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Chapter Abstract 

To support, plug-in electric vehicle (PEV) growth, there is a need to design and operate 

charging stations without increasing peak system demand. In this chapter, first, an overview of 

on-going demonstration and testing studies are presented to show the complexity of the actual 

charging infrastructures and uncertainties related to customer demand. Then, an analytical 

model for a large-scale charging station with an on-site energy storage unit is introduced. The 

charging system is modelled by a Markov-modulated Poisson Processes with a two-

dimensional Markov chain. A Matrix geometric based algorithm is used to solve steady state 

probability distribution to compute optimal energy storage size. Case studies are presented to 

show (i) the relationships between energy storage size, grid power and PEV demand and (ii) 

how on-site storage can reduce peak electricity consumption and the station’s monthly 

electricity bill. 
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6.1. Introduction 

The future of electric power grids is currently shaped by two major advancements, namely 

higher use of renewables on the supply side and increasing adoption of PEVs on the demand-

side. These advancements aim to decarbonize electricity and transportation networks since 



more than half of the global energy-related carbon emissions are attributed to these two sectors. 

The push towards PEVs is supported by legislations and regulations to encourage PEV uptake. 

For instance, a number of countries including the United Kingdom, France, and Norway plan 

to phase out fossil fuel cars by introducing a ban on the sale of such vehicles and increase the 

coverage of charging network within the next two decades (Tajer, 2017). On the other hand, 

reaching net zero goals would require an exponential adoption of PEVs; for instance, in the 

UK there are currently two hundred thousand PEVs on the road and this number needs to be 

around four million by 2030 to meet government policies (Haslett, 2019). Similarly, the State 

of California has a mandate to acquire one and half million PEVs by 2025 and generate half of 

its electricity with renewables by 2030. Net zero policy impacts are visible in France as there 

is a spring-back effect on the year-on-year (January 2019-2020) PEV market share jump from 

2.7% to 11%. To that end, after being considered as a fringe technology, PEV market is getting 

closed to a tipping point (Sperling, 2018). This can be viewed in PEV sales and forecasts as 

shown in Figure 6.1 

 

Figure 6.1 Battery electric vehicle (BEV) sales and forecasts (International Energy Agency) 

(https://www.iea.org/reports/global-ev-outlook-2019, 2019) 

To support electrification of transportation, there is a need to deploy charging nodes to meet 

various customer needs shaped by time, location, and duration of service. In this chapter, we 
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present a large-scale PEV charging lot architecture equipped with an on-site storage unit. The 

primary goal is to develop a probabilistic method to optimally size storage unit and show how 

on-site storage can be effective in reducing peak demand and operational costs. Furthermore, 

we present an overview demonstration studies conducted at Power Networks Demonstration 

Centre1 on PEV charging infrastructures. 

At the moment, there are three typical charging options for PEVs (Falvo, 2014). First option is 

level 1 charging which takes place in customer’s premises. Level 1 charging uses existing, 

typically single phase, electrical circuit at residential units (2-3 kW) and fills the PEV battery 

during the night. Second charging option uses AC level 2 chargers which are typically located 

at public parking lots (e.g., workplaces, shopping malls, etc.). This type of chargers typically 

supplies 6 to 7 kW power to stationary vehicle. Third option is called fast or ultra-fast charging 

which can transfer DC power at a rate of 50 kW – 350 kW (Srdic, 2019). Note that a typical 

fast model (50 kW) can deliver enough charge for a 100-mile trip with 30 minutes of charging, 

while ultrafast models are more preferred by high-end PEVs with large batteries. In this 

chapter, the proposed model employs level 2 chargers to serve cars parked at a large-scale lot. 

The related literature can be classified as three groups. First group of studies relate to smart 

charging (see Section 6.2.1) which is aimed at mitigating disruptive impacts of PEV demand 

on the power grid by exploiting the demand flexibility of PEVs. Second group of studies relate 

to design of charging stations and are categorized according to technology and economic 

operation domains (see Section 6.2.2). Third group is related probabilistic modeling of 

charging stations (see Section 6.2.3). 

