rticle

2	
3	Ethnomedicinal uses, phytochemistry, pharmacological activities and
4	toxicological profile of Glycosmis pentaphylla (Retz.) DC.: A review
5	
6	Labony Khandokar ^a , Md. Sazzadul Bari ^b , Veronique Seidel ^{c,*} and Md. Areeful Haque ^{d,e,*}
7	
8	
9	^a Department of Pharmacy, East West University, Dhaka-1212, Bangladesh.
10	^b Department of Pharmacy, State University of Bangladesh, Dhaka-1205, Bangladesh.
11	^c Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical
12	Sciences, University of Strathclyde, Glasgow, United Kingdom.
13	^d Department of Pharmacy, International Islamic University Chittagong, Chittagong-4318,
14	Bangladesh.
15	^e Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia.
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	*Corresponding authors
30	areeful@gmail.com or areeful@iiuc.ac.bd (Md. Areeful Haque, Ph.D.)
31	veronique.seidel@strath.ac.uk (Veronique Seidel, Ph.D.)
32	

33 ABSTRACT

34 Ethnopharmacological relevance: Glycosmis pentaphylla (Retz.) DC. is a perennial shrub 35 indigenous to the tropical and subtropical regions of India, China, Sri Lanka, Myanmar, 36 Bangladesh, Indonesia, Malaysia, Thailand, Vietnam, Philippine, Java, Sumatra, Borneo and 37 Australia. The plant is used extensively within these regions as a traditional medicine for the 38 treatment of a variety of ailments including cough, fever, chest pain, anemia, jaundice, liver 39 disorders, inflammation, bronchitis, rheumatism, urinary tract infections, pain, bone fractures, 40 toothache, gonorrhea, diabetes, cancer and other chronic diseases.

41

42 *Aim of the review:* This review aims to present up-to-date information regarding the taxonomy, 43 botany, distribution, ethnomedicinal uses, phytochemistry, pharmacology and toxicological 44 profile of *G. pentaphylla*. The presented information was analyzed critically to understand 45 current work undertaken on this species and explore possible future prospects for this plant in 46 pharmaceutical research.

47

Materials & methods: Bibliographic databases, including Google Scholar, PubMed, Web of
Science, ScienceDirect, SpringerLink, Wiley Online Library, Semantic Scholar, Europe PMC,
Scopus, and MEDLINE, were explored thoroughly for the collection of relevant information.
The structures of phytoconstituents were confirmed with PubChem and SciFinder databases.
Taxonomical information on the plant was presented in accordance with The Plant List (version
1.1).

54

55 **Results:** Extensive phytochemical investigations into different parts of G. pentaphylla have 56 revealed the presence of at least 354 secondary metabolites belonging to structurally diverse 57 classes including alkaloids, amides, phenolic compounds, flavonoids, glycosides, aromatic 58 compounds, steroids, terpenoids, and fatty derivatives. A large number of *in vitro* and *in vivo* 59 experiments have demonstrated that G. pentaphylla had anticancer, antimutagenic, 60 antibacterial, antifungal, anthelmintic, mosquitocidal, antidiabetic, antihyperlipidemic, anti-61 oxidant, anti-inflammatory, analgesic, antipyretic, anti-arsenicosis, and wound healing 62 properties. Toxicological studies have established the absence of any significant adverse 63 reactions and showed that the plant had a moderate safety profile.

64

65 *Conclusions: G. pentaphylla* can be suggested as a source of inspiration for the development 66 of novel drugs, especially anticancer, antimicrobial, anthelmintic, and mosquitocidal agents.

67	Moreover, bioassay-guided investigations into its diverse classes of secondary metabolites,
68	especially the large pool of nitrogen-containing alkaloids and amides, promises the
69	development of novel drug candidates. Future pharmacological studies into this species are
70	also warranted as many of its traditional uses are yet to be validated scientifically.
71	
72	Keywords: Glycosmis pentaphylla; ethnomedicinal uses; phytoconstituents; pharmacological
73	activities; toxicological profile
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
95	
94 05	
95 06	
90 97	
98	
90 90	
,,	

100 **1. Introduction**

101 Over the past two decades, there has been an increasing interest among countries in 102 South-East Asia (India, Indonesia, Sri Lanka, Bangladesh, Thailand) and the Western Pacific 103 region (Australia, China, Cambodia, Malaysia, Philippines, Vietnam) to recognize 104 ethnomedicinal systems as part of their healthcare strategies and include herbal medicinal 105 products either as over-the-counter or essential prescription drugs. A lack of adequate research 106 data to support the use of such products, however, still undermines their true potential in global 107 healthcare management (World Health Organization, 2019).

108 Glvcosmis pentaphylla (Retz.) DC. is an evergreen shrub that has a rich history of 109 ethnomedicinal applications in the aforementioned countries (Babu and Radhamany, 2020). 110 The word "Glycosmis" originates from two Greek words viz. "Glykys" and "Osme" which 111 mean sweet and smell, respectively, as indicative of the characteristic sweet-scented flowers 112 common within the genus (Babu and Radhamany, 2019). The twigs are employed as a 113 toothbrush, hence the name Toothbrush plant (also Orange/Gin berry) in English. The plant is 114 known as Ashshoura, Ban Jamir, Daton, Kawatuti, Motali and Motmoti (Bengali), 115 Ashvashakota and Vananimbuka (Sanskrit), Bannimbu (Hindi), Tejmoyee (Assamese), Anam 116 and Kula pannai (Tamil), Gongi pandu (Telegu), Paanal (Malayalam), Manikyan (Kannda) and 117 Som chuen (Thai) (Bulbul and Jahan, 2016; Nayak et al., 2011; Sivakumar et al., 2014; Sreejith 118 et al., 2012a; Sripisut et al., 2012; Yasir et al., 2015). In traditional ethnomedicinal systems, 119 especially in India, Bangladesh, and China, different parts of G. pentaphylla, including its 120 leaves, stems, barks, fruits, and roots are employed for the treatment of cough, fever, bronchitis, 121 chest pain, anemia, jaundice, liver disorders, inflammation, rheumatism, fractures, pain, 122 urinary tract infections, gonorrhea, diabetes, cancer and other chronic diseases. The plant has 123 been recorded to alleviate diarrhea, dysentery and helminthic infestations. Topical preparations 124 are used for boils, eczema and other skin disorders and inflammatory conditions (Azad et al., 125 2008; Babu and Radhamany, 2020; Bulbul and Jahan, 2016; Nayak et al., 2011; Ramkumar et 126 al., 2016; Sarkar et al., 2013; Shoja et al., 2015; Sivakumar et al., 2014). G. pentaphylla has 127 demonstrated a wide range of biological effects including anti-oxidant, anti-inflammatory, 128 analgesic, antidiabetic, antihyperlipidemic, cytotoxic, antibacterial, antifungal, anticancer, 129 anthelmintic, mosquitocidal, antipyretic, wound healing and anti-arsenicosis properties. A 130 significant number of phytochemical and biological investigations have been carried out on 131 this plant since it was last reviewed (Sreejith et al., 2012b). The present review endeavors to 132 provide an updated and comprehensive description of the taxonomy, botany, distribution,

ethnomedicinal uses, phytoconstituents, pharmacological activities, and safety profile of *G*. *pentaphylla*.

135 **2. Methodology**

136 Electronic versions of different bibliographic databases, including Google Scholar, 137 PubMed, Web of Science, ScienceDirect, SpringerLink, Wiley Online Library, Semantic 138 Scholar, Europe PMC, Scopus, and MEDLINE were explored thoroughly to identify, collect 139 and curate any information relevant to Glycosmis pentaphylla. The search was primarily 140 conducted using several keywords such as "Glycosmis pentaphylla", "distribution", 141 "ethnopharmacology", "ethnomedicinal uses", "traditional uses", "phytoconstituents", "chemical constituents", "secondary metabolites", "pharmacological activity", "biological 142 143 activity" and "toxicological study". A total of 73 articles (published between 1952 and 144 September 2020) have been included in this review. Among them, 27 articles focused on 145 phytochemical investigations of different parts of G. pentaphylla, 30 articles described single 146 or multiple in vitro or in vivo pharmacological studies on G. pentaphylla extracts, 5 articles 147 described both phytochemical and pharmacological studies, and 11 articles focused on the 148 pharmacological activities of individual secondary metabolite(s) isolated from G. pentaphylla. 149 The articles were scrutinized extensively for authenticity, validity, and relevance prior to 150 including them in the present review. Proper recognition of these research endeavors was 151 ensured wherever possible by stating the names of the authors and respective years of 152 publication. The accepted name of the plant and its established synonyms was confirmed from 153 The Plant List (version 1.1, 2013) (http://www.theplantlist.org/). The chemical structures of all 154 the secondary metabolites were validated through SciFinder and PubChem databases and 155 drawn with the help of ChemDraw Ultra 15.0 following standard ACS guidelines.

156 **3. Taxonomy**

157 The genus Glycosmis belongs to the Rutaceae family and includes at least 51 species 158 as accepted names. Glycosmis pentaphylla (Retz.) DC. (Figure 1), a prominent member of this 159 genus, is a perennial shrub that grows between 1.5 and 5 m high. The accepted synonyms of 160 G. pentaphylla includes Bursera nitida Fern.-Vill., Chionotria monogyna Walp., Chionotria 161 rigida Jack, G. arborea (Roxb.) DC., G. arborea var. linearifoliolata V. Naray., G. chylocarpa 162 Wight & Arn., G. madagascariensis Corrêa ex Risso, G. pentaphylla var. linearifoliolis 163 Tanaka, G. quinquefolia Griff., G. retzii M.Roem., G. rigida (Jack) Merr., Limonia arborea 164 Roxb., Limonia pentaphylla Retz. and Myxospermum chylocarpum (Wight & Arn.) M. Roem.

165 The rachis of the plant is usually 6-10 cm long and the petioles are around 2 mm in length. 166 Leaflets are arranged imparipinnately and sub-oppositely, with the leaves being dark green on 167 the adaxial surface and light green on the abaxial surface. The leaves are elliptic to lanceolate, 168 with the tips being acute to round and the base being cuneate. Reticulate venation as well as 169 glandular distribution can be observed on the glabrous surfaces of the leaves. Flowers are small, 170 fragrant, greenish-white in color, and arranged in axillary or terminal panicles. Both the petals 171 and sepals are 5 in number while the stamens are 8-10 in number. The berry-type fruits are 172 pulpy and round to ovoid in shape. The fruits contain 1-3 seeds with the color turning from 173 white to reddish as they ripen (Prakasia and Nair, 2016; Sasidharan, 2004; The Plant List, 174 2013). The complete taxonomical classification of G. pentaphylla is given below (Sasidharan, 175 2004):

176	Kingdom: Plantae
177	• Division: Tracheophyta
178	Class: Magnoliopsida
179	Order: Sapindales
180	• Family: Rutaceae
181	• Genus: <i>Glycosmis</i>
182	• Species: <i>Glycosmis pentaphylla</i> (Retz.) DC.
183	• Synonyms: Bursera nitida FernVill.

184

185 **4. Distribution**

186 *Glycosmis pentaphylla* is indigenous to the tropical and subtropical regions of mainland 187 China, South and Southeast Asia, the Malay Archipelago and Northwest Australia. Within 188 South and Southeast Asia, the plant is extensively distributed in India, Sri Lanka, Myanmar, 189 Bangladesh, Indonesia, Malaysia, Thailand, Vietnam and the Philippines. In the Malay or Indo-190 Australian Archipelago, the plant has been recorded in Java, Sumatra and Borneo (Babu and 191 Radhamany, 2020; Shams-Ud-Doha et al., 2012). Within China, the most prominent distribution of the plant has been reported in the Gengma, Mengding, Shuangjiang and 192 193 Xishuangbanna regions of the Yunnan Province (Wang et al., 2016). The plant is also 194 widespread in the tropical and subtropical regions of northeastern India, including the Assam, 195 Arunachal, Meghalaya, Mizoram, Nagaland and Sikkim states as well as the Himalayan 196 peninsula where the plant has been recorded to grow as high as 2300 m above sea level (Sarkar 197 et al., 2013; Vignesh et al., 2014). In Bangladesh, the plant grows in the low altitude forest
198 regions of Madhupur and Tangail (Rahmatullah et al., 2011).

199 **5. Ethnomedicinal uses**

200 G. pentaphylla has extensive medicinal applications in different traditional practices 201 throughout the Indian subcontinent. In India, the plant has been recorded to be useful in the 202 treatment of cough, anemia, jaundice, inflammation, bronchitis and rheumatism. It is also 203 employed as astringent, expectorant and for counteracting the effects of snakebites (Azad et 204 al., 2008; Sivakumar et al., 2014). Both the plant and the juice of its leaves have been found to 205 be effective in the treatment of fever as well as different forms of liver disorders and worm 206 infestations (Nayak et al., 2011; Ramkumar et al., 2016; Sivakumar et al., 2014). Topical 207 application of the plant has been recorded to promote wound healing and to alleviate eczema, 208 erysipelas and other skin conditions. Decoctions prepared from the root and leaf pastes have 209 been employed to treat skin inflammatory conditions and eczema, respectively (Ramkumar et 210 al., 2016; Sarkar et al., 2013; Sivakumar et al., 2014). The stem bark of G. pentaphylla has 211 been found to beneficial in the management of diabetes and gonorrhea, whereas the roots and 212 fruits have been used to treat fever and dysentery, respectively (Sarkar et al., 2013). In Indian 213 homeopathy, the leaves have been employed for diarrhea, dysentery, and to alleviate abdominal 214 pain resulting from biliary obstruction as well as worm infestations. A tincture prepared from 215 the leaves has been part of the treatment of throat cancer while a one-to-one aqueous ethanol 216 extract of the aerial parts has been used as a diuretic and spasmolytic agent (Navak et al., 2011).

217 In Bangladesh, juice and paste prepared from the leaves have been employed 218 traditionally in the treatment of cough, fever, anemia, jaundice, hepatic disorders, rheumatism, 219 ascariasis, bone fractures and pain associated with fractures. Topical administration of both the 220 juice and the paste has been employed to alleviate eczema and other skin disorders (Bulbul and 221 Jahan, 2016). In some areas of the Tangail district, the juice prepared from G. pentaphylla roots 222 is used to alleviate toothache and pyorrhea (Rahmatullah et al., 2011). In the Gazipur district, 223 traditional medicinal practitioners have employed the plant in the treatment of different forms 224 of cancer (Sreejith and Asha, 2015). In other areas of the country, the plant is used for gastritis, 225 rheumatoid arthritis, migraine and leucorrhea (Hossan et al., 2010).

226 Within the south and southwest regions of the Yunnan province of China, *G.* 227 *pentaphylla* is used to treat cough, fever, anemia, liver disorders, rheumatism and other chronic diseases. In those regions, the plant is also employed to improve muscular soreness and numbress (Wang et al., 2016; Yang et al., 2012). In southwest China, traditional Dai practitioners have used the plant to maintain body homeostasis, regulate blood circulation and alleviate pain (Zhang et al., 2016).

The plant also has noteworthy ethnomedicinal applications in other parts of the World. In many countries, the juice of the leaves has found its application in the treatment of fever, cough, bronchitis, anemia, jaundice, urinary tract infections, rheumatism, diarrhea, and boils (Babu and Radhamany, 2020; Ramkumar et al., 2016; Shoja et al., 2015). The ethnomedicinal uses of *G. pentaphylla* are summarized in Table 1.

237 **6.** Phytochemistry

238 Around 354 secondary metabolites have been isolated and characterized from different 239 extracts and fractions of G. pentaphylla. Phytochemical investigations have been conducted on 240 the whole plant, the aerial parts, and other individual plant parts, including the stem, bark, 241 leaves, twigs, roots, and fruits. G. pentaphylla has developed diverse and elaborate metabolic 242 mechanisms to incorporate nitrogen into its secondary metabolites, resulting in the characterization of a large number of alkaloids and amides from this plant. Other classes of 243 244 phytoconstituents reported widely from this plant include phenolic compounds, flavonoids, 245 aromatic constituents, steroids and terpenoids. All these phytoconstituents are summarized in 246 Table 2 and their structures are presented in Figure 2-10.

247 6.1. Alkaloids

248 Seventy structurally-diverse alkaloids (1-70) categorized under at least eleven 249 structural sub-classes have been reported from different parts of G. pentaphylla (Figure 2 and 250 3). These included nineteen monomeric (1-19) and four dimeric (20-23) carbazole, eight 251 acridone (24-31), ten quinolone (32-41), five quinazolone (42-46), four furanopyridine (47-252 50), seven furoquinoline (51-57), one pyrrole (58), two pyrrolidinone (59-60), two indole (61-253 62), two pyrazole (63-64) and one piperidine (65) alkaloids. The acridone alkaloids arborinine 254 (24) and skimmianine (55) have been reported in almost all parts (stems, leaves, twigs, roots 255 and fruits) of G. pentaphylla and may serve as potential marker compounds for the plant 256 (Ahmed et al., 2014; Chatterjee and Majumdar, 1954; Choi et al., 2019; Chokchaisiria et al., 257 2020; Das and Deka, 2017; Govindachari et al., 1966; Ito et al., 1999; Kumar et al., 2018;

McKenzie and Price, 1952; Murugan et al., 2020; Sivakumar and Chamundeeswari, 2016;
Sripisut et al., 2012; Yang et al., 2012; Zhang et al., 2016).

260 **6.2.** Amides

261 Twenty eight amides (71-98) have been isolated from G. pentaphylla (Figure 4). A 262 large number of these amides (78-98) are characterized by the presence of sulfur atoms within 263 their structures. Twenty of these sulfur-containing amides (79-98) are prenylated, further 264 contributing to the diversification of these compounds and their potential antiproliferative and 265 anti-inflammatory activities in vivo (Nian et al., 2020). Although the sulfur-containing amides 266 have been found to be localized predominantly in the leaves, other amides have also been 267 isolated from the roots and flower heads (Sarkar and Chakraborty, 1977; Shapiro et al., 2000; 268 Sivakumar and Chamundeeswari, 2016).

269

69 6.3. Phenolic constituents

270 Thirty one phenolic constituents and derivatives (99-129) as well as eighteen phenolic glycosides (130-147) have been reported from G. pentaphylla (Figure 5 and 6), especially in 271 272 the aerial parts (stem, leaves and twigs). A wide variety of phenolic aglycones, including six 273 hydroxybenzoic acid derivatives (99-104), five cinnamic acid derivatives (105-109), five 274 coumarins (115-117, 128, 129), three naphthoquinones (125-127), one cinnamyl alcohol 275 derivative (111), one stilbene (119) and one quinic acid derivative (122) have been reported. 276 Although the majority of the phenolic compounds in *G. pentaphylla* are present in the aerial 277 parts (mainly stem and leaves), four of these compounds (112, 113, 128, 129) have been 278 identified from the roots (Sivakumar and Chamundeeswari, 2016). All the phenolic glycosides 279 reported to date have been found in the stems, including ten compounds (130-139) with a single 280 sugar moiety and eight compounds (140-147) with two sugar moieties (Chen et al., 2015b; Tian 281 et al., 2014; Wang et al., 2006a).

