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Abstract  

In this study, a two-dimensional peridynamic contact model is proposed to model the propagation 

of frictional crack within the peridynamic framework. Compared with traditional numerical method in 

peridynamics, no additional algorithm is needed for implementing the contact constraint. The geometry 

of the crack can be easily described by the rupture of bond without any extra enrichment functions. In 

this model, the contact force is regarded as a short-range force and only related to the stretch of the virtual 

bond between the disconnected material points. The sliding of the plates under compression and the plate 

with a pre-existing crack under compressive loading have been simulated to validate the accuracy of the 

peridynamic contact model. By introducing the bond skew failure criterion, the propagation of the 

frictional crack is modelled as well. The growth path of the crack matches the numerical result obtained 

based on the phase field method. Therefore, peridynamics can be demonstrated as an effective numerical 

tool to solve the frictional contact problem. 

Keywords: Peridynamics; Frictional contact; Crack propagation; Fracture 

1. Introduction 

For the fracture of brittle material, its final failure strongly depends on the initial discontinuities, 

such as the pre-existing cracks and voids. In the past decades, various numerical simulations have been 

done on fracture of polycrystal materials, such as rocks [1], metals [2,3], ceramics [4,5] and so on. When 

modelling the fracture of polycrystal material, due to the grain boundary sliding which occurs under the 

compression, the influence of the frictional contact along the crack cannot be neglected. Besides, the 

frictional crack is also widely implemented in many branches of civil and mechanical engineering areas. 

For instance, in forming process, the relative displacement between the tool and work piece generates 

friction force which affects many aspects of the process including the density distribution, final shape, 

residual stresses and crack initiation. [6,7] Thus, understanding the frictional contact behavior plays a 

significant role in predicting the material response in many applications. Various algorithms for the 

numerical solutions of the contact problem are presented in the literature [8,9].  

In continuum mechanics, when modelling friction, the displacement constraints should be satisfied 

including the normal constraint to prevent the penetration of the domains, and the tangential displacement 

to control the contact boundary sliding. Commonly, two constraint methods are utilized in the finite 

element solution to enforce the surface contact constraint; the Lagrange multiplier method and the 

penalty function method. In the Lagrange multiplier approach, the Lagrange multiplier vector is 

introduced into the equation of motion as an unknown variable and the no-penetration condition is 

imposed simultaneously [10,11]. In the penalty approach, the normal contact force incorporating an 

additional penalty factor depends on the penetration between the contact surface [12]. Traditional finite 

element method faces significant challenges in modelling the propagation of frictional crack since the 

repeated remeshing and predicting the growth direction of crack in advance are needed to ensure the 

discontinuous displacement field lies on the boundary of the element. Therefore, by enriching a standard 
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displacement-based approximation with additional discontinuous interpolation functions through the 

partition of unity method, the extended finite element (X-FEM) is proposed [13-15] to allow the entire 

crack being described independently of mesh within the finite element framework. No mesh updating of 

the domain is required in modelling the crack propagation. As forerunners, Dolbow et al. [16] applied X-

FEM method with the adaption of iterative scheme employed in Large Time Increment (LATIN) method 

to model the frictional contact on arbitrary evolving interfaces. To solve the nonlinear boundary problem, 

the formulation is divided into linear global and nonlinear local parts. The penalty approach is utilized 

by Khoei and Nikbakht [17] with X-FEM, in which the enrichment is in accordance with Heaviside step 

function, to simulate the frictional sliding. However, the implementation of the Lagrangian or penalty 

method, employing the constraints on embedded interfaces, may result in oscillations in the interfacial 

fields and less convergence in local error norms, showing as numerical instability in discretization [18-

19]. Based on the Uzawa-type augmented Lagrangian multiplier approach, a contact formulation within 

X-FEM framework is depicted by Hirmand et al. [20] for modelling the frictional discontinuity. The 

Lagrange multipliers and penalty method are combined in this paper to attain high accuracy satisfaction 

of the constraint condition and reduce the ill condition of the governing equation. To resolve the nonlinear 

equations, an active set strategy is imposed combined with the Newton–Raphson iterative solution. Coon 

et al. [21] used X-FEM with Nitsche method applying on the boundary conditions to solve the earthquake 

rupture. Nevertheless, when the geometry of the interface is much more complicated, it will be difficult 

to impose the constraint conditions on the interface and the process of enrichment may cause large 

number of unknown variables in the algebraic system. Thus, Fei and Choo [22] introduced the phase-

field method for modelling the cracks with frictional contact. The contact behaviors and constraints are 

included by calculating the stress tensor of the interface. Generally, the finite difference method or finite 

element method is used to solve the equation which gives rise to large computation amount and limits 

the development of three-dimensional modelling. For all these reasons, peridynamic contact model is 

utilized for solving the frictional crack problems in this study. Peridynamics is a non-local particle 

method introduced by Silling [23] to handle the discontinuity issue. There has been significant progress 

in peridynamic research since its introduction [24-39]. In the peridynamic governing equation, the partial 

derivatives of displacements are replaced by the integral form. Recently, in rock mechanics and 

engineering field, peridynamics has been widely used to simulate the fracture behaviors of rock and rock-

like materials under different mechanical and multi-physical boundary conditions [40]. Non-ordinary 

state based peridynamics was applied to model the crack propagation and coalescence in rock-like 

materials with pre-existing flaws under uniaxial compressive loads or biaxial compressive loads [41]. In 

this model, the maximum tensile stress criterion and the Mohr-Coulomb criterion were incorporated to 

distinguish the tension and shear failure. The same NOSB PD model was also implemented to simulate 

the crack propagation and coalescence in Brazilian disks [42]. By introducing the rotation of the 

conjugated bond under shear deformation, the bond based peridynamics was improved as conjugated 

bond-based peridynamics which overcomes the limitation of Poisson’s ratio in the regular PD model [43-