 

6.2. Literature Review 

6.2.1. Literature on Smart Charging and Impacts of PEV Charging 

 
 



Smart charging of PEVs is critical in transition towards electric transportation. Existing electric 

power grids are not designed to serve large PEV loads and concurrent charging of PEVs will 

lead to major technical challenges on the distribution, transmission, and generation 

components. At the distribution level, clusters of PEV load during peak hours can lead to 

premature aging of transformers, increase distribution system losses, and deteriorate power 

quality (J. García-Villalobos, 2014). Increased stress and voltage fluctuations will further risk 

the consistency and safety of the network. According to a field study conducted in the UK 

(Cross, 2016), one third of the low voltage feeders will require intervention when 40-70% of 

residents have PEVs. At the transmission level, PEV load increases transmission congestion 

level which is a major challenge as the investments towards new transmission lines have been 

declining. To support increasing electrification demand, there is an urgent need to expand 

transmission network capabilities (Jurgen Weiss, 2019). Finally, at the generation level, 

uncontrolled PEV load could lead to an increase in peak system load which requires system 

additional deployment of new system upgrades (Tehrani, 2015). To overcome aforementioned 

disruptive impacts, design and operation of charging facilities play a key role in transition to 

electric transportation. 

 

PEVs are considered as new kind of electric loads that have both temporal and charging power 

flexibility. When a PEV is connected to a charger, charging session starts at a constant power. 

In the case of multiple PEVs connected simultaneously, they collectively increase peak loading 

and potentially trigger aforementioned disruptions. Smart charging is the optimization of 

charging power by exploiting PEV flexibility to maximize one or more benefits such as 

reducing peak load, increasing renewable energy utilization, lowering the cost of PEV 

charging, or deferring infrastructural upgrades (J. García-Villalobos, 2014). Smart charging 

can be implemented through standards such as IEC 61851 and ISO 15110 that enable control 



and communication between charger and the vehicle. In addition, a group of PEV owners, 

coordinated by an aggregator, can participate in ancillary energy markets to stabilize electricity 

grids and, in return, receive payments for services rendered (Han, 2010). Vehicle-to-grid (V2G) 

applications are particularly important to smoothen what is known as solar “Duck Curves” 

which is used to define net electricity generation curve when there is significant solar 

generation. In this case, PEVs’ charging rate are adjusted in a way to minimize the ramping up 

requirements of traditional power generators and lower financial losses (Lee, 2019).  

 

6.2.2. Literature on Charging Station Design 

The approach described in this chapter focuses on economic operation of charging stations and 

energy storage sizing (S. Negarestani, 2016) (M. R. Sarker, 2018). In this type of works, a 

critical component is local storage unit which is typically employed to shave peak load, reduce 

demand charges, and provide additional income via energy market participation. In (S. 

Negarestani, 2016), an optimal sizing approach is proposed for energy storage systems (ESSs) 

in fast charging stations. In this work, PEV demand is calculated based on driving patterns and 

optimal storage size is determined based on cost minimisation. In (M. R. Sarker, 2018), an 

optimisation framework is presented for an optimal bidding strategy in day-ahead electricity 

markets for a PEV charging station with an on-site storage. In the current charging station 

applications, the one of the main issues is related to expensive demand charges that constitute 

a sizable portion of monthly electricity bills and reduces station profits (The 50 states of electric 

vehicles, 2018). Demand charges are pricing tools to limit peak consumption of large 

customers by inducing a fee commensurate to the peak consumption during any fifteen minutes 

during each month. In June 2016 a charging facility with two fast-chargers, the following bill 

was issued (Ismail, 2019). The energy charge was 284 USD and demand charges for the peak 

power was more than 2900 USD, representing 91% of the total operational cost. High demand 



charges both compromise business models and negatively impact PEV sales if prices are 

reflected to customers. 

 

6.2.3. Literature on Probabilistic Modelling of PEV Charging Infrastructures 

Since the experimentation of capital-intensive PEV charging stations is not possible, analytical 

modeling of PEV charging demand and infrastructure are used to provide insights to system 

planners in how different system components interact with each other. In line with the previous 

discussion, economic operation of charging infrastructures has been the topic of several 

mathematical modeling and optimization research works. Stochastic modeling and queuing 

systems have been widely used as such methods capture the probabilistic nature of problem 

related to different battery packs, technologies, weather parameters, and customer arrival and 

departure processes (Hu, 2016). Moreover, station may have uncertainties related to renewable 

energy output and storage unit can be modelled as a linear for simplification or non-linear 

“buffer” if battery’s chemical dynamics are taken into account. Some of the related studies can 

be enumerated as follows. In (Aveklouris, 2017), fluid approximation of queueing models is 

adopted to calculate charging station overloading probabilities. In (E. Ucer, 2019), a queueing 

model is employed to calculate waiting times and service quality for a number of charging 

stations located in Ohio by using actual traffic traces. In (P. Fan, Operation analysis of fast 

charging stations with energy demand control of electric vehicles, , 2015), a charging station 

is modeled using a queuing model and captured the effect of constant current constant voltage 

charging on customer waiting times in the station. Customer arrival and charging demand 

statistics are important system parameters in charging stations. In (Fotouhi, 2019), using actual 