282 6.4. Flavonoids

At least thirty flavonoids (148-177) have been isolated from the stems and leaves of G. *pentaphylla* (Figure 7). These included three flavones (148-150), seven flavonols (151-157), two flavanones (158-159), two flavanonols (160-161), six flavanols (162-167) and ten isoflavones (168-177). Mono- and di-glycosidic flavonoid derivatives have also been recorded. This included two flavones (149, 150) and two flavonols (152, 154) isolated as monoglycosides, and one flavonol (155) and ten isoflavones (168-177) isolated as diglycosides. The glycosides were primarily constituted of D-glucose, D-apiose and L-

- rhamnose moieties (Ali et al., 2020; Chen et al., 2016; Choi et al., 2019; Wang et al., 2006b).
- In two of the isoflavone diglycosides (175, 177), the glycosidic parts were further extended
- 292 with one *para*-coumaroyl terminal group.

293 6.5. Aromatic constituents

Eleven non-phenolic aromatic derivatives (**178-188**) have been characterized from the leaves, roots and seeds of *G. pentaphylla* (Figure 8). This included four ester derivatives of benzoic acid (**185**, **186**) and phthalic acid (**187**, **188**) (Prakasia and Nair, 2015; Sivakumar and Chamundeeswari, 2016; Vignesh et al., 2014; Vignesh et al., 2016).

298 **6.6.** Steroidal constituents

Six steroidal compounds (189-194) have been reported from *G. pentaphylla* (Figure 9).
Four of them (189, 191-193) have been isolated from the roots, whereas the other two (190, 194) were characterized from the stems and leaves, respectively (Ahmed et al., 2014; Sivakumar et al., 2014; Wu et al., 2012).

303 6.7. Non-volatile terpenoids

Three ent-abietane type diterpene lactones (**195-197**) and three pentacyclic oleanane type triterpenes (**198-200**) have been isolated from the leaves, twigs and roots of *G. pentaphylla* (Figure 10) (Ahmed et al., 2014; Chokchaisiria et al., 2020; Sivakumar and Chamundeeswari, 2016).

308 6.8. Volatile constituents

309 As many as one hundred and fifty four volatile constituents (201-354) have been 310 reported from the bark, leaves, roots and seeds of G. pentaphylla (Figure 11). These comprised 311 of terpenoids, fatty acids and their esters, fatty alcohols, fatty aldehydes, ketones and other long 312 chain hydrocarbons. A wide range of structurally-diverse volatile terpenoids, with varying 313 degrees of cyclization and oxygenation, have been identified. This included eleven acyclic 314 (200-211), twenty two monocyclic (212-233), fourteen bicyclic (234-247) and two tricyclic 315 (288, 289) monoterpenes. Among the sesquiterpenes, two acyclic (250, 251), thirteen 316 monocyclic (252-264), sixteen bicyclic (265-280), sixteen tricyclic (281-296) and two 317 tetracyclic derivatives (297, 298) have been characterized. Three acyclic diterpene alcohols 318 (299-301) and one acyclic triterpene (302) have also been isolated from this plant. Among the 319 long chain volatile compounds, five were fatty acids (303-307), eight were fatty acid esters 320 (308-315), eight were fatty alcohols (316-323), three were fatty aldehydes (324-326), seven were aliphatic ketones (**327-333**), sixteen were aliphatic hydrocarbons (**334-349**) and two were cyclic hydrocarbons (**350**, **351**) while the remaining three (**352-354**) were heterocycles in nature (Ahmed et al., 2000; Murugan & Natarajan, 2016; Prakasia and Nair, 2015; Ramkumar et al., 2016; Sivakumar et al., 2014; Sivakumar and Chamundeeswari, 2016; Vignesh et al.,

325 2014; Vignesh et al., 2016).

326 7. Pharmacological activities

327 Various in vitro and in vivo studies on extracts and individual phytoconstituents isolated 328 from G. pentaphylla have demonstrated prominent anticancer, antimutagenic, antimicrobial, 329 anthelmintic and mosquitocidal activities owing to selective and non-selective cytotoxic effects 330 on vital biological targets. Extract and individual compounds have also showed antidiabetic, 331 antihyperlipidemic, anti-oxidant, anti-inflammatory, analgesic, antipyretic, wound healing and 332 anti-arsenicosis properties. Wherever possible, the pharmacological investigations have been 333 described in terms of the type(s) of plant extract investigated, the type(s) of experiments 334 employed, the dose/concentration at which the extract(s) were administered and the name(s) of 335 the standard(s) against which the extract/phytochemical(s) were evaluated. The 336 pharmacological properties of extracts and individual phytoconstituents of G. pentaphylla are 337 summarized in Table 3 and Figure 12.

338

7.1. Cytotoxic and anticancer activity

339 The methanol extract of G. pentaphylla demonstrated significant dose-dependent but 340 moderate cytotoxicity in the brine shrimp lethality bioassay (LC₅₀ value of 22.55 µg/mL) 341 versus vincristine sulfate (LC₅₀ value of 0.451 µg/mL) (Rahman et al., 2018). The ethanol 342 extract of the plant showed promising anticancer potential and dose-dependent cytotoxicity 343 when tested in the concentration range of 10 to 200 µg/mL against RAW 264.7 cells in a 344 Dalton's lymphoma ascites (DLA) cell assay. The extract exhibited maximum cellular mortality 345 (98.4%) at the dose of 200 μ g/mL with an IC₅₀ value of 78.39 μ g/mL (Babu and Radhamany, 346 2019).

347 Different fractions of *G. pentaphylla* exhibited moderate anticancer activity when 348 tested using a sulforhodamine B (SRB) assay. One fraction derived from the petroleum ether 349 extract showed IC₅₀ values of 40.66 ± 1.89 and $38.5 \pm 0.9 \,\mu$ g/mL against MCF-7 and MDA-350 MB-231 breast adenocarcinoma cell lines, respectively. One ethyl acetate fraction (designated 351 as EF1) and one dichloromethane fraction (designated as DCM2) exerted prominent 352 cytotoxicity against the MDA-MB-231 cell line (IC₅₀ values of 31.1 ± 0.82 and 27.7 ± 1.5 353 µg/mL, respectively). Although to a slightly lesser extent, EF1 and DCM2 also exhibited 354 cytotoxic properties against the MCF-7 cell line with IC₅₀ values of 40.4 ± 1.75 and $46.04 \pm$ 355 2.11 µg/mL, respectively. Further investigation at the cellular level revealed that the fractions 356 were able to cause extensive DNA fragmentation and lead to apoptosis (Shoja et al., 2015). 357 The standard doxorubicin in comparison had IC₅₀ values of 4.32 ± 1.22 and 5.4 ± 1.16 µg/mL 358 against MCF-7 and MDA-MB-231 breast adenocarcinoma cell lines, respectively.

359 The acridone alkaloid arborinine (24) showed promising cytotoxic activity in the potato 360 disc assay. This compound at a dose of 18.75 µg/disc inhibited Agrobacterium tumefaciens-361 induced crown gall tumor by a margin of 25%, whereas the standard vincristine sulfate (3.13 362 µg/disc) exerted 100% inhibition (Quader et al., 1999). A recent study involving an in vitro 363 SRB assay further demonstrated that arborinine (24) was capable of exhibiting comparable 364 anticancer activity as the standard adriamycin against the human colon cancer cell line COLO-205, the human ovarian cancer cell line OVCAR-3 and the human breast cancer cell lines T-365 366 47D (Das and Deka, 2017).

367 The carbazole alkaloid glycoborinine (18) showed potent dose- and time-dependent 368 cytotoxicity against HepG2 human liver cancer cells. Over a time period of 48 hours, glycoborinine (18) had an IC₅₀ value of 39.7 μ M and showed maximum inhibition (78%) at 369 370 the dose of 100 µM. Further cellular and biochemical analyses revealed that this alkaloid led 371 to apoptosis by activating caspase-3 via the mitochondrial pathway followed by cleavage of 372 poly ADP-ribose polymerase (PARP). This was associated with strong radical oxygen 373 scavenging activity and an increased cytoplasmic level of cytochrome C, mediated by 374 upregulation of the pro-apoptotic Bax protein and downregulation of the anti-apoptotic Bcl-2 375 protein (Yang et al., 2014). Other carbazole-derived dimeric alkaloids from G. pentaphylla 376 stems, namely biscarbalexine A (20), glycosmisine A (22) and glycosmisine B (23), showed 377 dose-dependent anticancer activity against HepG2, Huh-7 human liver cancer and A549 378 alveolar adenocarcinoma cells. Over the 48 hours observation period, glycosmisine A (22) was 379 found to exert the most prominent antiproliferative effect against Huh-7 cells (IC₅₀ of 30.6 380 μM). A moderate degree of antitumor activity was demonstrated for all three alkaloids against 381 A549 cells (IC₅₀ values of 43.68, 57.10 and 56.06 μ M, respectively) (Chen et al., 2015a). With 382 phytochemical studies having characterised at least nineteen monomeric and four dimeric 383 carbazole alkaloids from G. pentaphylla, further efforts should be directed towards screening such molecules for their anticancer potential, including quantitative structure-activity
 relationship (QSAR) modelling and identification of the pharmacophore(s).

386 The ethanol extract of G. pentaphylla has demonstrated apoptosis-mediated 387 cytotoxicity against Hep3 B hepatocarcinoma cells. Glycopentalone (58) was identified as the major cytotoxic constituent of this extract with 68% growth inhibition at a dose of 3 µg/mL. 388 389 This compound did not show any significant cytotoxicity neither against RAW264.7 390 macrophages nor against LX2 hepatic stellate cells (only 28 and 13% inhibition, respectively) 391 (Sreejith et al., 2012a; Sreejith and Asha, 2015). Another study revealed that glycopentalone 392 (58) exhibited prominent antiproliferative activity against Hep3 B cells comparable to the 393 standards doxorubicin and sorafenib with IC₅₀ values of 8, 0.75 and 1.5 μ M, respectively. The 394 anticancer effect of glycopentalone (58) was further attributed to its ability to arrest the cell 395 cycle at the G1 stage as it caused 72% cell arrest at the dose of 10.488 µM compared to 396 sorafenib which exhibited 74% cell arrest at 1 µM concentration. Glycopentalone (58) also 397 reduced the invasiveness of cancer cells through down-regulation of tumor growth factor β 398 (TGF β) expression at the cellular level (Sasidharan and Vasumathi, 2017). Two bioactive 399 flavanols (165, 167) from the stems of G. pentaphylla exhibited potent antiproliferative activity 400 against HL-60 leukemia and A549 cells. The compounds demonstrated IC₅₀ values of 14.4 and 401 15.2 µM, respectively, against HL-60 cells and IC₅₀ values of 22.4 and 21.1 µM, respectively, 402 against A549 cells (Wang et al., 2016).

403 A recent study identified fourteen bioactive amides from the ethanol extract of G. 404 pentaphylla with potent activity against cancerous HepG2 hepatocytes. In comparison to the 405 standard cisplatin (IC₅₀ value 5.96 \pm 0.40 μ M), the highest antiproliferative effects were 406 observed for methylgerambullin (79), glycopentamide J (90) and glycopentamide H (88) with IC₅₀ values of 7.47 \pm 0.91, 8.01 \pm 3.79 and 9.22 \pm 0.06 μ M, respectively. Ten other sulfur-407 408 containing glycopentamide derivatives viz. glycopentamide B, C, E, G, K, M, N, O, P and R 409 (82, 83, 85, 87, 91, 93-96, 98) with IC₅₀ values ranging from $11.46 \pm 4.13 \mu$ M to 16.23 ± 0.80 410 µM were also recorded for their potent anticancer activity (Nian et al., 2020). Although the 411 study presented a preliminary estimation of structure-activity relationships, further 412 investigations, especially in animal models, may lead to the development of an efficient QSAR 413 model for the design of novel anticancer molecules.

414 Although a good number of phytoconstituents from *G. pentaphylla* have displayed 415 promising anticancer activity, all findings to date have been based entirely on *in vitro* assays 416 against different cell lines. The anticancer activity of molecules is often known to be associated 417 with general toxicity rather than target specificity (Chari, 2008). In order to consider these 418 molecules as future drug templates, it is therefore important to extend further research on their 419 anticancer effect by using experimental animal models and investigate their specific 420 biochemical interactions with biological targets at the cellular level.

421

7.2. Antimutagenic activity

The effect of *G. pentaphylla* on intrinsic mutagenicity was investigated in *Salmonella typhimurium* strains TA98 and TA100, in the presence and absence of the Ames S9 metabolic activation factor. The methanol extract administered at five different concentrations between 10 to 10000 μ g/plate, showed no mutagenic effects in any of the strains. The extract exhibited noticeable antimutagenic properties in both strains against known mutagens including 4-nitro-*O*-phenylenediamine, sodium azide and 2-aminofluorene, especially in the presence of the Ames S9 factor (Kumar et al., 2018).

429 A recent study explored the antimutagenic potential of the methanol extract of G. 430 pentaphylla against silver nanoparticle-induced genetic and biomolecular alterations in Swiss 431 albino mice. The mice were administered with 20 and 100 nM of silver nanoparticles at doses 432 of 100 mg/kg for one month. Subsequent histological studies revealed significant DNA damage 433 as well as chromosomal aberrations in bone marrow cells and spermatocytes. The extract at a 434 dose of 500 mg/kg suppressed these changes to a remarkable extent, indicating potent 435 antimutagenic activity in vivo. Further biochemical characterization of the hepatic tissues from 436 silver nanoparticle-administered mice, revealed prominent increase in the activities of aspartate 437 transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) enzymes as well 438 as an enhanced level of pro-inflammatory C-reactive protein (CRP). The nanoparticles also 439 diminished the activities of antioxidative enzymes including superoxide dismutase (SOD), 440 glutathione-S-transferase (GST) and glutathione peroxidase (GPx). The methanol extract of G. 441 pentaphylla exerted powerful attenuation against these adverse changes and reversed all the 442 enzymatic changes to significant extents (Ali et al., 2020).

Cancer pathogenesis is always secondary to mutagenic changes in regulatory genes which might be either congenital or acquired (Black, 1994). Thus, the antimutagenic properties of *G. pentaphylla* can be considered complementary to its anticancer potential. The phytoconstituents showing anticancer activity should be considered as prime candidates for the evaluation of their antimutagenic properties.

448 **7.3.** Antimicrobial activity

449 In a disc diffusion assay, the ethanol extract of G. pentaphylla (500 µg per disc) 450 revealed moderate dose-dependent antibacterial activity against Staphylococcus aureus, 451 Escherichia coli, Salmonella typhi and antifungal activity against Candida albicans with zones 452 of inhibition of 15.67 ± 1.155 , 17.67 ± 3.786 , 16.25 ± 1.258 and 15.50 ± 0.577 mm, respectively 453 (Ansari et al., 2015b). Standard kanamycin (30 µg per disc) produced zones of inhibition of 454 33.33 ± 3.055 , 30.33 ± 3.512 , 26 ± 4.0 and 29 ± 3.606 mm, respectively. The methanol extract 455 of G. pentaphylla (500 µg per disc) moderately inhibited the growth of Salmonella paratyphi 456 and Escherichia coli with zones of inhibition of 22 and 20 mm, respectively, compared to 457 kanamycin (30 µg per disc) which exhibited zones of inhibition of 42 and 40 mm, respectively 458 (Bulbul and Jahan, 2016).

The aqueous alcoholic extract of *G. pentaphylla* exhibited potent activity against *C. albicans* as indicated by a minimum inhibitory concentration (MIC) of 50 μ g/mL, compared to those of the standards nystatin and griseofulvin (100 and 50 μ g/mL, respectively). Noteworthy antifungal activity was also recorded against *C. tropicalis* and *C. krusei*, with MIC values of 250 μ g/mL in both cases (Yasir et al., 2015).

464 The antibacterial and antifungal activity improved drastically when the methanol extract was administered in the form of zinc nanoparticles. The latter at the dose of 100 µg/mL 465 466 generated zones of inhibition of 41 ± 2.18 , 36 ± 1.93 , 42 ± 2.24 and 40 ± 2.16 mm against 467 Bacillus cereus, S. aureus, Shigella dysenteriae and S. paratyphi, respectively, compared to the 468 standard ciprofloxacin (5 μ g/disc) with zones of inhibition of 40 ± 2.12, 35 ± 1.71, 30 ± 1.91 469 and 25 ± 1.26 mm, respectively. The nanoparticles (100 µg/mL) showed powerful antifungal 470 activity inhibiting the growth of C. albicans and Aspergillus niger $(34 \pm 1.28 \text{ and } 30 \pm 3.11)$ 471 mm, respectively) while standard nystatin (50 μ g/disc) showed zones of inhibition of 30 ± 0.93 472 and 12 ± 0.79 mm, respectively, (Vijayakumar et al., 2018).

- The acridone alkaloid arborinine (24) (100 μ g per disc) exhibited moderate antibacterial activity against *B. subtilis* and *Klebsiella pneumoniae* with zones of inhibition of 15 ± 0.01 and 19 ± 0.006 mm, respectively, compared to that of the standard tetracycline (25 and 38 mm, respectively at 100 μ g/disc) (Das and Deka, 2017).
- The quinazolone alkaloid arborine (45) and the furoquinoline alkaloid skimmianine (55), isolated through a process of bioactivity-guided fractionation from the ethyl acetate

extract of *G. pentaphylla*, demonstrated potent activity against multidrug-resistant *S. aureus*strains 101, 270, 315, 319 and 410. Both alkaloids generated zones of inhibition in the range
of 25-28 mm, comparable to the standard amoxicillin (zones of inhibition in the range of 2329 mm at 10 μg/mL).

483 Arborine (45) exhibited a minimum inhibitory concentration (MIC) and minimum 484 bactericidal concentration (MBC) of 0.2 µg/mL against S. aureus strains 101 and 410, 485 compared to those of amoxicillin ($\geq 2 \mu g/mL$). Skimmianine (55) exhibited MIC and MBC of 486 0.2 and 1 μ g/mL against strains 315 and 319. In a time-killing kinetic assay, both arborine (45) 487 and skimmianine (55) at their MBC killed the microbial population completely over an 488 incubation period of 12 hours. Microscopic examination of the cells confirmed membrane and 489 cellular damage as well as cellular size reduction. Further in-depth analysis at the biomolecular 490 level revealed that arborine (75 μ g/mL) and skimmianine (100 μ g/mL) induced protein leakage 491 up to an extent of 54 and 55%, respectively, which in turn compromised the cellular integrity 492 of the bacterial population (Murugan et al., 2020).