45]. Besides the pair-wise force along the direction of bond, the tangential force perpendicular to the 

bond direction was considered as well. The failure criterion was updated with addition of the critical 

bond shear energy density. Thus, both Mode I and Mode II/III fracture can be described. The novel 

numerical conjugated bond-based peridynamic model has been developed into both two-dimensional and 

three-dimensional models. This novel bond-based peridynamic model captures the crack initiation, 

propagation and coalescence well in the simulation of rock-like materials under compressive and shear 

loadings. To study pressurized and fluid driven fracture problems in fissured porous rocks, a new coupled 
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hydromechanical bond-based peridynamic model was proposed by Zhou et al. [46]. Based on the Biot’s 

theory, the equation of motion of bond-based peridynamics was reformulated. The fracture criterion is 

updated in the hydromechanical peridynamic model to simulate the failure caused by high fluid pressure. 

Both pressurized-driven fracture and fluid-driven fracture cases have been calculated, verifying the 

accuracy of the hydromechanical peridynamic model. For the friction field, Kamensky et al. [47] 

introduced a friction model based on the state-based peridynamics. Frictional collision of two blocks and 

the impact between a tough spherical ball and a brittle block are simulated. Zhang and Qiao [48] 

investigated the frictional contact for axisymmetric problem to model the pull-out tests. 

In this study, frictional contact model is proposed within the peridynamic framework. No extra 

algorithm involving the contact constraint is needed. The normal contact pressure depends on the stretch 

of the bond. The friction force can be obtained from the Coulomb’s law. Several benchmark problems 

have been simulated to validate the peridynamic frictional contact model. Finally, by using the 

peridynamic model, the propagation of a frictional crack is investigated. 

   

2.Brief Review of Peridynamics 

As an efficient implementation to solve the discontinuity problem, peridynamics is introduced by 

Silling [23] as a meshfree method with the reformulation of integral equation. Interactions between 

material points occur within finite distance, called horizon here. Peridynamic theory is classified into 

two main approaches, bond-based peridynamics and state-based peridynamics. In bond-based 

peridynamic theory, the interaction force between particles only depends on the stretch of the single bond 

between two material points and is not influenced by the other bonds inside the horizon. The bond-based 

method is commonly used in various numerical simulations of the material fracture. Nevertheless, the 

limitation of effective Poisson’s ratio which is 1/3 in two-dimensional models narrows its application. 

Thus, as an improvement, the state-based peridynamics is also proposed by Silling [49] to overcome the 

limitations of bond-based peridynamics. In this model, the force between the particles is not only 

influenced by the stretch of a single bond, but also the stretch of all bonds inside the horizons of 

interacting material points. In peridynamics, the equation of motion for an infinitesimal volume 𝑑𝑉 at 

position x at time t is written as [49], 

𝜌(𝐱)𝐮̈(𝐱, 𝑡) = ∫(𝐓[𝐱, 𝑡]〈𝐱′ − 𝐱〉 − 𝐓[𝐱′, 𝑡]〈𝐱 − 𝐱′〉)𝑑𝑉𝐱′ + 𝐛(𝐱, 𝑡)

𝐻𝐱

 (1) 

in which 𝜌 represents the mass density in the reference configuration, u is the displacement vector field, 

𝐻𝐱 represents the horizon of point x with the radius of 𝛿, b is the body force density field and 𝐓 is the 

force vector state which is aligned with the deformation state and can be expressed as 

𝐓[𝐱, 𝑡]〈𝐱′ − 𝐱〉 = 𝑡〈𝐱′ − 𝐱〉
𝐘〈𝐱′ − 𝐱〉

‖𝐘〈𝐱′ − 𝐱〉‖
 (2) 

where 𝑡 is the scalar part of the force vector state and 𝐘 represents the deformation state, mapping the 

original bond vector into the deformed bond vector (seen in Figure 1), denoted by 𝐘〈𝐱′ − 𝐱〉 =

𝐗〈𝐱′ − 𝐱〉 + 𝐔〈𝐱′ − 𝐱〉. 𝐗 defines the relative position of the bond in the initial configuration, depicted 

as, 𝐗〈𝐱′ − 𝐱〉 = 𝐱′ − 𝐱, whereas the displacement state is defined as 𝐔〈𝐱′ − 𝐱〉 = 𝐮(𝐱′, 𝑡) − 𝐮(𝐱, 𝑡) . 
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Fig. 1 Schematic for the deformation of the bond 

By making analogy with the three-dimensional model, for the plane stress problem, a nonlocal scalar 

dilatation function is defined first [50] with the value equivalent to the volume dilatation. 