PEV charging data (level 2 chargers)  



 

Figure 6.2 System overview 

 

from a major North American University Campus between 2010-2015, a Markovian model for 

representing the charging behavior of PEV owners is presented. The results show that PEV 

owners not necessarily fully charge their batteries, hence, service duration is shorter than 

expected. In (Bayram, 2014), shared-based ESS located at residential units is modeled using 

fluid dynamic approach and storage sizing problem is solved by computing outage probability 

that of the system that is defined as the event when the load is higher than the supply.  

 

6.2.4. Contributions 

The contributions of this chapter can be enumerated as below: 

• First, an actual demonstration and testing platform of a PEV charging infrastructure is 

introduced to show a detailed overview of a PEV charging infrastructure and sample 

measurement results. 

• Second, a probabilistic system model for large scale PEV charging station equipped 

with an on-site energy storage is presented (shown in Figure 6.2). By considering the 

probabilistic nature of the customer demand, the proposed architecture is modelled by 

a Markov-modulated Poisson Process. 



• Third, a matrix-geometric based algorithm is presented in detail and used to solve the 

associated capacity planning problem to find optimal energy storage size and station 

capacity respect to customer demand statistics. 

• Fourth, practical case studies are developed to show that (i) by accounting for the 

statistical variations in customer demand, the power required for the station is 

significantly less than the sum of chargers' rated power and (ii) on-site storage units can 

help station operators to significantly reduce their electricity bills. 

 

6.3. Demonstration and Testing Platform of a PEV Charging Infrastructure  

Before presenting an analytical model for a large-scale charging station, an overview of an 

actual small-scale PEV charging station with associated hardware and software components 

are presented to provide a better understanding of actual system components. The Power 

Networks Demonstration Centre (PNDC) has completed several research projects relating to 

the electrification of transport and charging infrastructure. This includes electrical impact 

assessments of wireless inductive charging, on-street pop-up charger performance testing, and 

active power quality compensation of single-phase harmonic and load imbalance impacts of 

EV charge points.  The PNDC was founded with the goal of accelerating the penetration of 

disruptive technologies from early stage research into business as usual adoption by the 

electricity industry. The facility comprises a fully representative distribution network, 

including the capabilities summarized in Table 6.1 This enables the research, test and 

demonstration of hardware, software and integrated systems solutions in a safe, controlled 

environment. 

 

 



Table 6.1 Selected hardware and software assets of PNDC 

Asset Rating / Comments 

11kV overhead/underground distribution Up to 60kM of representative 11kV network 

400V low voltage distribution Up to 6kM of representative LV network 

Controllable Motor-Generator (MG) set 1MW Motor / 5MVA Generator 

Controllable load banks 600kVA controllable resistive/inductive 

Real Time Digital Simulator (RTDS) 6 racks of RTDS execution hardware 

Power Hardware in the Loop (PHIL) 540kVA bi-directional power converter 

Distributed Energy Resources (DERs) E.g., EV charge points, PV inverters, loads  

Distribution Management System Operational GE PowerOn SCADA 

Data Acquisition System Fluke & Beckhoff monitoring and logging  

 

 

6.3.1. Overview of PEV Research and Testing Projects at PNDC  

In 2019/20, the PNDC supported Power Line Technologies Ltd. (PTL), Chronos Technology 

Ltd, and the University of Strathclyde with development of the ENERSYN platform, which 

enables the hosting of partner developed applications. The platform monitors the low voltage 

(LV) network via high fidelity voltage and current measurements, making this data available 

to hosted ‘apps’.  Two apps developed were a micro Phasor Measurement Unit (PMU) and a 

Non-Intrusive Load Monitoring (NILM) algorithm, to detect the connection of electric vehicles 

(EV) to their chargers. The NILM algorithm uses machine learning techniques applied to LV 

network data to detect unique features related to EV charger operation. The test setup was 

varied in two ways. The first variation involved the Enersyn platform monitoring a rapid EV 

charging load isolated from background noise. The second variation involved monitoring a 

rapid EV charging load with other background loads supplied from the same distribution 



circuit. A high-level representation of the setup is illustrated in Figure 6.3. Rogowski coil 

current transducers are installed on the incoming cables to the distribution board, and voltage 

transducer measurements taken off terminals inside the building’s distribution board. 

