed the absence of oscillations
of the order parameter. Additionally, previous measurements
of collective modes–including the monopole mode–have not
reported simultaneous oscillations on the condensate frac-
tion [8,9,40–43]. The time evolution of the superfluid is
surprisingly slow, and the timescale of the revival is compa-
rable to the trapping frequency rather than the quasiparticle
relaxation time. Moreover, we find that the condensate spread
nearly doubles during the period over which the condensate
fraction diminishes. In comparison, the momentum spread of
thermal background also increases in width, but only by less
than ten percent.

In order to elucidate the dynamics and countercheck our
interpretation, we perform numerical simulations of a Fermi
gas modeled as an attractive Hubbard model with three in-
ternal species. We use a low filling in order to minimize
lattice effects and focus on one spatial dimension in order to
make an exact treatment by the time-dependent density matrix
renormalization group method possible [44–46]. Here we go
beyond most previous treatments by taking into account first
the interactions in the initial and final states of the three-state
problem, and second the explicit time dependence of the state
change due to the rf π pulse.

More precisely, we consider a Fermi-Hubbard model at
zero temperature with three internal species which are attrac-
tively interacting in order to model the experimental setup.
The Hamiltonian is given by

H0 = −J
∑

〈i, j〉,σ
c†

i,σ c j,σ +
L∑

σ,i=1

Vtrap

(
i − L + 1

2

)2

ni,σ

+
L∑

i=1

{∑
σ<τ

Uσ,τ ni,σ ni,τ + V3ni,3

}
,

FIG. 4. Time evolution of the total transfer N3 to state 3. The rf
pulse used in the simulation presented in Fig. 5 is stopped at the time
Jt = 3.45h̄, achieving maximal transfer.

where ĉ(†)
i,σ are the fermionic annihilation (creation) operators

for states σ = {1, 2, 3} on site i, ni,σ is the corresponding
number operator, and 〈i, j〉 denotes a sum over nearest neigh-
bors in the one-dimensional lattice. J denotes the hopping
amplitude, Uσ,τ < 0 the attractive on-site interaction, and L
the number of lattice sites. Typically, the energetic splitting V3

between the state |2〉 and |3〉 is usually much larger than the
kinetic and interaction energy scales, i.e., V3 � J,U .

Initially, at time t = 0, the fermions are prepared in an
equal mixture of state σ = 1, 2. As we modeled a continuous
Fermi gas in the absence of a lattice for the results shown
in Fig. 4 of the main text, we chose a very low density
of fermions for which a continuum approximation typically
would be valid. Specifically, we chose L = 80, N1 = N2 = 8,
and a trap of strength Vtrap = 0.001J , confining the fermionic
gas to the central ∼30 sites in the initial state. Then a pulse
is applied using a rf field. This rf coupling induces mainly
transitions between the internal states |2〉 and |3〉 of the atoms
and can be modelled by the term

H ′(t ) = h̄�23 cos(ωrft )
L∑

i=1

(c†
i,3ci,2 + h.c.),

where �23 is the Rabi frequency of the transition (related to
the dipole matrix element) and ωrf the frequency of the rf field.

In order to calibrate the required parameters for a π pulse
in this interacting fermionic gas, we monitor the time evolu-
tion of the upper level population, N3(t ), for different driving
frequencies ωrf. The time evolution of N3(t ) exhibits distinct
regimes, reaching from Rabi-like oscillations as expected for
a two-level system to an almost linear rise as expected for the
coupling to a continuum. However, at short times a maximal
transfer can be identified around h̄ωrf ∼ 52.9J , where the time
evolution resembles Rabi oscillations (see Fig. 4).

Here an almost perfect π pulse with a transfer of 98%
(maximal value of N3 ∼ 7.8) is reached for a pulse duration
of Jt = 3.45h̄. One should note that the ‘resonance’ position
is shifted from the noninteracting two-level system, where it
would occur at h̄ωrf = 50J .
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In order to characterize the evolution taking place during
and after the effective interaction quench due to the π pulse,
we define the following observables. We consider the second
moment of the density distribution of the third level, which
provides a measure of the width of the distribution and is
defined as

w2
3 (t ) = 1

N3(t )

∑
i

(i − ic)2〈ni,3〉(t ),

where ic = (L + 1)/2 is the center of the lattice.
The pair coherence provides valuable information about

the evolution of the system. We therefore monitor how fast
it builds up between the states |1〉 and |3〉 considering the
k = 0 amplitude of the pair correlation. We define the pair
correlation in momentum space as

Pk (t ) = 1

L

∑
i, j

eik(ri−r j )〈�̂†
i �̂ j〉,

the pair annihilation operator �̂i = ci,1ci,3 at site i with k =
2nπ

L and n = {−L/2 + 1, . . . , L/2}.
In order to evaluate the width of the pair coherence, we

define

w2
pair = 1

P(t )

∑
k

k2Pk (t ) = 〈k2〉,

where P(t ) = ∑
k Pk is the total number of pairs between |1〉

and |3〉.
As in the system under study, the density dynamics in-

duced by the trap plays a crucial role. We consider a scaled
pair coherence where each local pair correlator is divided by
the time-dependent pair density at the corresponding spatial
location such that

Cpair
k=0 = 1

Leff

∑
20<i, j<61

〈�̂†
i �̂ j〉√〈ni,1ni,3〉〈n j,1n j,3〉

.