Since a wide range of structurally-related alkaloids has been isolated from *G. pentaphylla*, further screening of molecules such as acridone, furoquinoline and quinazolone alkaloids for antimicrobial activity might be advantageous in the development of QSAR models and help with the design and synthesis of novel antimicrobial agents. Future replications of such investigations using *in vivo* experimental animal models, along with the characterization of the exact cellular mode(s) of action of active phytoconstituents, are warranted in order to ascertain the suitability of these molecules for clinical application.

500 7.4. Anthelmintic activity

501 A noticeable and dose-dependent antihelmintic effect was recorded when the methanol 502 extract of G. pentaphylla (doses of 10, 20, 40 and 80 mg/mL) was tested on the earthworm 503 Pheretima posthuma. The extract at 80 mg/mL completely killed the worms in an average time 504 of 67 ± 2.60 minutes compared to that of the standard piperazine hydrate (83 ± 4.15 minutes at 505 20 mg/mL) (Gangarao and Jayaraju, 2009). This was observed in another study with the 506 methanol extract and the standard albendazole, administered at 15, 30 and 60 mg/mL, exerting 507 comparable dose-dependent anthelmintic properties. The average death times for the extract 508 and the standard at the dose of 60 mg/mL, were recorded to be 30.52 ± 0.02 and 36.12 ± 0.02 509 minutes, respectively (Arora et al., 2011). These results, however, require further confirmation 510 using in-depth *in vivo* investigations and biochemical studies in appropriate animal models.

511 The evaluation of the efficacy of *G. pentaphylla* extracts in treating epithelial ringworm rashes 512 might be a simple and suitable approach for prospective research in this area.

513 7.5. Mosquitocidal activity

514 The potential mosquitocidal activity of G. pentaphylla extracts were explored against 515 three malarial vectors, namely *Culex quinquefasciatus*, *Anopheles stephensi* and *Aedes aegypti*, 516 both in their larval and adult stages of life. Dose-dependent larvicidal and adulticidal effects were observed for G. pentaphylla chloroform, ethyl acetate, acetone and methanol extracts. 517 518 The most prominent larvicidal activity against all three species was observed for the acetone 519 extract (LC₅₀ values of 0.00045, 0.267 and 0.0585 mg/mL, respectively). The ethyl acetate 520 extract also suppressed the larval population to a significant extent (LC_{90} values of 2.458, 521 14.314 and 22.687 mg/mL, respectively). In the case of adult mosquitoes, the most potent 522 inhibitory effect was observed for the chloroform extract (LC50 values of 2.957, 2.708, 3.449 523 mg/mL, respectively and LC₉₀ values of 5.458, 4.777, 6.676 mg/mL, respectively) (Ramkumar 524 et al., 2016). Another study investigated the larvicidal activity of the essential oil of G. 525 pentaphylla against the aforementioned mosquito species. A significant dose-dependent 526 suppression of the larval population was reported after 48 hours of extract administration (LC₅₀) 527 values of 19.405, 5.855, 21.451 ppm, respectively and LC₉₀ values of 42.7, 30.513, 53.371 528 ppm, respectively) (Vignesh et al., 2016). Bioactivity-guided fractionation of the methanol 529 extract of G. pentaphylla led to the characterization of arborine (45) as a potent larvicidal 530 component. Exposure of the fourth instar larvae of C. quinquefasciatus to arborine (45) at concentrations of 10⁻⁵ and 10⁻⁴ M for a time period of 240 hours (10 days) resulted in 88 and 531 532 100% mortalities, respectively (Muthukrishnan et al., 1999). Further investigations should aim 533 to discover other mosquitocidal molecules from G. pentaphylla extracts and compare this 534 isolated alkaloid with known mosquitocidal agents. Being natural in origin, G. pentaphylla 535 extracts and isolated phytoconstituents may offer safer and eco-friendlier mosquitocidal 536 alternatives to current molecules.

537 7.6. Antidiabetic activity

The antidiabetic activity of the methanol extract of *G. pentaphylla* was explored in alloxan-induced diabetic rats over a period of three weeks. The standard glibenclamide administered at a dose of 5 mg/kg body weight suppressed blood glucose level by a margin of 65% in 14 days. Compared to that, the methanol extract (250 mg/kg body weight) reduced plasma glucose level by 33.82 and 24.38% after 7 and 14 days of regular administration, respectively (Rahman et al., 2018). It should be noted, however, that in that study, a larger dose of the extract (e.g. 400 mg/kg) could have been administrated since the maximum non-lethal dose for the methanol extract had previously been established as 4 g/kg body weight (Nayak et al. 2011). The administration of a larger doe of extract might have led to a higher antidiabetic effect.

548 Another study involving large doses of the ethanol extract of G. pentaphylla (400 and 549 800 mg/kg body weight) given to streptozotocin-induced diabetic rats over the same time 550 period showed superior antidiabetic properties. The extract, at both doses, improved serum 551 insulin concentrations by 47.4 and 68.4%, respectively, whereas the standard glibenclamide 552 (0.25 mg/kg) enhanced the same by 73.7%. Plasma glucose concentrations were lowered by 553 48.8, 53.3 and 61.9% by the extract (400 and 800 mg/kg) and the standard, respectively. 554 Furthermore, over a period of four weeks, the plant extract at both doses reduced total 555 cholesterol, triglyceride and low-density lipoprotein (LDL) levels as well as AST and ALT 556 concentrations in plasma. A similar effect on lipid metabolism and hepatic performance was 557 also observed for glibenclamide (Ramesh Petchi and Vijaya, 2012). Another study 558 investigating the effect of the ethanol extract of G. pentaphylla on oral glucose tolerance 559 revealed that the extract (250 and 500 mg/kg body weight) improved post-prandial glucose 560 tolerance by 50.7 and 66%, respectively, after 120 minutes of administration (Khatun et al., 561 2012).

Although noteworthy antidiabetic properties have been attributed to *G. pentaphylla* extracts, there has been an overall lack of efforts towards the identification of the phytoconstituents responsible for such activity. This warrants further research work in the future.

566

7.7. Antihyperlipidemic activity

567 One study reported the effect of the ethanol extract of G. pentaphylla administered to 568 Wistar albino rats following intraperitoneal injection of the hyperlipidemia-inducing Triton X (100 mg/kg body weight) over a period of 7 days. The lipid profiles, recorded on the 8th day, 569 570 revealed that the standard atorvastatin (10 mg/kg body weight) reduced the serum 571 concentrations of triglycerides, total cholesterol, low density lipoprotein-cholesterol (LDL-C), 572 very low density lipoprotein-cholesterol (VLDL-C) and glucose in hyperlipidemic rats by 32.0, 573 33.1, 69.1, 32.0 and 31.5%, respectively. Comparably, the ethanol extract at the doses of 200 574 and 400 mg/kg body weight, suppressed triglyceride (25.9 and 29.3%, respectively), total

575 cholesterol (25.8 and 34.6%, respectively), VLDL-C (26 and 29.3%, respectively) and glucose 576 (28.8 and 30.4%, respectively), but failed to diminish the serum levels of LDL-C. Atorvastatin 577 as well as the extract at both doses elevated high density lipoprotein-cholesterol (HDL-C) by 578 30.2, 10.3 and 26.6%, respectively. Statistical significance was established for all these 579 changes, indicating prominent anti-hyperlipidemic activity for the ethanol extract of the plant. 580 A similar trend of lipid-lowering activity was also demonstrated for the extract in high fat diet-581 induced hyperlipidemic rats over a longer time period of 28 days. On the 28th day, the ethanol 582 extract at both doses greatly reduced the serum triglyceride level (77.2 and 78.0%, respectively) 583 compared to that of atorvastatin (43.6%). The administration of the extract over a longer time 584 period also resulted in a significant decline in LDL-C concentration (serum levels reduced by 585 15.5 and 36.1%, respectively), compared to 46.8% reduction with atorvastatin. Further 586 histopathological studies showed that the extract (400 mg/kg body weight) reversed the high 587 fat diet-induced deposition of fatty tissues on the aortic wall and maintained a normal vascular 588 architecture in a similar way as the standard (Ghori et al., 2015). A thorough bioassay-guided 589 phytochemical investigation into the plant with the screening of purified phytoconstituents for 590 anti-hyperlipidemic activity is warranted in the future in order to identify bioactive secondary 591 metabolites.

592

2 7.8. Anti-oxidant activity

593 The anti-oxidative potential of different extracts of G. pentaphylla using multiple in 594 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis vitro assays, including (3 595 ethylbenzthiazoline-6-sulfonic acid) (ABTS), nitric oxide and hydrogen peroxide (H₂O₂) 596 scavenging methods, showed remarkable anti-oxidant potential for the petroleum ether, the 597 ethanol and the aqueous extracts of the plant. Compared to the standard ascorbic acid (IC₅₀ 598 values of 23, 22.8, 24, and 18.3 µg/mL in the aforementioned assays, respectively), the ethanol 599 extract demonstrated the highest anti-oxidative effect (IC₅₀ values of 28.5, 26.2, 31 and 26.2 µg/mL, respectively). The petroleum ether extract also exhibited noteworthy anti-oxidant 600 activity (IC₅₀ values of 30.0, 29.8, 36.5, and 38.1 µg/mL, respectively) (Gupta et al., 2011a). 601

Another study confirmed the prominent free radical stabilizing activity of the ethanol extract in the DPPH and ABTS assays (IC₅₀ values of 18.14 ± 2.08 and $12.04 \pm 1.71 \mu g/mL$, respectively). More powerful anti-oxidative properties were demonstrated for the dichloromethane extract with IC₅₀ values of 16.70 ± 0.77 and $6.11 \pm 0.7 \mu g/mL$, respectively, compared to those of ascorbic acid (8.46 ± 0.34 and $12.04 \pm 1.71 \mu g/mL$, respectively). Such activities were linked to the high contents in phenolic and flavonoids observed for both the ethanol and dichloromethane extracts. The phenolic contents for the extracts were 83.7 ± 0.98 and 54.7 ± 1.11 mg gallic acid equivalents/g, respectively. The flavonoid contents were 23.05 ± 0.31 and 18.24 ± 0.54 mg naringenin equivalents/g, respectively (Shoja et al., 2015).

The methanol extract of *G. pentaphylla* also significantly inhibited DPPH free radicals with an IC₅₀ value of 46.75 µg/mL, compared to that of ascorbic acid (IC₅₀ value of 21.16 µg/mL) (Rahman et al., 2018). Another study showed high phenolic and flavonoid contents for the methanol and aqueous extracts of the plant. The phenolic contents were measured at 22.45 \pm 1.49 and 5.23 \pm 1.11 µg gallic acid equivalents per mg of samples, respectively, whereas the flavonoid contents were measured at 98.312 \pm 1.21 and 59.52 \pm 0.33 µg rutin equivalents per mg of samples, respectively (Yasir et al., 2015).

The volatile content of *G. pentaphylla* was investigated for anti-oxidant activity using the DPPH free radical scavenging and the ferric ion reducing assays. The essential oil at a concentration of 200 μ g/mL showed 70.71% inhibition in the DPPH assay, compared to 83.82% inhibition exerted by gallic acid at the same concentration. The reducing capacities of the essential oil and of ascorbic acid were determined at 1.372 and 1.834, respectively, indicating significant anti-oxidative activity for the volatile constituents of the plant (Vignesh et al., 2014).

A recent study, which attempted to determine the plant parts showing the highest concentration of anti-oxidant constituents, evaluated the activity of *G. pentaphylla* leaves, stems and roots separately. The significant anti-oxidative activity was recorded for the ethanol extract of the leaves in both the DPPH and the ABTS scavenging assays (IC₅₀ values of 29.04 and 49.02 μ g/mL, respectively) compared to those of ascorbic acid (22.33 and 26.03 μ g/mL, respectively) (Babu and Radhamany, 2020).

As prominent anti-oxidative properties have been attributed to different extracts of *G. pentaphylla*, it seems logical to assume the plant is a rich source of anti-oxidant molecules.
Further studies should aim to fractionate the active extracts, screen subsequent fractions for
anti-oxidative activity, and purify and characterize active phytoconstituents.

635

636 **7.9.** Anti-inflammatory activity

637 The ethanol extract of G. pentaphylla, administered in multiple doses ranging from 62.5 638 µg/mL to 1000 µg/mL, exhibited potent dose-dependent anti-hemolytic activity in a membrane-639 stabilizing assay involving human red blood cells. At the maximum dose of 1000 µg/mL, the 640 extract and the standard diclofenac suppressed hemolysis by 75.34 and 55.16%, respectively. 641 Based on the structural similarities between the red blood cell plasma membrane and the 642 intracellular lysosomal membrane, such activity can be extrapolated to estimate the capacity of 643 the extract to stabilize the lysosomal membrane. Stabilization of the lysosome minimizes the 644 intracellular release of cyclooxygenase (COX) which, in turn, can be translated into prominent 645 anti-inflammatory activity (Ansari et al., 2015a).

646 Another study showed dose-dependent anti-inflammatory activity for the methanol 647 extract of G. pentaphylla roots (administered at doses of 50, 100, 200 and 400 mg/kg body 648 weight) in multiple in vivo models. The extract (200 mg/kg body weight) inhibited the 649 carrageenan- and formaldehyde-induced paw edema in rats by up to 68.92 and 37.76%, 650 respectively. The standard indomethacin (10 mg/kg body weight) exhibited 71.17 and 47.34% 651 inhibition, respectively. In the egg albumin-induced paw edema in rats, the methanol extract 652 (200 mg/kg) exerted anti-inflammatory activity equivalent to that of the standard 653 chlorpheniramine (60 mg/kg) (51.04 and 53.65%, respectively). The plant extract (400 mg/kg 654 body weight) and the standard dexamethasone (1 mg/kg) suppressed the xylene-induced ear 655 edema in mice to an extent of 59.09 and 63.64%, respectively (Arora and Arora, 2016).

The ethanol extract of *G. pentaphylla* (800 mg/kg body weight) and the standard indomethacin (10 mg/kg) suppressed the paw swelling induced by Frenaud's complete adjuvant (FCA) in arthritic mice by 39.1 and 43.5%, respectively, indicating significant antiarthritic and anti-inflammatory activity (Ramesh Petchi and Vijaya, 2012).

660 A recent phytochemical investigation of the ethanol extract of G. pentaphylla identified 661 potent anti-inflammatory amides by analyzing the extent of inhibition of nitric oxide (NO) in 662 lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. Eight sulfur-containing amides, 663 namely glycopentamide H (88), methylgerambullin (79), glycopentamide M (93), glycopentamide C (83), glycopentamide A (81), glycopentamide P (96), glycopentamide D 664 665 (84) and methylgerambullone (80) exhibited significantly stronger anti-inflammatory activity than the standard dexamethasone (IC₅₀ value of $9.24 \pm 0.94 \mu$ M), as indicated by IC₅₀ values 666 of 0.16 ± 0.10 , 0.25 ± 0.02 , 0.41 ± 0.08 , 0.76 ± 0.08 , 1.85 ± 0.94 , 2.42 ± 1.23 , 2.82 ± 2.62 and 667

668 $7.80 \pm 1.51 \mu$ M, respectively (Nian et al., 2020). It remains to be seen if these phytoconstituents 669 interact with the COX enzymes and whether they show selectivity towards COX-2. If future 670 studies fail to associate these phytoconstituents with significant COX-2 inhibition, further 671 comparative studies are warranted to compare the effects of NO inhibition against that of COX 672 inhibition, in the management of inflammation.

Another study investigated the anti-inflammatory potential of glycopentalone (**58**) isolated from the ethanol extract of *G. pentaphylla*. This compound at doses of 3.499, 10.488 and 17.466 μ M was capable of suppressing the expression of pro-inflammatory modulators viz. tumor necrosis factor α (TNF α) and cyclooxygenase 2 (COX2) in macrophages leading to lower inflammatory responses (Sasidharan and Vasumathi, 2017). Further work using experimental animal models is required to ascertain the efficacy of *G. pentaphylla* phytoconstituents within the physiological condition.

680 **7.10.** Analgesic activity

The methanol extract of G. pentaphylla administered at doses of 200 and 400 mg/kg 681 682 body weight inhibited the acetic acid-induced writhing in mice by 31.97 and 44.21%, 683 respectively, compared to the standard diclofenac (50 mg/kg dose) which reduced writhes by 684 65.31% (Shams-Ud-Doha et al., 2012). Another similarly designed study reported 36.54 and 685 57.70% reductions in writhing counts for the methanol extract at doses of 250 and 500 mg/kg 686 body weight, indicating prominent dose-dependent analgesic property for the extract (Sarkar 687 et al., 2013). The ethanol extract (500 mg/kg body weight) inhibited the nociceptive response 688 in mice by 75.51%, suggesting that the plant was a potential source of antinociceptive 689 phytoconstituents (Khatun et al., 2012). Further efforts are warranted to identify the underlying 690 mechanism(s) of action of these extracts and screen individual phytoconstituents for antinociceptive activity. Future works may also include in silico docking studies on G. 691 692 pentaphylla phytoconstituents at the opioid receptor sites to design new analgesic drug 693 templates.

694 7.11. Antipyretic activity

When tested against Brewer's yeast-induced pyrexia in rats over an observation period of 6 hours, the ethanol extract of *G. pentaphylla* (200 mg/kg body weight) was found to reduce the average rectal temperature by 0.58 °C while paracetamol (150 mg/kg body weight) diminished the average rectal temperature by 0.77°C, indicating noteworthy antipyretic activity (Gupta et al., 2011b). Further investigations are required to evaluate the antipyretic effect of the ethanol extract of *G. pentaphylla* over a longer period of time, as is the case in the clinical
management of fever.

702 **7.12.** Anti-arsenicosis activity

703 The methanol extract of G. pentaphylla was investigated for its potential role in 704 reversing the adverse effects of arsenicosis in rats. The animals were given sodium arsenite 705 through drinking water at the dose of 4 mg/kg body weight per day over a period of 90 days. 706 Thirty days after the discontinuation of sodium arsenite (i.e. after a total of 120 days), a marked 707 increase in the concentrations of arsenite/arsenate ions in hair, liver and feces was observed in 708 untreated animals. In the group treated with the methanol extract of G. pentaphylla, the organic 709 arsenic level declined dramatically, especially in the feces, resulting in a reduced rate of arsenic 710 excretion from the body. The methanol extract (160 and 320 mg/kg body weight) was found to 711 minimize the severity of arsenicosis. A larger dose of extract (320 mg/kg body weight) 712 diminished arsenite concentrations in hair and liver (by 27.1 and 44.4%, respectively) and 713 arsenate concentrations (by 59.0 and 63.6%, respectively). The extract (160 and 320 mg/kg 714 body weight) also enhanced fecal excretion of organic arsenic by 267.2 and 272.2%, 715 respectively, which eventually led to decreased arsenic accumulation within the body (De et 716 al., 2016). This study, however, lacked in the utilization of a suitable standard, providing 717 limited scope for comparisons. Further investigations, including a standard such as the arsenic-718 chelating agent dimercaprol (Hall, 2002), into the anti-arsenicosis activity of G. pentaphylla 719 extracts and constituents may provide alternative options to the treatment of arsenic poisoning.