Conducting testing with and without background load permitted the assessment of the NILM 

algorithm and its ability to disaggregate system noise from loads of interest. 

 

 

Figure 6.3  Iteration of test equipment and facility setup at the PNDC for NILM testing 

The ENERSYN platform and an off-the-shelf data acquisition system were deployed in parallel 

to ensure the accuracy of data capture. Data was recorded using a National Instruments 

CompactRIO (NI CRIO) data acquisition system and a LabVIEW Virtual Instrument (VI) 

hosted on a PC. Three analogue input modules were deployed, with 4 channels per module. 

The other module employed in this setup was a global positioning system (GPS) time 

synchronization module. Data was sampled at a rate of 100kHz to provide a high-resolution 

data set for the development of machine learning features that underpin the NILM algorithm.  

Concurrent, PTL, Chronos and University of Strathclyde deployed the developed ENERSYN 

monitoring platform. The developed system incorporates current and voltage measurements 
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and records high-speed waveform events (100 kHz sampling rate) which are time stamped 

using GPS. The ENERSYN platform uses a long range (LoRa) GPS timing module supplied 

by Chronos. Captured waveform events are then analysed by the on-board micro-Phasor 

Measurement Unit (PMU) and passed to the Non-Intrusive Load Monitoring (NILM) algorithm 

(depicted in Figure 6.4). Noteworthy waveform events are flagged and forwarded onto the 

ENERSYN server for further analysis.  

 

Figure 6.4 ENERSYN platform block diagram. 

6.3.2. Summary of Results 

High-resolution load signatures for a range of PEV charging profiles were analysed using data 

gathered by the National Instruments CRIO monitoring system. Previous studies (P. Zhang, 

2011) have established a set of general usage patterns for charging PEVs, enabling four 

prescribed charging schedules to be derived, as illustrated in Figure 6.5, Figure 6.6, Figure 6.7 

and Figure 6.8. These prescribed profiles were recreated, using PNDC owned electric vehicles, 

and used as inputs to the development of the NILM algorithm. 



 

Figure 6.5: Profile a) empty to full (0 to 100%) 

 

Figure 6.6: Profile b) empty to part full (0 to 75%) 
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Figure 6.7: Profile c) part full to full (25 to 75%); 

 

Figure 6.8: Profile d) part full to another higher capacity (25 to 75%) 

 

PEV charger behaviour for non-prescribed charging profiles was also investigated by logging 

the electrical parameters on a public rapid 50kW charger. The logged data was correlated to 

voluntary questionnaire responses by charge point users about the start and end state of charge 

of their charging session. Figure 6.9 outlines the responses received, each point corresponding 

to a charge start and stop percentage. 
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Figure 6.9 Public responses for usage of the PNDC rapid charger 

Based on public responses, the majority of charging sessions started at 10 to 30 % state of 

charge (SOC) and stopped in the range of 70 to 100% SOC. This additional step provided 

inputs to ensure that the data for training the NILM algorithm was representative of how typical 

PEV drivers use public rapid chargers, in addition to the prescribed profiles found in literature 

Training data for the NILM algorithm was logged at a sampling frequency of 100 kHz, which 

was exported in a technical data management system (TDMS) format, compressed, and shared 

on a data storage platform with the project team. In terms of file size, a TDMS data file 

corresponding to 1 hours monitoring equated to 10 GB of data. This learning emphasised the 

need for on-board edge-processing analysis via the ‘apps’ on the ENERSYN platform, to avoid 

unnecessary data transmission to a server for centralized analysis. 

 

The PEV charger data generated at the PNDC was critical to the NILM algorithm development. 

The PNDC is exploring further avenues of research which could make use of this high-fidelity 

data. The developed NILM algorithm is now operating at a success rate of over 90% in 

detecting PEV charger events after being trained and tested by the data gathered at PNDC. The 
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next stage of testing for the project will be the deployment of the ENERSYN platform on the 

PNDC test network and monitoring the public PEV chargers at PNDC over a longer period of 

time. 

6.4. System Model 

In this section, we consider a large-scale charging station with 𝑁 chargers serving PEV 

demand. Charging station draws grid power and employs an on-site ESS shared by all users. 