Notice that the summation is restricted over the central core
of the lattice 20 < i, j < 61, where the occupation of the
upper level is appreciably large to avoid numerical problems
by the division. Leff = 40 is the effective size of this central
region. This quantity measures the time evolution of the pair
coherence uncluttered with pair density dynamics. We verified
in the numerical simulation that a good accuracy of our results
was obtained. The shown results were obtained with a bond
dimension up to m = 300, a truncation error of εtrunc = 10−12,
and a time step Jdt = 0.0020h̄.

The results of the time evolution, including the time during
which the rf drive is applied, are shown in Figure 5. The
shaded region marks the duration of the rf drive ending at
tJ = 3.45h̄.

The initially empty level |3〉 is populated under the effect
of the rf drive, resulting in a strong increase of the den-
sity in level |3〉 [Figure 5(a)]. After the rf drive is turned
off at tJ = 3.45h̄, the number of atoms in state |3〉 remains
constant. Nevertheless, atoms continue to redistribute within
the trap as the density profile broadens up to tJ = 27.65h̄

FIG. 5. (a) Snapshots of the density distribution of state |3〉 in the
trap starting from the empty state at time t = 0. (b) Time evolution
of different observables: w3 is the width of the density distribution of
state |3〉, Re(Pk=0 ) is the coherence between pairs formed of atoms in
states |1〉 and |3〉, wpair is the width of the pair correlation distribution
in momentum space, and Cpair

k=0 is the pair coherence rescaled by the
pair density (see the main text for the definitions of the observables
). The shaded area marks the duration of the rf pulse. The dashed
vertical lines mark the times shown in panel (a). We chose a lattice of
N = 80 sites and N1 = N2 = 8 particles in level one and two in the
initial state. The interaction parameters are chosen as U12 = −6J ,
U13 = −2J , and U23 = −2J . The energy offset to the third level is
V3 = 50J , the rf driving frequency h̄ωrf = 52.9J , amplitude h̄�23 =
1.0J , and pulse duration Jtdrive = 3.45h̄. A trapping potential Vtrap =
0.001J is present for all levels. We verified that a good convergence
of our numerical results is achieved.

and then contracts afterwards. This signals the excitation of
the collective monopole mode by the rf-induced interaction
quench. During the application of the rf drive, as the third state
becomes occupied, the number of pairs formed between the
states |1〉 and |3〉, as well as the pair coherence Re(Pk=0) and
the second moment ω2

pair of the pair correlation momentum
distribution, display a strong initial increase [Figure 5(b)].
One should note that these last two quantities are related to
the experimental condensate fraction and to the width of the
condensate, respectively. However, the pair coherence begins
to decrease before the end of the rf drive. This decrease is
due to the loss of coherence over longer distances, which is
no longer compensated for by the increase in the number of
atoms in level |3〉. To be more precise, we consider the long
distance pair distribution rescaled by the pair density, Cpair

k=0.
This quantity, uncluttered with the pair density dynamics,
presents a strong decrease at short times, highlighting the
decay of the pair coherence. At later times, the pair coherence
oscillates with a maximum at precisely the time when the
density distribution becomes broadest, allowing for longer
range coherence. Thus, these long pair coherences measured
by the zero-momentum peak are influenced by the monopole
oscillations in the density, and therefore also show the oscil-
lations with the monopole frequency. The oscillations of the
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width of the pair momentum peak and its amplitude are not in
phase. The dynamical effects uncovered within our theoretical
model are in good agreement with the experimental findings
presented earlier and support strongly the interpretation pro-
vided above.

In conclusion, we have studied the dynamics of a Fermi
condensate near the BCS-BEC crossover subject to an inter-
action quench. We find that the monopole dynamics of the
trap is excited in the hydrodynamic regime by the interac-
tion quench. Additionally, the condensate dynamics shows
an initial decay on a timescale comparable or larger than the
quasiparticle relaxation time. After this initial decay, the con-
densate fraction subsequently stabilizes to a steady state. The
experimental findings are confirmed by theoretical results for
a one-dimensional system which fully models the dynamics

of the three internal levels taking final state interactions into
account.
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