720 **7.13. Wound healing activity**

The methanol extract of *G. pentaphylla* was investigated for its wound-healing properties in male albino Wistar rats. The standard nitrofurazone administered as an ointment (0.2% w/w) improved the epithelialization of a surgically-excised wound (500 mm² area, 2 mm depth) and completely healed the wound within 16.15 \pm 0.21 days. The methanol extract employed as a 10 and 15% w/w ointment healed the wound entirely within 19.03 \pm 0.59 and 17.86 \pm 0.19 days, respectively (Jha et al., 2009).

727

728 8. Toxicological profile

Administration of the ethanol extract of *G. pentaphylla* at doses of 125 and 250 mg/kg body weight for a period of 7 and 14 days demonstrated the absence of adverse hepatic toxicity. 731 Both doses improved hepatic functions through augmentation of the anti-oxidative activities of 732 several hepatic enzymes. After 14 days of the administration, the extract (250 mg/kg body 733 weight) increased the enzymatic activities of SOD, GST, GPx, glutathione reductase (GR) and 734 reduced glutathione (GSH) by 54, 178, 332, 301 and 253%, respectively. The standard 735 butylated hydroxyanisole (BHA) enhanced the enzymatic activities of SOD, GST, GPx, GR 736 and reduced glutathione (GSH) by 45, 73, 163, 146 and 172%, respectively (Azad et al., 2008). 737 Another study illustrated the protective effects of the methanol extract of G. pentaphylla 738 against carbon tetrachloride-induced hepatotoxicity. The extract (500 mg/kg body weight) 739 suppressed the carbon tetrachloride-mediated increase in ALT, AST, bilirubin and cholesterol 740 levels by 37.07, 39.04, 21.15 and 37.47%, respectively (Ahsan et al., 2009).

741 A similar trend of hepatoprotective activity was demonstrated for the methanol and the 742 petroleum ether extracts of G. pentaphylla against paracetamol-induced hepatotoxicity. Acute 743 liver toxicity resulting from paracetamol administration (250 mg/kg) was characterized by an 744 enlarged liver along with enhanced levels of AST, ALT, ALP and bilirubin. The methanol 745 extract of G. pentaphylla (400 mg/kg) inhibited the elevations of these markers by 55.8, 38.8, 746 58.0 and 39.1%, respectively. This was compared with the standard silymarin (50 mg/kg body 747 weight), which reversed the elevation of these markers by 60.4, 45.7, 56.1 and 32.3%, 748 respectively. The methanol extract (200 and 400 mg/kg) also inhibited liver enlargement by 749 27.4 and 297%, respectively. The petroleum ether extract demonstrated a similar, though less 750 prominent, hepatoprotective effect to the methanol extract (Nayak et al., 2011).

One study investigated the methanol and the petroleum ether extract of *G. pentaphylla* for acute toxicity and determined the maximum non-lethal dose to be 4g/ kg body weight (Nayak et al., 2011). Another study investigated the acute toxicological effect of the ethanol extract of *G. pentaphylla* administered orally at large doses (0.5, 1, 2 and 4 g/kg of body weight) to Wistar rats. The absence of any noticeable adverse responses observed in various behavioral, neurological and autonomic models indicates that this extract has a relatively safe profile for oral administration (Ramesh Petchi and Vijaya, 2012).

A phytochemical investigation of the ethanol extract of *G. pentaphylla* yielded glycopentalone (**58**) as a phytoconstituent with remarkable anti-inflammatory, anticancer and anti-fibrotic properties *in vitro*. When assessed for acute toxicity in rats, this compound (administered at 2 g/kg body weight) led to no morphological changes in hepatocytes and relatively unchanged levels of ALT, AST and lactate dehydrogenase (LDH). This suggested a
lack of any adverse effects for this compound (Sasidharan and Vasumathi, 2017).

764

9. Conclusion and future prospects

765 G. pentaphylla extracts and their individual phytoconstituents have demonstrated a 766 wide variety of biological properties to date. Several avenues can be considered for future 767 research on this plant. This includes focussing on its antimicrobial potentials in the search for 768 novel antibiotics against the ever-increasing threat of drug-resistant pathogens. The 769 antibacterial activities of the alkaloids arborine (45) and skimmianine (55) against selective 770 multidrug-resistant strains of S. aureus may act as a good starting point for such prospective 771 endeavors in antibacterial drug discovery. A similar line of investigation can also be considered 772 in terms of the anthelmintic activities of the plant. In vivo assessment of the plant extracts for 773 their vermifuge properties, followed by bioactivity-guided phytochemical analysis, may 774 culminate into the generation of novel anthelmintic drug candidates with better efficacy and 775 safety. Moreover, the anticancer and its supplementary anti-mutagenic properties of the plant make it an ideal target for exploration towards generating newer anticancer drug candidates. 776 777 Already a total of six different alkaloids from three structural sub-classes have been 778 characterized with promising cytotoxic potentials. These classes, especially the carbazole one, 779 can be suggested as a prime target for future investigations in anticancer drug research. The mosquitocidal activity of G. pentaphylla also warrants further attention as current synthetic 780 781 mosquitocidal agents pose a significant environmental burden and mosquitoes have developed 782 significant resistance mechanisms against them.

783 Significant anti-inflammatory property has been attributed to different extracts of G. 784 pentaphylla through several in vitro and in vivo experimentations thus validating its 785 ethnomedicinal uses in the treatment of various inflammatory conditions. Multiple amides and 786 a single alkaloid from this plant have also been demonstrated to exert remarkable anti-787 inflammatory activities in different cell lines. Replication of such findings in appropriate 788 animal models can lead to the development of newer drug molecules. Extensive 789 pharmacological studies into different extracts of G. pentaphylla have also characterised the 790 plant with noteworthy antidiabetic, antihyperlipidemic, anti-oxidant, analgesic, antipyretic and 791 wound healing properties. However, identifying the responsible phytoconstituents is yet to be 792 achieved in these avenues and requires future in-depth bioassay-guided phytochemical 793 investigations. Furthermore, the potential of G. pentaphylla to counteract the effects of arsenicosis should also be explored further as it may provide a more effective and economical solution for the arsenic-affected population mostly located in rural areas of developing and under-developed countries.

797 Ethnomedicinal records of G. pentaphylla have successfully guided the scientific 798 community to establish and consolidate many pharmacological potentials of the plant and its 799 individual constituents. Many of the discussed biological activities of the plant can be traced 800 back to its traditional uses in the treatment of cancer, infection, inflammation, diabetes, 801 helminthiasis, fever, pain and wounds. However, a number of major ethnomedicinal 802 applications of G. pentaphylla, including its use in the treatment of cough, anemia, jaundice, 803 liver disorders, and diarrhea, are yet to be rationalized on the basis of valid scientific evidence. 804 Therefore, future work should endeavor to evaluate the aforementioned biological potentials 805 of this plant using appropriate experimental models.

806 **References**

- Ahmed, I., Islam, R., Sikder, M.A.A., Haque, M.R., Al Mansur, M.A. and Rashid, M.A., 2014.
 Alkaloid, sterol and triterpenoids from *Glycosmis pentaphylla* (Retz.) DC. Dhaka Univ.
 J. Pharm. Sci. 13, 115-118. https://doi.org/10.3329/dujps.v13i2.21887.
- Ahmed, R., Choudhury, S., Vajczikova, I. and Leclercq, P.A., 2000. Essential oils of *Glycosmis pentaphylla* (Cor.). A new report from Assam, India. J. Essent. Oil Res. 12, 471-474.
 https://doi.org/10.1080/10412905.2000.9699568.
- 813 Ahsan, M.R., Islam, K.M., Bulbul, I.J., Musaddik, M.A. and Haque, E., 2009. Hepatoprotective 814 activity of methanol extract of some medicinal plants against carbon tetrachloride-815 37, induced hepatotoxicity in rats. Eur. J. Sci. Res. 302-310. https://www.semanticscholar.org/paper/Hepatoprotective-Activity-of-Methanol-816
- 817 Extract-of-in-Ahsan-Islam/c84ed128c933f8a826d4c00f457c480e62c5f301.
- Ali, S.A., Arafa, A.F., Aly, H.F., Ibrahim, N.A., Kadry, M.O., Abdel-Megeed, R.M., Hamed,
 M.A., Farghaly, A.A., El Regal, N.S., Fouad, G.I. and Khalil, W.K., 2020. DNA
 damage and genetic aberration induced via different sized silver nanoparticles:
 Therapeutic approaches of *Casimiroa edulis* and *Glycosmis pentaphylla* leaves extracts.
 J. Food Biochem. 44, e13398. https://doi.org/10.1111/jfbc.13398.
- Ansari, P., Azam, S., Reyad-ul-ferdous, M., Hossain, A., Azad, T., Goswami, S. and Mondal,
 K.K., 2015a. Potential investigation of anti-inflammatory activity and phytochemical

- 825 investigations of ethanolic extract of *Glycosmis pentaphylla* leaves. Am. J. Biomed.
 826 Res. 3, 6-8. DOI: 10.12691/ajbr-3-1-2.
- Ansari, P., Ulla, A., Islam, A.R.U., Sultana, M., Alam, M.N., Mustakim, M. and Uddin, M.N.,
 2015b. Ex-vivo cytotoxic, antibacterial and DPPH free radical scavenging assay with
 ethanolic leaf extract of *Glycosmis pentaphylla* to justify its traditional use. Biomed.
 Res. Ther. 2, 324-332. http://dx.doi.org/10.7603%2Fs40730-015-0017-x.
- Arora, N. and Arora, P., 2016. Anti-inflammatory activity of methanolic extract of roots of *Glycosmis pentaphylla*. Asian J. Pharm. Res. Dev. 4, 1-4.
 http://ajprd.com/index.php/journal/article/view/281.
- Arora, N., Ranawat, M.S. and Arora, P., 2011. Antihelmintic activity of methanolic extract of
 leaves of *Glycosmis pentaphylla*. J. Adv. Pharm. Educ. Res. 1, 234-237.
 http://japer.in/storage/models/article/Qiqe7Qwv4JA1DGI4PHoTWw4cVpSZ5rkrUiCl
- 837 ei6Q8Qzp1agtBykwvssCThOK/antihelmintic-activity-of-methanolic-extract-of-
- 838 leaves-of-glycosmis-pentaphylla.pdf.
- Azad, M.R.H., Tabassum, J. and Bharali, R., 2008. Chemopreventive potential of *Glycosmis pentaphylla* correa on hepatic carcinogen metabolizing enzymes and antioxidant
 defense mechanisms in mice. J. Herbs Spices Med. Plants. 13, 1-14.
 https://doi.org/10.1300/J044v13n03 01.
- Babu, V.S. and Radhamany, P.M., 2019. Cytotoxic potency in leaf ethanolic extract of *Glycosmis pentaphylla* (Retz.) DC. Abrahamia. 5, 39-43.
- Babu, V.S. and Radhamany, P.M., 2020. Antioxidant efficacy and evaluation of crude drug
 parameters of *Glycosmis pentaphylla* (Retz.) DC. Int. J. Pharmacogn. 7, 183-192. DOI:
 10.13040/IJPSR.0975-8232.IJP.7(7).183-92.
- Bhattacharyya, P. and Chowdhury, B.K., 1985a. Glycozolidal, a new carbazole alkaloid from *Glycosmis pentaphylla*. J. Nat. Prod. 48, 465-466.
 https://doi.org/10.1021/np50039a017.
- Bhattacharyya, P. and Chowdhury, B.K., 1985b. Glycolone, a quinolone alkaloid from *Glycosmis pentaphylla*. Phytochemistry. 24, 634-635. https://doi.org/10.1016/S00319422(00)80795-5.
- Bhattacharyya, P., Chakrabartty, P.K. and Chowdhury, B.K., 1985. Glycozolidol, an
 antibacterial carbazole alkaloid from *Glycosmis pentaphylla*. Phytochemistry. 24, 882883. https://doi.org/10.1016/S0031-9422(00)84922-5.

- Bhattacharyya, P., Chowdhury, B.K., Mustapha, A. and Garba, M., 1987. Carbazole and 3methylcarbazole from *Glycosmis pentaphylla*. Phytochemistry. 26, 2138-2139.
 https://doi.org/10.1016/S0031-9422(00)81785-9.
- Black, D.M., 1994. The genetics of breast cancer. Eur. J. Cancer. 30, 1957-1961.
 https://doi.org/10.1016/0959-8049(94)00386-J.
- Bulbul, I.J. and Jahan, N., 2016. Study on antioxidant and antimicrobial activities of methanolic
 leaf extract of *Glycosmis pentaphylla* against various microbial strains. J. Pharmacogn.
 Phytochem. 5, 53. https://www.semanticscholar.org/paper/Study-on-antioxidant-andantimicrobial-activities-Bulbul-

866 Jahan/29d216edd3a100c3291babae803b4f465115da1e.

- Chakraborty, A., Chowdhury, B.K., Jash, S.S., Biswas, G.K., Bhattacharyya, S.K. and
 Bhattacharyya, P., 1992. Carbazole alkaloids from *Glycosmis pentaphylla*.
 Phytochemistry. 31, 2503-2505. https://doi.org/10.1016/0031-9422(92)83310-U.
- Chakraborty, D.P., 1969. Glycozoline, a carbazole derivative, from *Glycosmis pentaphylla*.
 Phytochemistry. 8, 769-772. https://doi.org/10.1016/S0031-9422(00)85851-3.
- 872 Chakraborty, K., Roy, S. and Chakraborty, D.P., 1989. Mupamine from *Glycosmis*873 *pentaphylla*. Phytochemistry. 28, 677-678. https://doi.org/10.1016/0031874 9422(89)80089-5.
- 875 Chatterjee, A. and Majumdar, S.G., 1954. Alkaloids of *Glycosmis pentaphylla* (Retz.) DC. Part
 876 I. J. Am. Chem. Soc. 76, 2459-2463. https://doi.org/10.1021/ja01638a045.
- Chari, R.V., 2008. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc.
 Chem. Res. 41, 98-107. https://doi.org/10.1021/ar700108g.
- Chen, Y., Tang, C., Wu, Y., Mo, S., Wang, S., Yang, G. and Mei, Z., 2015a. *Glycosmis*ines A
 and B: isolation of two new carbazole–indole-type dimeric alkaloids from *Glycosmis pentaphylla* and an evaluation of their antiproliferative activities. Org. Biomol. Chem.
 13, 6773-6781. https://doi.org/10.1039/C5OB00695C.
- Chen, Y., Tian, E.L., Hu, X., Li, J. and Yang, G.Z., 2015. Glycopentosides D–F, Three New
 Phenolic Glycosides from *Glycosmis pentaphylla*. Helv. Chim. Acta. 98, 1160-1166.
 https://doi.org/10.1002/hlca.201500042.
- Chen, L., Xu, J.F. and Sun, L.C., 2016. Chemical Constituents from *Glycosmis pentaphylla*.
 Zhong Yao Cai. 39, 90-93. https://pubmed.ncbi.nlm.nih.gov/30080005/.
- Chen, Y., Yang, B., Xu, J., Zheng, T., Fan, H. and Yang, G.Z., 2012. Photo-activated DNA
 binding and antimicrobial activities of alkaloids from *Glycosmis pentaphylla*. Acta
 Pharm. Sin. 47, 1646-1652. https://pubmed.ncbi.nlm.nih.gov/23460971/.

- Chokchaisiri, S., Apiratikul, N. and Rukachaisirikul, T., 2020. A new ent-abietane lactone from *Glycosmis pentaphylla*. Nat. Prod. Res. 34, 3019-3026.
 https://doi.org/10.1080/14786419.2018.1540477.
- Choi, Y.H., Seo, C., Jeong, W., Lee, J.E., Lee, J.Y., Ahn, E.K., Kang, J.S., Lee, J.H., Choi,
 C.W., Oh, J.S. and Lee, D., 2019. Glycopentanolones A-D, four new geranylated
 quinolone alkaloids from *Glycosmis pentaphylla*. Bioorg. Chem. 87, 714-719.
 https://doi.org/10.1016/j.bioorg.2019.03.069.
- Bas, M.M. and Deka, D.C., 2017. Evaluation of anticancer and antimicrobial activity of
 arborinine from *Glycosmis pentaphylla*. J. Biol. Act. Prod. Nat. 7, 131-139.
 https://doi.org/10.1080/22311866.2017.1329666.
- De, A., Bandyopadhyay, S., Mandal, T., Das, A. and Mishra, A., 2016. Ameliorative potential
 of *Glycosmis pentaphylla* (Retz.) DC in induced arsenicosis in rats. Int. J. Pharma Bio
 Sci. 7, 222-228. https://ijpbs.net/abstract.php?article=NDg1NQ==.
- Gangarao, B. and Jayaraju, N., 2009. Anthelmintic activities of *Glycosmis pentaphylla* and
 Spondias pinnata. Asian J. Pharm. Res. Health Care. 1, 91-96.
 http://www.jprhc.in/index.php/ajprhc/article/view/53.
- Ghori, S.S., Khan, M.R., e Alam, K. and Abrar, A.H., 2015. Evaluation of antihyperlipidemic
 activity of ethanolic extact of *Glycosmis pentaphylla* in hyperlipidemic wistar rats. Eur.
 J. Pharm. Med. Res. 2, 441-458. https://www.ejpmr.com/home/abstract_id/89.
- Govindachari, T.R., Pai, B.R. and Subramaniam, P.S., 1966. Alkaloids of *Glycosmis pentaphylla* (Retz.) Correa. Tetrahedron. 22, 3245-3252.
 https://doi.org/10.1016/S0040-4020(01)92510-4.
- Gupta, N., Agarwal, M., Bhatia, V., Jha, S.K. and Dinesh, J., 2011a. Invitro antioxidant activity
 of crude extracts of the plant *Glycosmis pentaphylla* Correa. Int. J. Pharm. Sci. Rev.
- 915 Res. 6, 158, 62. https://www.semanticscholar.org/paper/INVITRO-ANTIOXIDANT-
- 916 ACTIVITY-OF-CRUDE-EXTRACTS-OF-Gupta-
- 917 Agarwal/6740da58bdd69926d67c5c6948a4c684608d3a2a.
- Gupta, N., Subhramanyam, E.V.S., Jha, S., Bhatia, V. and Narang, E., 2011b. A comparative
 antipyretic activity of the crude extracts of the plant Leucas aspera and *Glycosmis pentaphylla*. J. Chem. Pharm. Res. 3, 320-323. https://www.jocpr.com/articles/a comparative-antipyretic-activity-of-the-crude-extracts-of-the-plantleucas-aspera-and glycosmis-pentaphylla.pdf.
- Hall, A.H., 2002. Chronic arsenic poisoning. Toxicol. lett. 128, 69-72.
 https://doi.org/10.1016/S0378-4274(01)00534-3.