We denote total charging power at time 𝑡 by 𝜈! and energy storage system (ESS) charge level 

is denoted by 𝑖(𝑡) fir 𝑡 ∈ ℝ". It is worth noting that grid power is used to charge vehicles and 

storage unit whenever possible. When total PEV demand is higher than 𝜈!, then ESS is used to 

support PEV demand unless it is fully empty. Customer statistics are as follows. We assume 

that PEVs’ arrivals at parking station is a Poisson process with rate 𝜆. The average parking 

duration follows an exponential distribution with rate 𝜇 (P. Fan, Operation analysis of fast 

charging stations with energy demand control of electric vehicles, 2015). Furthermore, when a 

vehicle is parked, its power demand follows Poisson process with rate 𝛽. Finally, when an 

arriving customer finds all system resources in use, then an outage event occurs. In our model, 

we use outage probability as the natural performance metric. 

 

Since PEV arrivals are independent of each other, the system state space {0,1, … , 𝑁} is 

represented with a birth-death process. The composite model for 𝑁 slot charging station is 

depicted in Figure 6.10. 

 

Figure 6.10: Birth-death process for N slot charging station 
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For the given system description, it is natural to assume that the system operates in a stable 

region. For this, the average demand should be strictly less than the available station capacity. 

To that end, we have 

 𝑁𝛽 2
𝜆

𝜆 + 𝜇4 < 𝜈! , (6.1) 

or (6.1) can be rewritten as 

 𝜌 ≡ 𝑁𝛽 2
𝜆

𝜆 + 𝜇4
1
𝜈!
< 1, (6.2) 

where 𝜌 is the utilization parameter. Furthermore, the following assumptions are made for the 

storage unit. First, energy rating (in kWh) or the size of the energy storage is denoted by 𝐵. 

Second, energy storage efficiency (charge-discharge) is denoted by 𝜂 which takes values 

between 0 and 1. Note that this parameter reflects the percentage of energy transfer after losses 

are excluded. Third, in actual energy storage systems, small percentage of energy is lost due to 

leakage. To simplify matters, dissipation losses are ignored. 

 

During charging station operations, on-site storage unit’s energy level changes at one the 

following cases: 

• When the storage unit is entirely discharged, that is 𝑖(𝑡) = 0, and the total demand is 

more than 𝜈! . In this case, rate of change in storage charge level would be zero.  

• ESS is fully charged, i.e., 𝑖(𝑡) = 1, and total demand is less than 𝜈!. Similar to the 

previous case, ESS charge level would not change. 

• ESS is partially discharged, that is 0 < 𝑖(𝑡) < 1, with any level of system demand. In 

this case, ESS charge level would change commensurate to the difference between 

charging power and the system demand, that is, #$(!)
#!

= 𝜂(𝜈! − ∑ 𝐿'(𝑡)' ), where 𝐿'(𝑡) 

is the total demand when 𝑛 ∈ {0,… ,𝑁} chargers are on at time 𝑡. 



It is noteworthy that due to probabilistic nature of the system, by choosing storage size 𝐵, only 

probabilistic guarantees can be provided to system reliability. Therefore, let us define 𝜀 as the 

outage storage capacity, i.e., 𝐵(𝜀), as the minimum 𝐵 satisfies to serve (100 − 	𝜀)% per cent 

of the total load, i.e., 

 𝐵(𝜀) = C min 𝐵 
subject to	ℙ(𝑖(𝑡) ≥ 𝐵) ≤ 𝜀	. (6.3) 

Note that our main goal is to calculate 𝜀 − outage storage capacity 𝐵(𝜀) based on grid power, 

the number of PEVs, and other system parameters. To simplify mathematical notations, ESS 

size is scaled and instead of 𝐵/𝜂, we redefine 𝐵 as the storage size. Furthermore, power 

systems planning is typically done for “peak hour” period. Therefore, in the rest of the paper, 

time index 𝑡 is dropped and carry out calculations for the peak statistics.  

 

6.4.1. Markov-modulated Poisson Process 

Recall from the preceding discussion that at each state (see Figure 6.10) the aggregate demand 

generates state-dependent Poisson process (e.g., 𝛽, 2𝛽,	etc.). Therefore, entire charging station 

can be modeled with a Markov-modulated Poisson Process (MMPP) and energy storage sizing 

option will be coupled with computation of steady state distribution probabilities. Let 𝑝$' 

denote the joint probability that the storage charge level is 𝑖 and there are 𝑛 active PEVs, that 

is 

 p() = 	ℙ(ESS charge level=i, n	active customers). (6.4) 

Then, the probability that ESS charge level is at level 𝑖 can be written as 

 𝑝$ =	∑ 𝑝$'*
'+, . (6.5) 