- Hossan, S., Agarwala, B., Sarwar, S., Karim, M., Jahan, R. and Rahmatullah, M., 2010.
 Traditional use of medicinal plants in Bangladesh to treat urinary tract infections and
 sexually transmitted diseases. Ethnobot. Res. Appl. 8, 61-74.
 http://ethnobotanyjournal.org/index.php/era/article/view/304.
- Ito, C., Kondo, Y., Rao, K.S., Tokuda, H., Nishino, H. and Furukawa, H., 1999. Chemical
 constituents of *Glycosmis pentaphylla*. Isolation of a novel naphthoquinone and a new
 acridone alkaloid. Chem. Pharm. Bull. 47, 1579-1581.
 https://doi.org/10.1248/cpb.47.1579.
- Jha, M., Sharma, V., Nema, N. and Hussain, T., 2009. Effect of the topical application of the
 extract of *Glycosmis pentaphylla* on excisional wound model in mice.
 Pharmacologyonline. 3, 356-360. http://europepmc.org/article/med/21129469.
- Khatun, M.C.S., Mia, M.R., Ali, M.A., Rahman, M.M., Begum, K. and Begum, K., 2012.
 Antidiabetic and analgesic effects of *Glycosmis pentaphylla* (Retz.) in Swiss albino
 mice. Ibrahim Med. Coll. J. 6, 21-26. https://doi.org/10.3329/IMCJ.V6I1.14721.
- Kumar, A., Banerjee, N., Singamaneni, V., K Dokuparthi, S., Chakrabarti, T. and
 Mukhopadhyay, S., 2018. Phytochemical investigations and evaluation of
 antimutagenic activity of the alcoholic extract of *Glycosmis pentaphylla* and *Tabernaemontana coronaria* by Ames test. Nat. Prod. Res. 32, 582-587.
 https://doi.org/10.1080/14786419.2017.1318384.
- McKenzie, A.W. and Price, J.R., 1952. Alkaloids of the Australian Rutaceae: *Glycosmis pentaphylla* (Retz.) Correa. Aust. J. Sci. Res. 5, 579-580.
 https://doi.org/10.1071/CH9520579.
- Mukherjee, S., Mukherjee, M. and Ganguly, S.N., 1983. Glycozolinine, a carbazole derivative
 from *Glycosmis* pentaphilla. Phytochemistry. 22, 1064-1065.
 https://doi.org/10.1016/0031-9422(83)85070-5.
- Murugan, N. and Natarajan, D., 2016. Phytochemical, antioxidant and antibacterial activities
 of *Glycosmis pentaphylla* (Rutaceae) leaf extracts against selected multi-drug resistant
 bacteria's. J. Chem. Pharm. Res. 8, 737-44.
 https://www.semanticscholar.org/paper/Phytochemical-%2C-antioxidant-and-
- 954 antibacterial-of-(-Murugan-Natarajan/f2bae1af6ed9f9294f4b2a4ea1bbcf711f8c1ec7.
- Murugan, N., Srinivasan, R., Murugan, A., Kim, M. and Natarajan, D., 2020. *Glycosmis pentaphylla* (Rutaceae): A Natural Candidate for the Isolation of Potential Bioactive
 Arborine and Skimmianine Compounds for Controlling Multidrug-Resistant

- 958Staphylococcus aureus.Front.PublicHealth.8,176.959https://doi.org/10.3389/fpubh.2020.00176.
- Muthukrishnan, J., Seifert, K., Hoffmann, K.H. and Lorenz, M.W., 1999. Inhibition of juvenile
 hormone biosynthesis in Gryllus bimaculatus by *Glycosmis pentaphylla* leaf
 compounds. Phytochemistry. 50, 249-254. https://doi.org/10.1016/S00319422(98)00537-8.
- Nayak, S.S., Jain, R. and Sahoo, A.K., 2011. Hepatoprotective activity of *Glycosmis pentaphylla* against paracetamol-induced hepatotoxicity in Swiss albino mice. Pharm.
 Biol. 49, 111-117. https://doi.org/10.3109/13880209.2010.501084.
- Nian, H., Xiong, H., Zhong, F., Teng, H., Teng, H., Chen, Y. and Yang, G., 2020. Antiinflammatory and antiproliferative prenylated sulphur-containing amides from the
 leaves of *Glycosmis pentaphylla*. Fitoterapia. 146, 104693.
 https://doi.org/10.1016/j.fitote.2020.104693.
- Pacher, T., Bacher, M., Hofer, O. and Greger, H., 2001. Stress induced carbazole phytoalexins
 in *Glycosmis* species. Phytochemistry. 58, 129-135. https://doi.org/10.1016/S00319422(01)00186-8.
- Prakasia, P.P. and Nair, A.S., 2015. Chemical fingerprint of essential oil components from
 fresh leaves of *Glycosmis pentaphylla* (Retz.) Correa. Pharma Innovation. 3, 50-56.
 https://www.thepharmajournal.com/archives/?year=2015&vol=3&issue=12&ArticleI
 d=494.
- Prakasia, P.P. and Nair, A.S., 2016. Pharmacognostic and physicochemical standardization of
 leaves of *Glycosmis pentaphylla* (Retz.) DC. Pharma Innovation. 5, 23-30.
 https://www.semanticscholar.org/paper/Pharmacognostic-and-physicochemical-
- 981 standardization-Prakasia-Nair/e5c807c336967a8724aee7f33f9b358847e6f60b.
- Quader, M.A., Nutan, M.T.H. and Rashid, M.A., 1999. Antitumor alkaloid from *Glycosmis pentaphylla*. Fitoterapia. 70, 305-307. https://doi.org/10.1016/S0367-326X(99)000283.
- Rahman, M.O., Rahman, M.B., Siddiqui, S.A., Hassan, M.A. and Rashid, M.A., 2018.
 Pharmacological evaluation of ethnomedicinal *Glycosmis pentaphylla* Lour. as
 antidiabetic, antioxidant and cytotoxic agent. J. Appl. Pharm. Sci. 8, 80-86. DOI:
 10.7324/JAPS.2018.81112.
- Rahmatullah, M., Azam, M.N.K., Rahman, M.M., Seraj, S., Mahal, M.J., Mou, S.M., Nasrin,
 D., Khatun, Z., Islam, F. and Chowdhury, M.H., 2011. A survey of medicinal plants
 used by Garo and non-Garo traditional medicinal practitioners in two villages of

- 992 Tangail district, Bangladesh. Am.-Eurasian J. Sustain. Agric. 5, 350-357.
 993 http://www.aensionline.com/aejsa/2011/350-357.pdf.
- Ramesh Petchi, R. and Vijaya, C., 2012. Antidiabetic and anti-arthritic potential of *Glycosmis pentaphylla* stem bark in FCA induced arthritis and streptozotocin induced diabetic rats.
- 996 Int. J. Pharma Bio Sci. 3, 328–336. https://www.semanticscholar.org/paper/ANTI-
- 997 DIABETIC-AND-ANTI-ARTHRITIC-POTENTIAL-OF-STEM-
- 998 RameshPetchiRAndVijaya/0f6f0ac2fe112947c7204320a7f3a14182c89795.
- Ramkumar, G., Karthi, S., Muthusamy, R., Suganya, P., Natarajan, D., Kweka, E.J. and
 Shivakumar, M.S., 2016. Mosquitocidal effect of *Glycosmis pentaphylla* leaf extracts
 against three mosquito species (Diptera: Culicidae). PloS One. 11, e0158088.
 https://doi.org/10.1371/journal.pone.0158088.
- 1003Sarkar, K.K., Hossain, M.L., Hossin, A., Mondal, H., Monjur-Al-Hossain, A.S.M., Ahmed,1004M.I. and Sadhu, S.K., 2013. Pharmacological studies on *Glycosmis pentaphylla* (corr.)1005wholeplant.Pharmacologyonline.1,230-236.
- 1006 https://www.semanticscholar.org/paper/Pharmacological-studies-on-Glycosmis1007 pentaphylla-Sarkar-Hossain/91bbc6033f37dee3ab7b621bb86bf445e455e45b.
- Sarkar, M. and Chakraborty, D.P., 1977. Some minor constituents from *Glycosmis pentaphylla*.
 Phytochemistry. 16, 2007-2008. https://doi.org/10.1016/0031-9422(77)80114-3.
- Sasidharan, N. 2004. Biodiversity Documentation for Kerala, Part 6: Flowering Plants. Kerala
 Forest Research Institute, Peechi.
- Sasidharan, S.P. and Vasumathi, A.V., 2017. *In vitro* pharmacological, *in vivo* toxicological and *in silico* molecular docking analysis of glycopentalone, a novel compound from *Glycosmis pentaphylla* (Retz.) Correa. Med. Chem. Res. 26, 1697-1707. https://doi.org/10.1007/s00044-017-1880-3.
- Shams-Ud-Doha, K.M., Akter, M., Al Mahmud, Z., Apu, A.S. and Howlader, M.A., 2012.
 Antinociceptive activity of the methanol extracts of leaves of Eugenia fruticosa (Roxb.)
 and *Glycosmis pentaphylla* (Retz.) in Swiss albino mice. J. Appl. Pharm. Sci. 2, 991019 102. DOI: 10.7324/JAPS.2012.2405.
- Shapiro, J.P., Bowman, K.D. and Lapointe, S.L., 2000. Dehydrothalebanin: A Source of
 Resistance from *Glycosmis* p entaphylla against the Citrus Root Weevil *Diaprepes abbreviatus*. J. Agric. Food Chem. 48, 4404-4409. https://doi.org/10.1021/jf9912598.
- Shoja, M.H., Reddy, N.D., Nayak, P.G., Srinivasan, K.K. and Rao, C.M., 2015. *Glycosmis pentaphylla* (Retz.) DC arrests cell cycle and induces apoptosis via caspase-3/7

- 1025activation in breast cancer cells.J. Ethnopharmacol.168,50-60.1026https://doi.org/10.1016/j.jep.2015.03.048.
- Sivakumar, M. and Chamundeeswari, D., 2016. Identification of Active Phytocomponents in
 the Ethyl Acetate Extract of *Glycosmis pentaphylla* Retz. DC by Using GC-MS.
 International J. Pharmacol. Pharm. Sci. 10, 453-457.
 https://doi.org/10.5281/zenodo.1126395.
- Sivakumar, M., Chamundeeswari, D., Ganesan, N. and Vasanthi, H.R., 2014. Identification of
 some bioactive constituents of *Glycosmis pentaphylla* Retz. DC. using GC-MS. World
 J. Pharm. Res. 3, 1811-1818.
- 1034 https://www.semanticscholar.org/paper/IDENTIFICATION-OF-SOME-
- 1035 BIOACTIVE-CONSTITUENTS-OF-Sivakumar-
- 1036 Ganesan/38028d850c92af6b7f422adda9217461e7eb9e54.
- Sreejith, P.S. and Asha, V.V., 2015. Glycopentalone, a novel compound from *Glycosmis pentaphylla* (Retz.) Correa with potent anti-hepatocellular carcinoma activity. J.
 Ethnopharmacol. 172, 38-43. https://doi.org/10.1016/j.jep.2015.05.051.
- Sreejith, P.S., Mascarenhas, R.R., Praseeja, R.J. and Asha, V.V., 2012a. The apoptosis
 inducing effect of *Glycosmis pentaphylla* (Retz.) Correa and its influence on gene
 expression in hepatocellular carcinoma cell line, Hep3 B. J. Ethnopharmacol. 139, 359365. https://doi.org/10.1016/j.jep.2011.11.012.
- Sreejith, P.S., Praseeja, R.J. and Asha V.V., 2012b. A review on the pharmacology and
 phytochemistry of traditional medicinal plant, Glycosmis pentaphylla (Retz.) Correa. J.
 Pharm. Res. 5, 2723-2728. http://rgcb.sciencecentral.in/id/eprint/232.
- Sripisut, T., Ritthiwigrom, T., Promgool, T., Yossathera, K., Deachathai, S., Phakhodee, W.,
 Cheenpracha, S. and Laphookhieo, S., 2012. Glycopentaphyllone: The first isolation of
 hydroperoxyquinolone from the fruits of *Glycosmis pentaphylla*. Phytochem. Lett. 5,
 379-381. https://doi.org/10.1016/j.phytol.2012.03.007.
- 1051 The Plant List, 2013. A working list of all plant species. Version 1.1.
 1052 http://www.theplantlist.org/1.1/browse/A/Compositae/Gynura/ (accessed 03 March,
 1053 2021).
- 1054 Tian, E.L., Cui, Y.Y., Yang, G.Z., Mei, Z.N. and Chen, Y., 2014. Phenolic glycosides from
 1055 *Glycosmis pentaphylla*. J. Asian Nat. Prod. Res. 16, 1119-1125.
 1056 https://doi.org/10.1080/10286020.2014.951924.
- 1057 Vignesh, A., Elumalai, D., Rama, P., Elangovan, K. and Murugesan, K., 2016. Chemical
 1058 composition and larvicidal activity of the essential oil of *Glycosmis pentaphylla* (Retz.)

- 1059against three mosquito vectors. Int. J. Mosq. Res. 3, 62-67.1060https://www.dipterajournal.com/archives/2016/3/2/A/3-1-5.
- Vignesh, A., Rama, P., Lakshmanan, G. and Murugesan, K., 2014. Chemical composition and
 antioxidant activity of essential oil from *Glycosmis pentaphylla*. Int. J. Botany Res. 4,
 1063 19-28.
- 1064 https://www.academia.edu/10473010/CHEMICAL_COMPOSITION_AND_ANTIO
 1065 XIDANT_ACTIVITY_OF_ESSENTIAL_OIL_FROM_GLYCOSMIS_PENTAPHY
 1066 LLA.
- 1067 Vijayakumar, S., Krishnakumar, C., Arulmozhi, P., Mahadevan, S. and Parameswari, N., 2018.
 1068 Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles
 1069 from leaf extract of *Glycosmis pentaphylla* (Retz.) DC. Microb. Pathog. 116, 44-48.
 1070 https://doi.org/10.1016/j.micpath.2018.01.003.
- Wang, J., Di, Y., Yang, X., Li, S., Wang, Y. and Hao, X., 2006a. Hydroquinone diglycoside
 acyl esters from the stems of *Glycosmis pentaphylla*. Phytochemistry. 67, 486-491.
 https://doi.org/10.1016/j.phytochem.2005.11.025.
- Wang, J., Yang, X., Di, Y., Wang, Y., Shen, Y. and Hao, X., 2006b. Isoflavone diglycosides
 from *Glycosmis pentaphylla*. J. Nat. Prod. 69, 778-782.
 https://doi.org/10.1021/np060001q.
- Wang, J., Zhao, B., Zhang, F. and Zhang, Q., 2016. Two new flavanols from *Glycosmis pentaphylla* and their cytotoxic activities. Helv. Chim. Acta. 99, 30-32.
 https://doi.org/10.1002/hlca.201400362.
- Wu, Y., Hu, X., Yang, G.Z., Mei, Z.N. and Chen, Y., 2012. Two new flavanols from *Glycosmis pentaphylla*. J. Asian Nat. Prod. Res. 14, 738-742.
 https://doi.org/10.1080/10286020.2012.688745.
- Yang, H., Tian, S.T., Wu, R.Y., Chen, Y., Mei, Z.N., Wang, C.Y. and Yang, G.Z., 2014.
 Glycoborinine induces apoptosis through mitochondrial pathway in HepG2 cells. J.
 Asian Nat. Prod. Res. 16, 991-999. https://doi.org/10.1080/10286020.2014.918961.
- Yang, G.Z., Wu, Y. and Chen, Y., 2012. Alkaloids from the stems of *Glycosmis pentaphylla*.
 Helv. Chim. Acta. 95, 1449-1454. https://doi.org/10.1002/hlca.201200027.
- Yasir, M., Singh, P., Tripathi, M.K., Tayubi, I.A. and Shrivastava, R., 2015. Antioxidant and
 antifungal activity of *Glycosmis pentaphylla* roots against dermatophytes and yeast-like
 fungi responsible for various skin ailments. Oxid. Commun. 38, 1622-1631.

Zhang, Q.B., Ding, G., Zhang, T., Si, J.G., Song, B., Wang, M.H., Chen, J.H., Yu, M., Gu,
Y.C. and Zou, Z.M., 2016. New furanopyridine alkaloids from the leaves of *Glycosmis pentaphylla*. Phytochem. Lett. 18, 51-54. https://doi.org/10.1016/j.phytol.2016.08.015.

TABLES

Table 1. Ethnomedicinal uses of *G. pentaphylla*

Geographical location	Local name	Plant part used	Traditional uses	References
Xishuangbanna, Gengma,		Whole plant	Used to treat fever, cough, rheumatism, anemia, sourness,	(Wang et al., 2016;
Shuangjiang, Mengding of			numbness, liver disorders and other long-term conditions.	Yang et al., 2012)
Yunnan Province, China				
Southwest China		Leaves	Used traditionally by the Dai ethnic group to strengthen body,	(Zhang et al., 2016)
			improve systemic circulation and suppress pain.	
Assam, Arunachal,	Ashvashakota	Whole plant	Employed traditionally to treat cough, fever, bronchitis,	(Azad et al., 2008;
Meghalaya, Mizoram	and		anemia, jaundice, liver disorders, inflammation, rheumatism,	Sarkar et al., 2013;
Nagaland and Sikkim of	Vananimbuka		intestinal worm infestations, snakebite, wounds, eczema,	Sivakumar et al.,
India	(Sanskrit),		erysipelas and other skin afflictions.	2014)
	Bannimbu	Bark	To alleviate diabetes and gonorrhea.	(Sarkar et al., 2013)
	(Hindi),	Leaves juice	Used in the treatment of fever, liver disorders and	(Nayak et al., 2011;
	Tejmoyee		helminthiasis.	Ramkumar et al.,
	(Assam),			2016)
	Anam and	Leaves as paste	Applied topically to treat eczema and other skin diseases.	(Sarkar et al., 2013)
	Kula pannai	Leaves as	Utilized in alleviating diarrhea, dysentery and pain associated	(Nayak et al., 2011)
	(Tamil),	homeopathic	with gallstone as well as worm infestations.	
	Gongi pandu	formulation		

	(Telegu),	Leaves as	Employed to treat throat cancer.	(Nayak et al., 2011)
	Paanal	homeopathic		
	(Malayalam)	tincture		
	and Manikyan	Aerial parts as	Applied for its diuretic and spasmolytic properties.	(Nayak et al., 2011)
	(Kannda).	50% ethanol		
		extract		
		Roots	As a febrifuge.	(Sarkar et al., 2013)
		Roots in the form	Applied topically to treat facial inflammations.	(Ramkumar et al.,
		of decoction		2016)
		Fruits	Effective in the treatment of dysentery.	(Sarkar et al., 2013)
Bangladesh (Gazipur,	Bengali –	Whole plant	Used traditionally to treat toothache, gastritis, rheumatoid	(Hossan et al.,
Tangail, Madhupur)	Ashshoura,		arthritis, jaundice, migraine, leucorrhea, and cancer.	2010; Sreejith and
	Ban Jamir,			Asha, 2015)
	Daton,	Leaves in the form	Employed in the treatment of cough, fever, rheumatism,	(Bulbul and Jahan,
	Kawatuti,	of juice and paste	anemia, jaundice, liver abnormalities, ascariasis, bone fracture,	2016)
	Motali,		pain, eczema and other skin diseases.	
	Motmoti	Root juice	Applied in the treatment of toothache and periodontitis.	(Rahmatullah et al.,
				2011)
Sri Lanka, Myanmar,	Toothbrush	Leaves juice	Used traditionally around the globe to treat cough, fever,	(Babu and
Indonesia, Malaysia,	plant		bronchitis, anemia, jaundice, rheumatism, boils, urinary tract	Radhamany, 2020;
Thailand, Vietnam,	(English),		infections and diarrhea.	Ramkumar et al.,
Philippines, Java, Sumatra,	Orange berry,			2016; Shoja et al.,
Borneo and Australia	Gin berry			2015)

Table 2. Phytoconstituents isolated from *G. pentaphylla*

No.	Compounds	Type of compound	Plant parts	References
Alka	loids			
1	Carbazole	Carbazole alkaloid	Root barks	Bhattacharyya et al., 1987
2	3-Methylcarbazole	Carbazole alkaloid	Leaves and twigs	Chokchaisiria et al., 2020
			Root barks	Bhattacharyya et al., 1987
3	3-formyl carbazole	Carbazole alkaloid	Roots	Chakraborty et al., 1992
4	Glycosinine	Carbazole alkaloid	Roots	Chakraborty et al., 1992
5	Methyl carbazole-3-carboxylate	Carbazole alkaloid	Root barks	Kumar et al., 2018
6	Glycozolinine	Carbazole alkaloid	Seeds	Mukherjee et al., 1983
7	Glycozoline	Carbazole alkaloid	Root barks	Chakraborty, 1969; Kumar et al., 2018
8	2-Hydroxy-3 methylcarbazole	Carbazole alkaloid	Leaves	Pacher et al., 2001
9	Glycozolidol	Carbazole alkaloid	Leaves	Pacher et al., 2001
			Roots	Bhattacharyya et al., 1985
10	Carbalexin C	Carbazole alkaloid	Leaves	Pacher et al., 2001
11	Glycozolidine	Carbazole alkaloid	Root barks	Kumar et al., 2018
12	Glycozolidal	Carbazole alkaloid	Roots	Bhaitacharyya and Chowdhury, 1985a
13	Glycozolicine	Carbazole alkaloid	Roots	Chakraborty et al., 1992
14	Carbalexin A	Carbazole alkaloid	Stem	Yang et al., 2012
			Aerial parts	Chen et al., 2012
			Leaves	Pacher et al., 2001
15	Carbalexin B	Carbazole alkaloid	Leaves	Pacher et al., 2001

			Leaves and twigs	Chokchaisiria et al., 2020
16	Glybomine B	Carbazole alkaloid	Stem	Yang et al., 2012
			Aerial parts	Chen et al., 2012
17	4-(7-hydroxy-3-methoxy-6-methyl-9H-	Carbazole alkaloid	Stem	Yang et al., 2012
	carbazol-4-yl)but-3-en-2-one			
18	Glycoborinine	Carbazole alkaloid	Stem	Yang et al., 2012
			Aerial parts	Chen et al., 2012
			Leaves	Pacher et al., 2001
			Leaves and twigs	Chokchaisiria et al., 2020
19	Mupamine	Carbazole alkaloid	Leaves	Chakraborty et al., 1989
20	Biscarbalexine A	Carbazole-type dimeric	Stem	Yang et al., 2012
		alkaloid		Chen et al., 2015a
21	Bisglybomine B	Carbazole-type dimeric	Stem	Yang et al., 2012
		alkaloid		
22	Glycosmisine A	Carbazole-indole-type	Stem	Chen et al., 2015a
		dimeric alkaloid		
23	<i>Glycosmis</i> ine B	Carbazole-indole-type	Stem	Chen et al., 2015a
		dimeric alkaloid		
24	Arborinine	Acridone alkaloid	Whole plants	Quader et al., 1999
			Stem	Ito et al., 1999; Yang et al., 2012
				Choi et al., 2019
			Leaves	Ahmed et al., 2014
				Das & Deka, 2017
	•			

			Leaves and twigs	Chokchaisiria et al., 2020
			Root barks	Kumar et al., 2018
			Fruits	Sripisut et al., 2012
25	5-hydroxyarborinine	Acridone alkaloid	Stem	Ito et al., 1999
26	1-hydroxy-3,4- dimethoxy-10-	Acridone alkaloid	Fruits	Sripisut et al., 2012
	methylacridan-9-one			
27	Noracronycine	Acridone alkaloid	Stem	Ito et al., 1999
			Root barks	Govindachari et al., 1966
28	Des-N-methylacronycine	Acridone alkaloid	Stem	Ito et al., 1999
			Roots	Sivakumar and Chamundeeswari, 2016
			Root barks	Govindachari et al., 1966
29	Des-N-methylnoracronycine	Acridone alkaloid	Stem	Ito et al., 1999
			Root barks	Govindachari et al., 1966
30	Citracridone-I	Acridone alkaloid	Stem	Ito et al., 1999
31	Glycocitrine-III	Acridone alkaloid	Stems	Ito et al., 1999
32	Glycosolone	Quinolone alkaloid	Leaves	Bhaitacharyya and Chowdhury, 1985b
33	Glycolone	Quinolone alkaloid	Leaves	Bhaitacharyya and Chowdhury, 1985b
34	4,8-dimethoxy-1-methyl-3-(3-methylbut-2-	Quinolone alkaloid	Stem	Yang et al., 2012
	en-1-yl)quinolin-2(1H)-one/ O-		Fruits	Sripisut et al., 2012
	methylglycosolone			
35	Acutifolin	Quinolone alkaloid	Fruits	Sripisut et al., 2012
36	Glycopentaphyllone	Quinolone alkaloid	Fruits	Sripisut et al., 2012

37	Glycocitlone C	Quinolone alkaloid	Fruits	Sripisut et al., 2012
38	Glycopentanolones A	Quinolone alkaloid	Stem	Choi et al., 2019
39	Glycopentanolones B	Quinolone alkaloid	Stem	Choi et al., 2019
40	Glycopentanolones C	Quinolone alkaloid	Stem	Choi et al., 2019
41	Glycopentanolones D	Quinolone alkaloid	Stem	Choi et al., 2019
42	Glycosmicine	Quinazolone alkaloid	Stem	Choi et al., 2019
43	Glycophymine	Quinazolone alkaloid	Stem	Choi et al., 2019
			Flower heads	Sarkar and Chakraborty, 1977
44	Glycosminine	Quinazolone alkaloid	Leaves	Chatterjee and Majumdar, 1954
45	Arborine	Quinazolone alkaloid	Leaves	Murugan et al; 2020
46	Glycosine	Quinazolone alkaloid	Stem	Choi et al., 2019
			Leaves	Chatterjee and Majumdar, 1954
47	Glypenfurans A	Furanopyridine alkaloid	Leaves	Zhang et al., 2016
48	Glypenfurans B	Furanopyridine alkaloid	Leaves	Zhang et al., 2016
49	Glypenfurans C	Furanopyridine alkaloid	Leaves	Zhang et al., 2016
50	Melicarpine	Furanopyridine alkaloid	Leaves	Zhang et al., 2016
51	Dictamine	Furoquinoline alkaloid	Roots	Sivakumar and Chamundeeswari, 2016
			Root barks	Kumar et al., 2018
			Fruits	Sripisut et al., 2012
52	Robustine	Furoquinoline alkaloid	Leaves	Zhang et al., 2016
53	γ-Fagarine	Furoquinoline alkaloid	Stem	Yang et al., 2012
			Leaves	Zhang et al., 2016
			Fruits	Sripisut et al., 2012

54	Haplopine	Furoquinoline alkaloid	Leaves	Zhang et al., 2016
55	Skimmianine	Furoquinoline alkaloid	Leaves and twigs	McKenzie and Price, 1952
			Stems	Ito et al., 1999
			Leaves	Chatterjee and Majumdar, 1954; Murugan et
				al., 2020; Zhang et al., 2016
			Roots	Sivakumar and Chamundeeswari, 2016
			Root barks	Govindachari et al., 1966; Kumar et al., 2018
			Fruits	Sripisut et al., 2012
56	Kokusaginine	Furoquinoline alkaloid	Leaves and twigs	McKenzie and Price, 1952
			Stems	Ito et al., 1999
57	Platydesmine	Furoquinoline alkaloid	Leaves	Zhang et al., 2016
58	Glycopentalone	Pyrrole alkaloid	Whole plant	Sasidharan & Vasumathi, 2017; Sreejith &
				Asha, 2015
59	1-Methyl-2-pyrrolidinone	Pyrrolidinone alkaloid	Leaves	Prakasia and Nair, 2015
60	5-(3-Hydroxybutyl)-2-pyrrolidinone	Pyrrolidinone alkaloid	Leaves	Prakasia and Nair, 2015
61	N,N-Dimethyltryptamine	Indole alkaloid	Roots	Sivakumar et al., 2014
62	5- Methoxy-N,1-dimethyl-1H-Indole-3-	Indole alkaloid	Roots	Sivakumar et al., 2014
	Ethanamine			
63	5-Amino-1-phenylpyrazole	Pyrazole alkaloid	Leaves	Prakasia and Nair, 2015
64	5-(2,5-dimethoxy-phenyl)-2H-pyrazol-3-ol	Pyrazole alkaloid	Leaves	Ramkumar et al., 2016
65	5-hydroxypipecolic acid	Piperidine alkaloid	Roots	Sivakumar et al., 2014
66	2-(methylamine)-methylbenzoate	Miscellaneous alkaloid	Leaves and twigs	Chokchaisiria et al., 2020

67	Thioanthranilic Acid, N-Methyl-, S-Butyl	Miscellaneous alkaloid	Leaves	Murugan & Natarajan, 2016
	Ester			
68	Cyclopenta[c][1]benzopyran-4(1H)-one, 7-	Miscellaneous alkaloid	Roots	Sivakumar and Chamundeeswari, 2016
	(dimethylamino)-2,3-dihydro			
69	1-Methoxybenzene,-4-(2-	Miscellaneous alkaloid	Roots	Sivakumar and Chamundeeswari, 2016
	hydroxybenzylideneamino)			
70	2-Methoxy-3H-azepine	Miscellaneous alkaloid	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
Amic	les			
71	Isoprocarb/ Carbamic acid, methyl-, o-	Amide	Roots	Sivakumar and Chamundeeswari, 2016
	cumenyl ester			
72	Glycomide	Amide	Flower heads	Sarkar and Chakraborty, 1977
73	Dehydrothalebanin B	Amide	Roots	Shapiro et al., 2000
74	Glycoamide A	Amide	Leaves and twigs	Chokchaisiria et al., 2020
75	Glycoamide B	Amide	Leaves and twigs	Chokchaisiria et al., 2020
76	2-(N-methyl-2-phenylacetamido) benzoic	Amide	Leaves and twigs	Chokchaisiria et al., 2020
	acid			
77	N- <i>p</i> -coumaroyltyramine	Amide	Aerial parts	Chen et al., 2012
78	N-(p-hydroxyphenethyl)-3-	Sulphur containing amide	Leaves	Nian et al., 2020
	(methylsulfonyl)-propenamide			
79	Methylgerambullin	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
80	Methylgerambullone	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		

81	Glycopentamide A	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
82	Glycopentamide B	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
83	Glycopentamide C	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
84	Glycopentamide D	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
85	Glycopentamide E	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
86	Glycopentamide F	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
87	Glycopentamide G	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
88	Glycopentamide H	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
89	Glycopentamide I	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
90	Glycopentamide J	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
91	Glycopentamide K	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		

92	Glycopentamide L	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
93	Glycopentamide M	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide	Leaves	Nian et al., 2020
94	Glycopentamide N	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
95	Glycopentamide O	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
96	Glycopentamide P	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
97	Glycopentamide Q	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
98	Glycopentamide R	Prenylated sulphur containing	Leaves	Nian et al., 2020
		amide		
Phen	olic constituents			
99	Salicylic acid	Hydroxy benzoic acid	Stem	Choi et al., 2019
100	4-hydroxybenzoic acid/ p-hydroxybenzoic	Hydroxy benzoic acid	Stem	Choi et al., 2019
	acid		Leaves	Ali et al., 2020
101	Protocatechuic acid	Hydroxy benzoic acid	Stem	Choi et al., 2019
			Leaves	Ali et al., 2020
102	Vanillic acid	Hydroxy benzoic acid	Stem	Choi et al., 2019
			Leaves	Ali et al., 2020
103	Gallic acid	Hydroxy benzoic acid	Leaves	Ali et al., 2020

104	Syringic acid	Hydroxy benzoic acid	Leaves	Ali et al., 2020
105	Cinnamic acid	Phenolic	Leaves	Ali et al., 2020
106	<i>p</i> -Coumaric acid	Cinnamic acid derivative	Stem	Choi et al., 2019
			Leaves	Ali et al., 2020
107	Caffeic acid	Cinnamic acid derivative	Leaves	Ali et al., 2020
108	Ferulic acid	Cinnamic acid derivative	Leaves	Ali et al., 2020
			Leaves and twigs	Chokchaisiria et al., 2020
109	Sinapic acid	Cinnamic acid derivative	Leaves	Ali et al., 2020
110	Alphitol	Polyphenol	Stem	Wu et al., 2012
111	3,4-dimethoxy-5-hydroxy-trans-cinnamyl	Cinnamyl alcohol derivative	Stem	Wu et al., 2012
	alcohol			
112	Phenol, 2,4-bis(1,1-dimethylethyl)-	Phenolic	Roots	Sivakumar and Chamundeeswari, 2016
113	3-tert-butyl-4-hydroxyanisole	Phenolic	Roots	Sivakumar et al., 2014
114	Cyclopropanecarboxylic acid, 2-methyl-,	Substituted phenolic	Leaves	Ramkumar et al., 2016
	2,6-di-t-butyl-4-methylphenyl ester			
115	Scopoletin	Coumarin	Leaves and twigs	Chokchaisiria et al., 2020
116	Fraxidin	Coumarin	Leaves and twigs	Chokchaisiria et al., 2020
117	2H-1-Benzopyran-2-One, 6-(1-Hydroxy-3-	Coumarin	Leaves	Ramkumar et al., 2016
	Methylbutyl)-7-Methoxy			
118	1,1'-Biphenyl, 2-Formyl-4',5',6'-Trimethoxy	Substituted phenolic	Leaves	Ramkumar et al., 2016
119	Oxyresveratrol	Stilbene	Stem	Wu et al., 2012
120	4,4'-ethylenebis(2,6-di-tert-butylphenol)	Polyphenol	Leaves	Ramkumar et al., 2016
121	Rosmarinic acid	Polyphenol	Leaves	Ali et al., 2020

100	C11 : 1		т	41: 4 1 2020
122	Chlorogenic acid	Quinic acid derivative	Leaves	Ali et al., 2020
123	(-)-Syringaresinol	Polyphenol	Leaves and twigs	Chokchaisiria et al., 2020
124	α-Tocopherol	Phenol	Leaves	Murugan & Natarajan, 2016
125	Avicenol-B	Naphthoquinone	Stem	Ito et al., 1999
126	Avicequinone-C	Naphthoquinone	Stem	Ito et al., 1999
127	Glycoquinone	Naphthoquinone	Stem	Ito et al., 1999
128	Marmesin/ 7H-Furo[3,2-g][1]benzopyran-7-	Coumarin	Roots	Sivakumar and Chamundeeswari, 2016
	one, 2,3-dihydro-2-(1-hydroxy-1-			
	methylethyl)-,(s)-			
129	Xanthyletin/ 8,8-Dimethyl-2H,8H-	Coumarin	Roots	Sivakumar and Chamundeeswari, 2016
	pyrano[3,2-g]chromen-2-one			
130	Arbutin	Phenolic glycoside	Stem	Tian et al., 2014
131	Tachioside	Phenolic glycoside	Stem	Tian et al., 2014
132	2,6-dimethoxy-4-hydroxyphenyl-1- <i>O</i> -β-D-	Phenolic glycoside	Stem	Tian et al., 2014
	glucopyranoside			
133	3-Methoxyphenethyl alcohol 4-O-β-D-	Phenolic glycoside	Stem	Tian et al., 2014
	glucopyranoside			
134	Syringin	Phenolic glycoside	Stem	Tian et al., 2014
135	Icariside E ₅	Phenolic glycoside	Stem	Tian et al., 2014
136	<i>threo</i> -1-C-syringylglycerol 4- <i>O</i> -β-D-	Phenolic glycoside	Stem	Tian et al., 2014
	glucopyranoside			
137	Glycopentosides A	Phenolic glycoside	Stem	Tian et al., 2014
138	Glycopentosides B	Phenolic glycoside	Stem	Tian et al., 2014

139	Glycopentosides C	Phenolic glycoside	Stem	Tian et al., 2014
140	Markhamioside F	Phenolic glycoside	Stem	Tian et al., 2014
141	Seguinoside K	Phenolic glycoside	Stem	Tian et al., 2014
142	Glypentosides A	Hydroquinone diglycoside	Stem	Wang et al., 2006a
		acyl esters		
143	Glypentosides B	Hydroquinone diglycoside	Stem	Wang et al., 2006a
		acyl esters		
144	Glypentosides C	Hydroquinone diglycoside	Stem	Wang et al., 2006a
		acyl esters		
145	Glycopentosides D	Phenolic glycosides	Stem	Chen et al., 2015b
146	Glycopentosides E	Phenolic glycosides	Stem	Chen et al., 2015b
147	Glycopentosides F	Phenolic glycosides	Stem	Chen et al., 2015b
Flavo	onoids			
148	Apigenin	Flavone	Leaves	Ali et al., 2020
149	Apigenin-7-O-glucoside	Flavone	Leaves	Ali et al., 2020
150	Vitexin	Flavone	Stem	Choi et al., 2019
151	Kaempferol	Flavonol	Aerial parts	Chen et al., 2016
152	5,7,4'-trihydroxyflavonol-3-O-α-L-	Flavonol	Aerial parts	Chen et al., 2016
	rhamnopyranoside			
153	Quercetin	Flavonol	Aerial parts	Chen et al., 2016
			Leaves	Ali et al., 2020
154	Quercetin-3-O-α-L-rhamnopyranoside	Flavonol	Aerial parts	Chen et al., 2016
155	Rutin	Flavonol	Leaves	Ali et al., 2020