Given the aforementioned assumptions, the system is modeled with a two-dimensional birth-

death process as depicted in Figure 6.11. Note that system states of the Markov chain are 

represented by a doublet (𝑖, 𝑛) where the first dimension reflects storage charge level and varies 

from 0 to 𝐵 and the second dimension represents number of PEVs in the system and varies 



from 0 to	𝑁. Alternatively, when customers arrive at or depart from the station, system state 

moves in the horizontal direction. Similarly, when the on-site storage is charged or discharged, 

system state moves in vertical direction. Moreover, transition rates e.g., 𝜆, 𝜇, etc. are 

determined based on the Poisson assumptions made earlier. It is worth emphasizing that storage 

sizing calculations are made based on the assumption that the storage size has an infinite 

capacity and the overflow probability calculated as given in (6.3). 

 

6.4.2. Matrix Geometric Approach 

To compute steady-state probabilities of the MMPP model, an algorithmic solution technique 

called matrix geometric approach has been employed (Neuts, 1994). As a first step, balance 

equations for the Markov chain is written in the form of (6.4). For instance, the last raw (𝑖 =

0), there are three intervals, (i) 𝑖 = 0, 𝑛 = 0, (ii) 𝑖 = 0, 1 ≤ 𝑛 ≤ 𝑁 − 1, and (iii) 𝑖 = 0, 𝑛 = 𝑁.  

 

Figure 6.11: An illustrative MMPP model for the charging station with storage size B.  
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Vertical state transitions represent energy storage charge-discharge events, while horizontal 

ones depicts PEV arrival and departure. 

For the first interval, the balance equation is 

 𝑁𝜆𝑝,, = 𝜇𝑝,- + 𝜈𝑝-,. (6.6) 

This equation can be rewritten as 

 𝑝,, = (1 − 𝑁𝜆)𝜇𝑝,- + 𝜈𝑝-,. (6.7) 

For the second interval, the balance equation can be rewritten as 

 
p,) = MN − (n − 1)Oλp,).- + (1 − (N − n)λ − nµ − nβ)p,) + (n +

1)λp,)"-νp-). 
(6.8) 

The third case includes the rightmost boundary states the balance equation can be rewritten as  

 p,/ = λp,/.- + (1 − Nλ − Nβ)p,/ + νp-/. (6.9) 

Balance equations for other rows e.g., 𝑖 > 0, can be written similar to (6.7), (6.8), and (6.9) by 

further incorporating additional vertical state transitions. Let 𝒑𝒊 denote (𝑁 + 1)-element row 

vector compromised of probabilities defined by balance equations, that is  𝒑𝒊 ≡

[𝑝$,, 𝑝$-, … , 𝑝$*]. Then, balance equations, such as the ones defined in (6.7), (6.8), and (6.9), 

can be written in a compact matrix-vector equation. For 𝒑𝟎,  

 𝐩𝟎 = 𝐩𝟎𝐵, + 𝐩𝟏B𝟏, (6.10) 

where (𝑁 + 1)𝑥(𝑁 + 1)  matrices 𝐵, and 𝐵- are readily given by  

  

 

 

(6.11) 

 

and 𝐵-is a diagonal matrix the elements of which are composed of vertical transition rate 𝜈. 

Remaining rows, e.g., 𝑖 > 0 can be written similar (6.11) by including transitions between 
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vertically adjacent states. Hence, a complete set of balance equations for the remaining rows 

can be constructed from the matrix recurrences relation with three matrices such as 𝐴,, 𝐴-,	and 

𝐴3, that is 

 𝒑𝒊 = 𝒑𝒊.𝟏𝐴, + 𝒑𝒊𝐴𝟏 + 𝒑𝒊"𝟏𝐴𝟐	,	for 𝑖 > 0 (6.12) 

Recall the assumption that the energy storage is initially assumed to have infinite size. Then, 

an infinite-dimension equation 𝒑  is introduced as 𝒑 = [𝒑𝟎, 𝒑𝟏, … , 𝒑𝒊, … ]. Then from (6.12), it 

is easy to see that 

 𝒑 = 𝒑𝑃, (6.13) 

where matrix 𝑃 is a stochastic matrix of infinite size and called as the transition probability 

matrix with each row summing to one. It is trivial that matrix 𝑃 is concatenated from previously 

constructed submatrices, namely  𝐴,, 𝐴-, 𝐴6, 𝐵,, 𝐵-, in the following repetitive form 

 

 

 

(6.14) 

 

In the next section, we present the solution methodology to compute minimum 𝑖 that satisfies 

𝜖 = 1 − ∑ 𝑝$ .$  

 

6.4.3. Algorithmic Solution Technique 

In this section, the algorithmic probability solution developed by Neuts in (Neuts, 1994) is 

adopted. The solution to 𝑝$ is written as 

 𝑝$"- = 𝑝$R, i ≥ 0, (6.15) 

where 𝑅 is a (𝑁 + 1)𝑥(𝑁 + 1) matrix has a non-negative solution to the following matrix 

equation 

P =
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 𝑅 = `𝑅7𝐴7

8

7+,

. (6.16) 

Note that calculation of 𝑝$ is equivalent to finding the minimal nonnegative solution to 𝑅 

matrix. A recursive calculation method is used to compute the matrix 𝑅. As a first step, (6.16) 

is rewritten as 

 𝑅[𝐼 − 𝐴-] = `𝑅7𝐴7

8

7+,
79-

 (6.17) 

where 𝐼 is an identitity matrix of (𝑁 + 1)𝑥(𝑁 + 1) size. Multiplying both sides of (6.17) would 

yield 

 𝑅 =`𝑅7𝐴7

8

7+,
79-

[𝐼 − 𝐴-].-. (6.18) 

𝑅 can be iteratively solved for an initial solution of 𝑅 = 0,  

 𝑅 = [𝐴, + 𝑅6𝐴6][𝐼 − 𝐴-].-. (6.19) 

Once 𝑅 is found, 𝑝, can be calculated by solving 

 𝑝, = 𝑝,𝐵(𝑅), (6.20) 

where 𝐵(𝑅) = ∑ 𝑅7𝐵78
7+, . Recall that for the charging station model, 𝐵(𝑅) = 𝐵,𝑅𝐵-. It is 

important to note that sum of probabilities should add up to 1. Once, the probabilities are found 

(e.g., 𝑝,), the computed results need to be normalised by dividing each probability to sum of 

all probabilities. To that end, matrix geometric solution can be summarized as below: 

1. Construct matrix 𝑅 by solving the equation in (6.16) and iteration in (6.19) 

2. Compute 𝑝, by solving the eigenvector equation in (6.20) 

3. Compute 𝑝$ by solving (6.15) 

4. Normalize 𝑝, and 𝑝$ by dividing by sum of all probabilities  

5. Calculate minimum storage size that satisfies 𝜖 = 1 − ∑ 𝑝$ .$  

Case studies presented in the next section to provide more insights. 



 

6.5. Numerical Evaluations 

6.5.1. Computation of Station Parameters 

Next, a number of case studies are presented to show how the proposed methodology can be 

used to size ESS sizing in a charging point. It is assumed that charging station employs typical 

level 2 chargers (6 kW), average parking duration is et as one hour (𝜇 = 1), and charge request 

is set to 𝛽 = 0.9. Three levels of customer arrival rate per charger are chosen (from 𝜆 =

0.25	to	𝜆 = 0.75) to reflect different traffic regimes, while station size is varied from 𝑁 = 50 

to 𝑁 = 150. For system’s stability, (see equation (6.1)) the power drawn from the grid is 

chosen as 

 𝜈 = Nβ 2
𝜆

𝜆 + 𝜇4 + Δ, (6.20) 

where Δ is a small constant set to 0.02. Computations for the size of on-site energy storage 

system with respect to different station sizes and traffic regimes are presented in Figure 6.12. 

As an example, for a charging station with 150 chargers and peak traffic regime of 𝜆 = 0.50, 

the size of the energy storage to provide 2% outage performances would be 128 kWh. 

 

 

 

   

(a) Arrival rate 𝜆 = 0.25𝑁 (b) Arrival rate 𝜆 = 0.50𝑁 (c) Arrival rate 𝜆 = 0.75𝑁 
Figure 6.12 Computation of on-site energy storage size for different traffic regimes and 

station sizes 
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From the results presented in Figure 6.12 two key observations are made. First, as arrival rate 

increases, there is a need to a bigger energy storage to provide the same level of outage 

performance. Second, as the station size increases the need for storage size per charger 

decreases due to “statistical gains”. For example, consider the following two charging stations 

with 𝑁- = 50 and 𝑁6 = 250. Both stations operate under 𝜆 = 0.5𝑁 and employ a storage size 

of 𝐵 = 112kWh, while the station 2 draws three times more power than station 1, that is 𝜈6 =

3𝜈-. For these two stations, outage probabilities are calculated as 𝜀- = 0.1093 and 𝜀6 =

0.0275. Then, it is easy to see that gains in system performance (:!
:"
= 0.0275) is higher the 

corresponding capacity increase (;!
;"
= 3.97). 