156	Myricetin	Flavonol	Leaves	Ali et al., 2020
157	Hexamethylquercetagetin/ 3,5,6,7,3',4'-	Flavonol	Leaves	Ramkumar et al., 2016
	Hexamethoxyflavone			
158	Naringenin	Flavanone	Leaves	Ali et al., 2020
159	Hesperidin	Flavanone	Leaves	Ali et al., 2020
160	Aromadendrin/ Dihydrokaempferol	Flavanonol	Aerial parts	Chen et al., 2016
161	Taxifolin/ Dihydroquercetin	Flavanonol	Aerial parts	Chen et al., 2016
162	Catechin	Flavanol	Leaves	Ali et al., 2020
163	4'-O-methylgallocatechin	Flavanol	Stem	Wu et al., 2012
164	Glycoflavanones A	Flavanol	Stem	Wu et al., 2012
165	(8S,9R)-9,10-dihydro-5,9-dihydroxy-8-	Flavanol	Stem	Wang et al., 2016
	(3,4,5-trimethoxyphenyl)-2H,8H-benzo[1,2-			
	b:3,4-b']dipyran-2-one			
166	Glycoflavanones B	Flavanol	Stem	Wu et al., 2012
167	(2S,3R)-3,4-dihydro-3,5-dihydroxy-2-	Flavanol	Stem	Wang et al., 2016
	(3,4,5-trimethoxyphenyl)-2H,8H-benzo[1,2-			
	b:3,4-b']dipyran-8-one			
168	7-hydroxy-4'-methoxyisoflavone 7-O-α-D-	Isoflavone diglycosides	Stem	Wang et al., 2006b
	apiofuranosyl- $(1\rightarrow 6)$ - α -D-glucopyranoside			
169	7-hydroxy-4',6-dimethoxyisoflavone 7-O-α-	Isoflavone diglycosides	Stem	Wang et al., 2006b
	D-apiofuranosyl- $(1\rightarrow 6)$ - α -D-			
	glucopyranoside			

	170	7-hydroxy-4',8-dimethoxyisoflavone 7-O-α-	Isoflavone diglycosides	Stem	Wang et al., 2006b
		D-apiofuranosyl- $(1\rightarrow 6)$ - α -D-			
		glucopyranoside			
I	171	Coromandelin/ 5,4'-dihydroxy-7-	Isoflavone diglycosides	Stem	Wang et al., 2006b
		methoxyisoflavone 4'-O-α-D-apiofuranosyl-			
		$(1\rightarrow 6)$ - α -D-glucopyranoside			
l	172	Tectorigenin 7-O- α -D-apiofuranosyl-(1 \rightarrow 6)-	Isoflavone diglycosides	Stem	Wang et al., 2006b
		α-D-glucopyranoside			
	173	4',5-dihydroxy-6,7-dimethoxyisoflavone 4'-	Isoflavone diglycosides	Stem	Wang et al., 2006b
		O-α-D-apiofuranosyl-(1→6)-α-D-			
		glucopyranoside			
ľ	174	4',5-dihydroxy-3',7-dimethoxyisoflavone 4'-	Isoflavone diglycosides	Stem	Wang et al., 2006b
		O-α-D-apiofuranosyl-(1→6)-α-D-			
		glucopyranoside			
	175	3',7-dihydroxy-4',5,6-trimethoxyisoflavone	Isoflavone diglycosides	Stem	Wang et al., 2006b
		7-O-(5-O-trans- <i>p</i> -coumaroyl)-α-D-			
		apiofuranosyl- $(1\rightarrow 6)$ - α -D-glucopyranoside			
	176	2',7-dihydroxy-4',5',5,6-	Isoflavone diglycosides	Stem	Wang et al., 2006b
		tetramethoxyisoflavone 7-O-α-D-			
		apiofuranosyl- $(1\rightarrow 6)$ - α -D-glucopyranoside			
l	177	2',7-dihydroxy-4',5',5,6-	Isoflavone diglycosides	Stem	Wang et al., 2006b
		tetramethoxyisoflavone 7-O- (5-O-trans-p-			

	coumaroyl)- α -D-apiofuranosyl-(1 \rightarrow 6)- α -D-				
	glucopyranoside				
Aron	natic constituents				
178	Toluene	Aromatic constituent	Leaves	Prakasia and Nair, 2015	
179	<i>p</i> -Cymene	Aromatic constituent	Seeds	Ahmed et al., 2000	
180	1-(1,5-dimethyl-4-hexenyl)-4-	Aromatic constituent	Leaves	Ramkumar et al., 2016	
	methylbenzene				
181	Benzaldehyde oxime	Aromatic constituent	Leaves	Vignesh et al., 2014; Vignesh et al., 2016	
182	3- Benzyloxy-1,2-diacetyl-1,2-propanediol	Aromatic constituent	Roots	Sivakumar et al., 2014	
183	(+)-Calamenene/ 4-Isopropyl-1,6-dimethyl-	Aromatic constituent	Leaves	Vignesh et al., 2014; Vignesh et al., 2016	
	1, 2, 3, 4- tetrahydronaphthalene				
184	Dehydroabietic acid	Aromatic constituent	Roots	Sivakumar et al., 2014	
185	Benzoic acid, 2-propenyl ester	Benzoic acid ester	Leaves	Vignesh et al., 2014; Vignesh et al., 2016	
186	3-Hexen-1-ol, benzoate, (Z)	Benzoic acid ester	Leaves	Prakasia and Nair, 2015	
187	Mono(2-ethylhexyl) phthalate	Phthalic acid ester	Roots	Sivakumar and Chamundeeswari, 2016	
188	1,2-Benzenedicarboxylic acid, bis(2-	Phthalic acid ester	Roots	Sivakumar and Chamundeeswari, 2016	
	methylpropyl) ester				
Steroidal constituents					
189	Campesterol/ Ergost-5-en-3-ol,	Sterol	Roots	Sivakumar et al., 2014	
	(3.beta.24R)-				
190	β-sitosterol	Sterol	Stem	Wu et al., 2012	
191	γ-Sitosterol/ Stigmast-5-en-3-ol	Sterol	Roots	Sivakumar et al., 2014; Sivakumar and	
				Chamundeeswari, 2016	

192	Sitostenone/ 4-Stigmasten-3-one	Sterol	Roots	Sivakumar et al., 2014
193	Stigmasterol	Sterol	Roots	Sivakumar et al., 2014; Sivakumar and
				Chamundeeswari, 2016
194	Spinasterol	Sterol	Leaves	Ahmed et al., 2014
Non-	volatile terpenes			
195	Helioscopinolide A	Diterpene	Leaves and twigs	Chokchaisiria et al., 2020
196	Helioscopinolide E	Diterpene	Leaves and twigs	Chokchaisiria et al., 2020
197	3-oxojolkinolide A	Diterpene	Leaves and twigs	Chokchaisiria et al., 2020
198	β-amyrin	Triterpene	Leaves	Ahmed et al., 2014
199	3-Epi-oleanolic acid	Triterpene	Leaves	Ahmed et al., 2014
200	Canophyllal	Triterpene	Roots	Sivakumar and Chamundeeswari, 2016
Vola	tile constituents			
201	β-Myrcene	Acyclic monoterpene	Seeds	Ahmed et al., 2000
202	β-Ocimene	Acyclic monoterpene	Leaves	Prakasia and Nair, 2015
203	2,4,6-octatriene,2,6-Dimethyl	Acyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
204	3,7-Dimethyl-1,6-octadien-3-ol	Acyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
205	Nerol	Acyclic monoterpene	Seeds	Ahmed et al., 2000
206	Geraniol	Acyclic monoterpene	Seeds	Ahmed et al., 2000
207	Linalool	Acyclic monoterpene	Seeds	Ahmed et al., 2000; Prakasia and Nair, 2015
208	Hotrienol	Acyclic monoterpene	Leaves	Prakasia and Nair, 2015
209	3,7-Dimethyl-1-octene-3,7-diol	Acyclic monoterpene	Seeds	Ahmed et al., 2000
210	3,7-dimethyl-1,5-octadiene-3,7-diol	Acyclic monoterpene	Seeds	Ahmed et al., 2000
211	6,10-Dimethyl-9-undecen-2-one	Acyclic monoterpene	Leaves	Prakasia and Nair, 2015

212	o-Menth-8-ene	Monocyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
213	1,5,5-Trimethyl-6-methylene-cyclohexene	Monocyclic monoterpene	Leaves	Prakasia and Nair, 2015
214	Isophorone/ 3,5,5-Trimethyl-2-cyclohexen-	Monocyclic monoterpene	Roots	Sivakumar and Chamundeeswari, 2016
	1-one			
215	P-Menth-4(8)-ene	Monocyclic monoterpene	Leaves	Vignesh et al., 2016
216	α-Terpinene	Monocyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
217	β-Terpinene	Monocyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
218	γ-Terpinene	Monocyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
			Seeds	Ahmed et al., 2000
219	Terpinolene	Monocyclic monoterpene	Leaves	Vignesh et al., 2014
220	Limonene	Monocyclic monoterpene	Seeds	Ahmed et al., 2000
221	β-Phellandrene	Monocyclic monoterpene	Seeds	Ahmed et al., 2000
222	α-Terpineol	Monocyclic monoterpene	Leaves	Prakasia and Nair, 2015
			Seeds	Ahmed et al., 2000
223	Terpinen-4-ol	Monocyclic monoterpene	Leaves	Prakasia and Nair, 2015
			Leaves and barks	Ahmed et al., 2000
			and seeds	
			Seeds	Ahmed et al., 2000
224	<i>p</i> -Menth-2-en-1 -ol	Monocyclic monoterpene	Seeds	Ahmed et al., 2000
225	2-Cyclohexen-1-ol, 1-methyl-4-(1-	Monocyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
	methylethenyl)-, trans			
226	1,2,4-Trihydroxy- <i>p</i> -menthane	Monocyclic monoterpene	Seeds	Ahmed et al., 2000
227	cis-Linalool oxide (furanoid)	Monocyclic monoterpene	Seeds	Ahmed et al., 2000

228	trans-Linalool oxide (furanoid)	Monocyclic monoterpene	Seeds	Ahmed et al., 2000
229	cis-Linalool oxide (pyranoid)	Monocyclic monoterpene	Seeds	Ahmed et al., 2000
230	trans-Linalool oxide (pyranoid)	Monocyclic monoterpene	Seeds	Ahmed et al., 2000
231	1-(3,3-dimethyl-1-yl)-2,2-	Monocyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
	dimethylcyclopropene-3-carboxylic acid			
232	<i>trans</i> -β-Ionone	Monocyclic monoterpene	Leaves	Prakasia and Nair, 2015
233	Cyclooctanemethanol	Monocyclic monoterpene	Leaves	Vignesh et al., 2014
234	Bicyclo [6.1.0] non-1-ene	Bicyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
235	Bicyclo[5.1.0]octane, 8-methylene	Bicyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
236	Sabinene	Bicyclic monoterpene	Seeds	Ahmed et al., 2000
237	Dehydrosabinene/ 2,4(10)-Thujadiene	Bicyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
238	α-Pinene	Bicyclic monoterpene	Seeds	Ahmed et al., 2000
239	β-Pinene	Bicyclic monoterpene	Leaves	Prakasia and Nair, 2015; Vignesh et al.,
				2014; Vignesh et al., 2016
			Seeds	Ahmed et al., 2000
240	6-Methylenebicyclo[3.2.0]heptane	Bicyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
241	Bicyclo[4.1.0]heptane, 7-(1-	Bicyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
	methylethylidene)			
242	2-Carene	Bicyclic monoterpene	Leaves	Prakasia and Nair, 2015
243	3-Carene	Bicyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
244	Trans-2-Caren-4-ol	Bicyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
245	Camphene	Bicyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
246	Borneol	Bicyclic monoterpene	Seeds	Ahmed et al., 2000

247	1,8-Cineole/ Eucalyptol	Bicyclic monoterpene	Seeds	Ahmed et al., 2000
248	Tricyclo[4.1.0.0(2,7)]heptane	Tricyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
249	Adamantane	Tricyclic monoterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
250	Nerodilol/ 3,7,11-Trimethyl-1,6,10-	Acyclic sesquiterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
	dodecatrien-3-ol			
251	6,10,14-trimethyl-2-pentadecanone	Acyclic sesquiterpene	Leaves and barks	Ahmed et al., 2000; Prakasia and Nair, 2015
252	Cyclohexane, 1,5-diethenyl-3- methyl-2-	Monocyclic sesquiterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
	methylene-, (1.alpha., 3.alpha.,5.alpha)-			
253	1,5,5-Trimethyl-6-(2-Propenylidene)-1-	Monocyclic sesquiterpene	Leaves	Ramkumar et al., 2016
	Cyclohexene			
254	β-elemene	Monocyclic sesquiterpene	Leaves	Sivakumar and Chamundeeswari, 2016
255	γ-Elemene	Monocyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
256	δ-Elemene/ Cyclohexene,4-ethenyl-4-	Monocyclic sesquiterpene	Roots	Sivakumar and Chamundeeswari, 2016
	methyl-3-(1-methylethenyl)-1-(1-			
	methylethyl)-, (3r-trans)-			
257	Isoshyobunone	Monocyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
258	Nerolidol oxide	Monocyclic sesquiterpene	Leaves and barks	Ahmed et al., 2000
259	2R-acetoxymethyl-1,3,3-trimethyl-4t-(3-	Monocyclic sesquiterpene	Leaves	Ramkumar et al., 2016
	methyl-2-buten-1-yl)-1t-cyclohexanol			
260	1-Methylene-2b-Hydroxymethyl-3,3-	Monocyclic sesquiterpene	Leaves	Murugan & Natarajan, 2016
	Dimethyl-4b-(3-Methylbut-2- Enyl)-			
	Cyclohexane			

261	Hedycaryol/ 2-(4,8-Dimethyl-3,7-	Monocyclic sesquiterpene	Roots	Sivakumar and Chamundeeswari, 2016
	cyclodecadien-1-yl)-2-propanol			
262	Germacrene D/ 1,6-Cyclodecadiene, 1-	Monocyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
	methyl-5-methylene-8-(1- methylethyl)-			
	,[S(E,E)]-			
263	α-Humulene/ α-Caryophyllene	Monocyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
			Roots	Sivakumar and Chamundeeswari, 2016
264	β-Humulene	Monocyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
265	Bicyclogermacrene	Bicyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
266	Bicyclo[4.4.0]dec-1-ene, 2-isopropyl-5-	Bicyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
	methyl-9-methylene-			
267	δ-Amorphene	Bicyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
268	γ-Muurolene	Bicyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
269	α-Cadinol	Bicyclic sesquiterpene	Leaves and barks	Ahmed et al., 2000
270	1- <i>Epi</i> -cubenol	Bicyclic sesquiterpene	Leaves and barks	Ahmed et al., 2000
271	T-muurolol	Bicyclic sesquiterpene	Leaves and barks	Ahmed et al., 2000
272	Rosifoliol	Bicyclic sesquiterpene	Roots	Sivakumar et al., 2014; Sivakumar and
				Chamundeeswari, 2016
273	γ-Eudesmol	Bicyclic sesquiterpene	Roots	Sivakumar and Chamundeeswari, 2016
274	Cedrene-V6	Bicyclic sesquiterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
275	1H-Indene, 1-ethylideneoctahydro-7a-	Bicyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
	methyl-(1E, 3a.alpha.,7a.beta.)			

276	4,8,8-trimethyl -2-methylene4-	Bicyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
	vinylbicyclo[5.2.0]nonane			
277	Guaiol/ Champaca camphor	Bicyclic sesquiterpene	Roots	Sivakumar et al., 2014; Sivakumar and
				Chamundeeswari, 2016
278	Glaucyl alcohol	Bicyclic sesquiterpene	Leaves	Ramkumar et al., 2016
279	β-Caryophyllene	Bicyclic sesquiterpene	Leaves	Murugan & Natarajan, 2016; Prakasia and
				Nair, 2015; Vignesh et al., 2014; Vignesh et
				al., 2016
			Roots	Sivakumar and Chamundeeswari, 2016
280	<i>trans</i> -Z-α-Bisabolene epoxide	Bicyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
281	β-Panasinsene	Triicyclic sesquiterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
282	cis-Thujopsene	Tricyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
283	α-Copaene	Tricyclic sesquiterpene	Leaves	Prakasia and Nair, 2015; Vignesh et al.,
				2014; Vignesh et al., 2016
			Leaves and barks	Ahmed et al., 2000
			Roots	Sivakumar and Chamundeeswari, 2016
284	β-copaene	Tricyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
285	α-Copaene-8-ol	Tricyclic sesquiterpene	Leaves	Ramkumar et al., 2016
286	α-Cubebene	Tricyclic sesquiterpene	Leaves	Prakasia and Nair, 2015; Vignesh et al.,
				2014; Vignesh et al., 2016
287	β-Patchoulene	Tricyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
288	Aromadendrene	Tricyclic sesquiterpene	Leaves	Prakasia and Nair, 2015; Vignesh et al.,
				2014; Vignesh et al., 2016

289	Globulol	Tricyclic sesquiterpene	Leaves and barks	Ahmed et al., 2000
290	Viridiflorol	Tricyclic sesquiterpene	Leaves and barks	Ahmed et al., 2000
291	Ledol	Tricyclic sesquiterpene	Leaves	Prakasia and Nair, 2015; Vignesh et al.,
				2014; Vignesh et al., 2016
292	Isoaromadendrene epoxide	Tricyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
293	Spathulenol	Tricyclic sesquiterpene	Leaves and barks	Ahmed et al., 2000
294	(-)-Spathulenol	Tricyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
295	1H-Cycloprop[e]azulene	Tricyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
296	Caryophyllene oxide	Tricyclic sesquiterpene	Leaves	Prakasia and Nair, 2015
297	1,4-dimethyl-8- isopropylidenetricyclo	Tetracyclic sesquiterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
	[5.3.0.0 (4, 10)]decane			
298	Cycloisolongifolene	Tetracyclic sesquiterpene	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
299	Phytol	Acyclic diterpene	Leaves	Prakasia and Nair, 2015
300	Isophytol	Acyclic diterpene	Leaves	Prakasia and Nair, 2015
301	trans-Geranylgeraniol	Acyclic diterpene	Leaves	Prakasia and Nair, 2015
302	Squalene	Acyclic triterpene	Leaves	Murugan & Natarajan, 2016
			Roots	Sivakumar and Chamundeeswari, 2016
303	Dodecanoic (lauric) acid	Fatty acid	Leaves and barks	Ahmed et al., 2000
304	Tetradecanoic (myristic) acid	Fatty acid	Leaves and barks	Ahmed et al., 2000
305	Pentadecanoic acid	Fatty acid	Leaves and barks	Ahmed et al., 2000
306	Hexadecanoic (palmitic) acid	Fatty acid	Leaves and barks	Ahmed et al., 2000
307	Oleic acid	Fatty acid	Leaves and barks	Ahmed et al., 2000
308	2,3-dihydroxypropyl acetate	Fatty acid ester	Roots	Sivakumar and Chamundeeswari, 2016