As a second evaluation, the case in which storage size and the number of chargers are known 

and the computation of the amount of power needed is investigated. In Figure 6.13, results for 

arrival rate 𝜆 = 0.5 and varying station sizes (𝑁 = 100, 200,	and	300) are presented. These 

findings help system operators to decide on appropriate amounts of power for the station. 

Similar to previous case, due to statistical gains, as the station size increases, per charger 

resource requirement decreases. For a target outage probability of 0.05 and on-site storage size 

of 𝐵 = 30kWh, per charger power requirement for a 𝑁 = 100 charging station is 4.69 kW, 

while this value is only 2.3 kW for a charging station with 300 slots.  

  

 

   

(a) Station Size 𝑁 = 100 (b) Station Size 𝑁 = 200 (c) Station Size 𝑁 = 300 
Figure 6.13 Energy storage size for varying grid power 
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6.5.2. Charging Station Economic Analysis 

Recall that the principal motivation to acquire on-site energy storage systems at charging 

stations to lower running cost and defer major system upgrades. A typical electricity bill of a 

charging station is composed of three parts, namely (i) a fixed fee, (ii) energy charges (USD 

per kWh), and (iii) demand charges (USD per kW). In this case study, actual billing tariffs of 

a utility company in San Diego is employed with the following details. Monthly fee is $140, 

demand charge is $35 per highest kW, and energy tariffs are time of use based with details in 

Table 6.2. 

Table 6.2. Electric vehicle charging tariffs (in US Cents per kWh) adopted from San Diego 

Gas and Electric Company 

Time of Day Winter Summer 

4 pm – 9 am 26 54 

12 am – 6 am 9 25 

10 am – 2pm 9 25 

Other 25 30 

 

It is assumed that the charging station operates between 6 am to 10 pm and hourly traffic 

demand per charger is in Table 6.3. Moreover, target outage probability is set to 0.005 and 

maximum grid power is limited to 610 kW.  

 

Table 6.3. Hourly PEV demand per charger for the case study 

Hour 6 am 7 am 8 am 9 am 10 am 11 am 12 pm  1 pm 2pm 

Demand 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.9 



Hour 3 pm 4 pm 5 pm 6 pm  7pm 8 pm 9 pm 10 pm  

Demand 0.8 0.7 0.7 0.6 0.5 0.4 0.3 0.2  

 

As a first step, energy storage size according to peak consumption hour is calculated using the 

methodology described in the previous section and found as B = 108 kWh. Next, amount of 

power needed to provide target outage probability is calculated and shown in Figure 6.14. The 

differences between the two curves relate to peak demand reduction enabled by employed 

energy storage unit. It can be observed from the presented results that station’s peak demand 

is reduced by more than one third. 

 

Figure 6.14 Hourly demand profile of the charging station 

Now that necessary parameters are calculated, monthly electricity bill of charging station with 

and without an on-site energy storage is calculated for summer and winter tariffs.  

Table 6.4 Comparison of monthly electricity bills (in thousands USD) 

 Summer Tariff Winter Tariff 

With Storage 106.64 66.03 

Without Storage 159 100.3 
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As presented in Table 6.4 employing an on-site storage reduces typically operational cost by 

34% in winter and 33% in summer. To make a fair comparison, levelized cost of electricity 

(LCOE) which includes acquisition, operational expenses, and financial costs of storage unit 

needs to be included. According to a recent report (Henze, 2019) LCOE for lithium ion batteries 

has dropped to $187 per MWh. In this case study, the employed storage unit has a size of 106 

kWh, hence the LCOE would be close to $18.7. By further incorporating this cost in the 

presented results, it can be concluded that employing storage units makes economic sense for 

charging station operators. 

 

6.6. Conclusions 

In this chapter, we have presented a probabilistic capacity planning approach for PEV charging 

stations equipped with an on-site ESS. The system is modelled with Markov-modulated 

Poisson process where each system state is represented by the number of customers in the 

station and energy storage charge level. To solve steady state probability distributions, an 

algorithmic solution technique (matrix-geometric) was adopted. The principal goal was to 

compute minimum energy storage size that can provide a good level of QoS measured by 

probability of outage events. In the last part, a number of case studies were presented to provide 

insights on how the model can be used in capacity planning. The results also showed that on-

site storage systems can significantly lower station’s peak demand and associated demand 

charges. 
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