309	cis-3-Hexenyl isovalerate	Fatty acid ester	Leaves	Prakasia and Nair, 2015
310	3-Hexenyl butyrate	Fatty acid ester	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
311	Ethenyl dodecanoate	Fatty acid ester	Leaves and barks	Ahmed et al., 2000
312	Ethyl hexadecanoate	Fatty acid ester	Leaves and barks	Ahmed et al., 2000
313	Butyl hexadecanoate	Fatty acid ester	Roots	Sivakumar et al., 2014
314	Methyl octadecanoate	Fatty acid ester	Roots	Sivakumar et al., 2014
315	Butyl-11-eicosenoate	Fatty acid ester	Roots	Sivakumar et al., 2014
316	3- Hexen-1-ol	Fatty alcohol	Leaves	Prakasia and Nair, 2015
317	4-Hexyn-3-ol	Fatty alcohol	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
318	Octanol	Fatty alcohol	Seeds	Ahmed et al., 2000
319	Undecanol	Fatty alcohol	Leaves and barks	Ahmed et al., 2000
320	2-Undecanol	Fatty alcohol	Leaves and barks	Ahmed et al., 2000
321	Tridecanol	Fatty alcohol	Leaves and barks	Ahmed et al., 2000
322	2-Tridecanol	Fatty alcohol	Leaves and barks	Ahmed et al., 2000
323	1-Tetracosanol	Fatty alcohol	Roots	Sivakumar and Chamundeeswari, 2016
324	Octanal	Fatty aldehyde	Seeds	Ahmed et al., 2000
325	Decanal	Fatty aldehyde	Seeds	Ahmed et al., 2000
326	Tetradecanal	Fatty aldehyde	Leaves and barks	Ahmed et al., 2000
327	2-Undecanone	Aliphatic ketone	Leaves and barks	Ahmed et al., 2000
328	3-Undecanone	Aliphatic ketone	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
329	2-Dodecanone	Aliphatic ketone	Leaves and barks	Ahmed et al., 2000
330	2-Tridecanone	Aliphatic ketone	Leaves and barks	Ahmed et al., 2000
331	2-Pentadecanone	Aliphatic ketone	Leaves and barks	Ahmed et al., 2000

332	Z,Z-6,27-Hexatriactontadien-2-One	Aliphatic ketone	Leaves	Murugan & Natarajan, 2016
333	Z,Z-6,28-Heptatriactontadien-2-One	Aliphatic ketone	Leaves	Murugan & Natarajan, 2016
334	4-Methyl-1,3-pentadiene	Aliphatic hydrocarbon	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
335	1-Hepten-3-yne	Aliphatic hydrocarbon	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
336	3,3,5-Trimethyl-1,4-hexadiene	Aliphatic hydrocarbon	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
337	3-Undecyne	Aliphatic hydrocarbon	Leaves	Vignesh et al., 2016
338	1-Tetradecene	Aliphatic hydrocarbon	Roots	Sivakumar and Chamundeeswari, 2016
339	(Z)-2-Petadecen-4-yne	Aliphatic hydrocarbon	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
340	(Z)-3-Hexadecen-7-yne	Aliphatic hydrocarbon	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
341	1-Heptadecene	Aliphatic hydrocarbon	Roots	Sivakumar and Chamundeeswari, 2016
342	1-Nonadecene	Aliphatic hydrocarbon	Roots	Sivakumar and Chamundeeswari, 2016
343	3-Eicosene	Aliphatic hydrocarbon	Leaves	Prakasia and Nair, 2015
344	1,19- Eicosadiene	Aliphatic hydrocarbon	Leaves	Prakasia and Nair, 2015
345	1-tricosene	Aliphatic hydrocarbon	Roots	Sivakumar et al., 2014
346	Nonacosane	Aliphatic hydrocarbon	Roots	Sivakumar et al., 2014
347	Hentriacontane	Aliphatic hydrocarbon	Leaves	Murugan & Natarajan, 2016
348	Hexatriacontane	Aliphatic hydrocarbon	Roots	Sivakumar et al., 2014
349	n-Tetracontane	Aliphatic hydrocarbon	Roots	Sivakumar et al., 2014
350	1,1,3-Trimethylcyclopentane	Cyclic hydrocarbon	Leaves	Prakasia and Nair, 2015
351	1,2,3,4,5-Pentamethylcyclopentane	Cyclic hydrocarbon	Leaves	Prakasia and Nair, 2015
352	3-Methyl-2-(2-oxopropyl)furan	Miscellaneous heterocycle	Leaves	Ramkumar et al., 2016
353	3,4-Dimethyl-2-prop-2-enyl-2,5-	Miscellaneous heterocycle	Leaves	Vignesh et al., 2014; Vignesh et al., 2016
	dihydrothiophene 1,1-dioxide			

354	3,5-Dihydroxy-6-methyl-2,3-dihydro-4H-	Miscellaneous heterocycle	Roots	Sivakumar et al., 2014
	pyran-4-one			

Activity	Preparation	Туре	Testing	Administered	Effects	References
	type	of	subjects/	Dose		
		study	methods			
Antioxidant	Ethanol extract	In vitro	DPPH,	IC ₅₀ values of	Prominent antioxidant activity compared to the	Gupta et al.,
activity			ABTS, NO	28.5, 26.2, 31	standard ascorbic acid.	2011a
			and H ₂ O ₂	and 26.2 μ g/mL,		
			scavenging	respectively		
			assays			
	Ethanol extract	In vitro	DPPH and	IC ₅₀ values of	Powerful antioxidant activity compared to the	Shoja et al.,
			ABTS	18.14 and 12.04	standard ascorbic acid.	2015
			scavenging	μg/mL,		
			assays	respectively		
	Petroleum ether	In vitro	DPPH,	IC ₅₀ values of	Moderate anti-oxidative effect compared to the	Gupta et al.,
	extract		ABTS, NO	30.0, 29.8, 36.5	standard ascorbic acid.	2011a
			and H ₂ O ₂	and 38.1 μ g/mL,		
			scavenging	respectively		
			assays			
	Dichlorometha	In vitro	DPPH and	IC ₅₀ values of	Powerful antioxidant activity compared to the	Shoja et al.,
	ne extract		ABTS	16.70 and 6.11	standard ascorbic acid.	2015
			scavenging	μg/mL,		
			assays	respectively		

Table 3. Pharmacological activities of different extracts and phytoconstituents of *G. pentaphylla*

	Methanol	In vitro	DPPH	IC ₅₀ value of	Moderate anti-oxidative property comparable to	Rahman et al.,
	extract		scavenging	46.75 μg/mL	that of ascorbic acid.	2018
			assays			
	Volatile	In vitro	DPPH	200 µg/mL	Moderately inhibited DPPH free radicals to an	Vignesh et al.,
	contents		scavenging		extent of 70.71%.	2014
			assays			
Antidiabetic	Methanol	In vivo	Wister albino	250 mg/kg body	Reduced plasma glucose concentration to a	Rahman et al.,
activity	extract		rats	weight	moderate extent over a time period of 14 days.	2018
	Ethanol extract	In vivo	Male Wister	400 & 800	Exhibited significant antidiabetic activity by	Ramesh Petchi
			rats	mg/kg body	elevating serum insulin and attenuating plasma	and Vijaya,
				weight	glucose concentration compared to the standard	2012
					glibenclamide.	
	Ethanol extract	In vivo	Swiss albino	250 & 500	Significantly reduced blood glucose concentration	Khatun et al.,
			mice	mg/kg body	after 120 minutes of oral administration of the	2012
				weight	extract.	
Anti-	Ethanol extract	In vivo	Wistar albino	200 & 400	Diminishing TC , TG , LDL-C, VLDL-C, glucose	Ghori et al.,
hyperlipidemic			rats	mg/kg body	and elevating HDL levels after inducing	2015
activity				weight	hyperlipidemia in rats	
Antimicrobial	Methanol	In vitro	Disk	500 µg per disc	Potent activity against gram-positive	Ansari et al.,
activity	extract		diffusion		Staphylococcus aureus, gram-negative Escherichia	2015b; Bulbul
			assay		coli and Salmonella typhi as well as the yeast	and Jahan,
					Candida albicans.	2016

	Aqueous	In vitro	Disk	MIC of 50 &	Prominent activity against the yeasts C. albicans C.	Yasir et al.,
	alcoholic		diffusion	250 µg/mL	tropicalis and C. krusei.	2015
	extract		assay			
	Methanol	In vitro	Disk	100 µg/mL (In	Showed significant zone of inhibition against the	Vijayakumar
	extract		diffusion	Zinc	gram-positive Bacillus cereus and S. aureus as well	et al., 2018
			assay	nanoparticle	as the gram-negative Shigella dysenteriae and S.	
				form)	paratyphi, and the fungi C. albicans and	
					Aspergillus niger	
	Arborinine	In vitro	Disk	100 µg per disc	Moderately inhibited the growth of the gram-	Das and Deka,
			diffusion		positive <i>B. subtilis</i> and the gram-negative	2017
			assay		Klebsiella pneumonia	
	Skimmianine	In vitro	Kinetic and	0.2 μg/mL	Strong antibacterial activity against different	Murugan et al;
			protein		strains of multidrug resistant S. aureus.	2020
			leakage			
			assay			
	Arborine	In vitro	Kinetic and	0.2 μg/mL	Strong antibacterial activity against different	Murugan et al;
			protein		strains of multidrug resistant S. aureus.	2020
			leakage			
			assay			
Anthelmintic	Methanol	In vitro	Pheretima	80 mg/mL	Potent activity on experimental populations.	Gangarao and
activity	extract		posthuma			Jayaraju, 2009
			(earthworm)			

	Methanol	In vitro	Pheretima	60 mg/mL	Potent activity on experimental populations.	Arora et al.,
	extract		posthuma			2011
			(earthworm)			
Mosquitocidal	Chloroform,	In vitro			Acetone and ethyl acetate extracts showed notable	(Ramkumar et
effect	ethyl acetate,				larvicidal property, and chloroform extract exerted	al., 2016
	acetone and				adulticidal activity against Culex quinquefasciatus,	
	methanol				Anopheles stephensi and Aedes aegypti malarial	
	extracts				vectors.	
	Essential oils	In vitro			Significant larvicidal action in a dose dependent	Vignesh et al.,
					manner.	2016
	Arborine	In vitro		10 ⁻⁵ and 10 ⁻⁴ M	Prominent larvicidal potential.	Muthukrishna
						n et al., 1999
Cytotoxicity	Methanol	In vitro	Brine shrimp	LC50 values of	Moderate anticancer activity.	Rahman et al.,
	extract		lethality	22.55 μg/mL		2018
			bioassay			
	Ethanol extract	In vitro	Dalton's	10 - 200 μg/mL	Prominent inhibitory action on RAW 264.7 cells.	Babu and
			lymphoma			Radhamany,
			ascites			2019
			(DLA) cells			
			assay			
	Petroleum	In vitro	Sulforhodam		Significant cytotoxicity against MCF-7 and MDA-	Shoja et al.,
	ether,		ine B (SRB)		MB-231 breast adenocarcinoma cell lines	2015
	dichloromethan		assay			

e and ethyl					
acetate					
fractions					
Arborinine	In vitro	Potato disc	18.75 µg/disc	Showed moderate anticancer potential.	Quader et al.,
		bioassay			1999
Glycoborinine	In vitro		39.7 μM -100	Exhibited strong activity against HepG2 human	Yang et al.,
			μΜ	liver cancer cell line in a dose-dependent manner.	2014
Glycopentalone	In vitro		3 μg/mL	Strong anticancer potential against Hep3 B cells.	Sreejith et al.,
					2012a;
					Sreejith and
					Asha, 2015
	In vitro		10.488 µM	Arrested the cell cycle at the G1 stage and	Sasidharan
				diminished the expression of the tumor growth	and
				factor β (TGF β).	Vasumathi,
					2017
Glycosmisine	In vitro		$30.6 - 57.10 \ \mu M$	Exhibited prominent antiproliferative activity	Chen et al.,
А,				against HepG2 and Huh-7 human liver cancer cell	2015
Glycosmisine B				lines as well as A549 alveolar adenocarcinoma cell	
and				lines	
Biscarbalexine					
А					
(8S,9R)-9,10-	In vitro		IC ₅₀ values of	Exhibited remarkable cytotoxicity against HL-60	Wang et al.,
dihydro-5,9-			14.4 and 15.2	cell lines.	2016

dih	nydroxy-8-			μΜ,		
(3,4	4,5-			respectively		
trin	nethoxyphen	-		respectively		
yl)-	-2H,8H-			IC ₅₀ values of	Potent cytotoxic against A549 cell lines.	Wang et al.,
ber	nzo[1,2-			22.4 and 21.1		2016
b:3	3,4-			чМ		
b'](dipyran-2-			μινι,		
one	e and			respectively		
(2S	5,3R)-3,4-					
dih	nydro-3,5-					
dih	nydroxy-2-					
(3,4	4,5-					
trin	nethoxyphen					
yl)-	-2H,8H-					
ben	nzo[1,2-					
b:3	3,4-					
b']e	dipyran-8-					
one	e	-				
N-((p-	In vitro	CCK-8	7.47 ± 0.91 to	Remarkable anticancer potential through	N1an et al.,
hyc	droxyphenet		method	$16.23\pm0.80~\mu M$	antiproliferative activity against HepG2 cell line.	2020
hyl	1)-3-					
(me	ethylsulfonyl					
)-pi	ropenamide,					
Me	etnyigerambu					
	1,					
GIY	erivatives (P					
eu						
	$\mathbf{L}, \mathbf{U}, \mathbf{J}, \mathbf{\Pi}, \mathbf{K}, \mathbf{N}$					
	1 1 , 0, 1 and					
b']d one N-(hyd hyl (ma)-pı Me Illin Gly e d C, T M, R)	dipyran-8- e (p- droxyphenet l)-3- ethylsulfonyl propenamide, ethylgerambu h, ycopentamid erivatives (B, E, G, J, H, K, N, O, P and	In vitro	CCK-8 method	7.47 ± 0.91 to 16.23 $\pm 0.80 \; \mu M$	Remarkable anticancer potential through antiproliferative activity against HepG2 cell line.	Nian et al., 2020

Antimutagenic	Methanol	In vivo	Swiss albino	500 mg/kg	Increased the action of anti-oxidative enzymes and	Ali et al., 2020
activity	extract		mice		attenuated the pro-inflammatory C-reactive protein	
					(CRP) levels.	
Wound-healing	Methanol	In vivo	Male albino	10 and 15% w/w	Recovered wound entirely within a short period of	Jha et al.,
property	extract		Wistar rats	ointment	time.	2009
Anti-inflammatory	Ethanol extract	In vitro		62.5 μg/mL to	Excellent anti-inflammatory property by	Ansari et al.,
activity				1000 µg/mL	minimizing the release of intracellular	2015a
					cyclooxygenase.	
	Methanol	In vivo		50, 100, 200 and	Suppressed egg albumin-as well as carrageenan-	Arora and
	extract			400 mg/kg body	and formaldehyde-induced paw edema in rats and	Arora, 2016
				weight	xylene induced ear edema in mice.	
	Ethanol extract	In vivo		800 mg/kg body	Significant anti-arthritic as well as anti-	Ramesh Petchi
				weight	inflammatory property	and Vijaya,
						2012
	Glycopentamid	In vitro		0.16 ± 0.10 to	Exerted prominent anti-inflammatory activity by	Nian et al.,
	e derivatives			$7.80\pm1.51~\mu M$	inhibition of NO production in	2020
	(A, C, D,H, M,				lipopolysaccharides-stimulated RAW 264.7 cells	
	P),					
	methylgerambu					
	llin and					
	methylgerambu					
	llone					

	Glycopentalone	In vitro		3.499, 10.488 and 17.466 μM	Anti-inflammatory activity through diminishing the expression of tumor necrosis factor α and cyclooxygenase 2 enzyme.	Sasidharan and Vasumathi, 2017.
Analgesic activity	Methanol extract	In vivo		200 and 400 mg/kg body weight	Reducing the writhing count notably.	Shams-Ud- Doha et al., 2012
	Methanol extract	In vivo		250 and 500 mg/kg body weight	Showed prominent dose-dependent analgesic activity.	Sarkar et al., 2013
	Ethanol extract	In vivo		500 mg/kg body weight	Inhibited the nociceptive response.	Khatun et al., 2012
Antipyretic activity	Ethanol extract	In vivo	Male albino Wistar rats	200 mg/kg body weight	Significant attenuation of rectal temperature	Gupta et al., 2011b
Anti-arsenicosis activity	Methanol extract	In vivo		160 and 320 mg/kg body weight	Reduced arsenic accumulation within the body	De et al., 2016
Hepatoprotective effect	Ethanol extract	In vivo		125 and 250 mg/kg body weight	Increased the anti-oxidative property of hepatic enzymes.	Azad et al., 2008
	Methanol extract	In vivo		500 mg/kg body weight	Showed protective function by decreasing the elevated level of ALT, AST, bilirubin and cholesterol.	Ahsan et al., 2009

	Methanol	In vivo		400 mg/kg body	Significantly improved paracetamol-induced	Nayak et al.,
	extract			weight	hepatotoxicity	2011
1102						
1103						
1104						
1105						
1106						

1107	FIGURES LEGENDS
1108	Figure 1. <i>Glycosmis pentaphylla</i> (Retz.) DC. A) Whole plant, B) Leaves, C) Flowers and D)
1109	Ripe fruits.
1110	
1111	Figure 2. Carbazole and acridone alkaloids from G. pentaphylla.
1112	
1113	Figure 3. Quinolone, quinazolone, furanopyridine, furoquinoline and other alkaloids from G.
1114	pentaphylla.
1115	
1116	Figure 4. Amides from G. pentaphylla.
1117	
1118	Figure 5. Phenolic constituents from G. pentaphylla.
1119	
1120	Figure 6. Phenolic glycosides from G. pentaphylla.
1121	
1122	Figure 7. Flavonoids from <i>G. pentaphylla</i> .
1123	
1124	Figure 8. Aromatic constituents from G. pentaphylla.
1125	
1126	Figure 9. Steroidal constituents from G. pentaphylla.
1127	
1128	Figure 10. Non-volatile terpenes from G. pentaphylla.
1129	
1130	Figure 11. Volatile constituents from <i>G. pentaphylla</i> .
1131	
1132	Figure 12. Pharmacological activities of different extracts of <i>G. pentaphylla</i> ; AcE: Acetone
1133	extract, AqE: Aqueous extract, CE: Chloroform extract, DCME: Dichloromethane extract,
1134	EAE: Ethyl acetate extract, EE: Ethanol extract, ME: Methanol extract and PEE: Petroleum
1135	ether extract.
1136	
1137	
1138	
1139	