𝜃 =
2(2𝑣 − 1)

(𝑣 − 1)
+

𝜔𝑥 ∙ 𝑒

𝑚
 (3) 

in which 𝑣 is the Poisson’s ratio of the material and 𝜔 is influence function valued between 0 and 1, 

depending on the length of bond. Here, 𝑥 is the scalar value of the position state 𝐗 and 𝑒 represents 

the scalar extension state, denoted by 𝑒 = ‖𝐘‖ − ‖𝐗‖, indicating the length of bond elongation. m is 

called weighted volume which is defined as [49],  

𝑚 = 𝜔𝑥 ∙ 𝑥 = ∫ 𝜔|𝐱′ − 𝐱|
𝟐

𝐻𝐱

𝑑𝑉𝐱′ (4) 

According to Silling and Lehoucq [51], assuming a peridynamic material model for a linear 

isotropic elastic solid, the peridynamic strain energy density function 𝑊 is defined as, 

𝑊(Y) =
𝑘′𝜃2

2
+

𝛼

2
(𝜔𝑒𝑑) ∙ 𝑒𝑑 (5) 

where 𝑘′ and 𝛼 are parameters need to be deduced. 𝑒𝑑 represents the deviatoric part of the extension 

state 𝑒, which can be calculated as 

𝑒𝑑 = 𝑒 −
𝜃𝑥

3
 (6) 

In continuum mechanics, for the linear elastic model, the classical strain energy density 𝛺 in plane 

stress is written as, 

𝛺 = [
𝑘

2
+ 𝜇 (

(𝑣 + 1)

3(2𝜈 − 1)
)

2

] (
𝑑𝑉

𝑉
)

2

+ 𝜇 ∑ 𝜀𝑖𝑗
𝑑

𝑖,𝑗=1,2
𝜀𝑖𝑗

𝑑  (7) 

where k and 𝜇  are bulk and shear moduli of the material, respectively, dV/V represents the volume 

dilatation and 𝜀𝑖𝑗
𝑑  is the ij component of the deviatoric part for the strain tensor.  

By equalizing the peridynamic strain energy density function with the strain energy of a material 

point in the continuum mechanics [44], the parameters 𝑘′ and 𝛼 can be obtained as 

𝛼 =
8μ

𝑚
 ,              𝑘′ = 𝑘 +

𝜇

9

(𝜈 + 1)2

(2𝜈 − 1)2
 (8) 

To attain the scalar force vector state, the Fréchet derivative of equation 5 with respect to the 

extension state is calculated as  

∆𝑊 = 𝑘′𝜃(∇𝑒𝜃) ∙ ∆𝑒 + 𝛼(𝜔𝑒𝑑) ∙ ∆𝑒𝑑 = [(𝑘′𝜃 −
𝛼

3
(𝜔𝑒𝑑) ⋅ 𝑥) ∇𝑒𝜃+𝛼𝜔𝑒𝑑] ∙ ∆𝑒 (9) 

Thus, the scalar force vector state is written as  

x 

y 

x' 

y' 
𝛿 X 

Y 𝐮(𝐱) 

𝐮(𝐱′) 

undeformed 

deformed 
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Here, 𝑡  is the magnitude of the force vector state 𝐓 . Substituting the force vector state into the 

governing equation, the acceleration of the material point can be obtained. 

 

3.Peridynamic contact model 

In this study, a peridynamic contact model is defined to describe the sliding along the contact surface. 

Due to the shrinkage of the undeformed body, the contact between the disconnected surface and the 

boundary sliding cannot be neglected. Contact of the material points includes the particles which belong 

to different bodies during the simulation and ones become disconnected due to the bond rupture. When 

two disconnected material points are getting close enough, a kind of repelling force will be generated to 

prevent the different material points from sharing the same position. This repelling force is commonly 

calculated as a short-range force [52]. Thus, when the distance between the two disconnected material 

points is smaller than a critical distance 𝛿𝑐, a contact interaction occurs. A contact model should be built 

between them, as shown in Figure 2. In this study, the critical distance is defined as the radius of the 

contact area 𝐻𝑐 to justify whether there is a contact pairwise force between two material points in the 

current configuration. In Figure 2, S represents the contact interface of two bodies, resulting from the 

pre-existing crack or the newly formed crack. y and 𝐲′ are the position of material points in the current 

configuration corresponding to the initial material points x and 𝐱′, respectively. Besides, the normal 

contact force state 𝐓𝑛 and friction contact force state 𝐓𝑓 are proposed as the external forces to depict 

contact model. Therefore, taking the contact model into consideration, the peridynamic equation of 

motion can be reformulated as  

in which the normal contact force state is perpendicular of the contact interface and the friction contact 

force is parallel to the sliding interface, opposite to the relative sliding displacement. 

 

Fig. 2 The sketch of the peridynamic contact model 

𝑡 =
2(2𝜈 − 1)

(𝜈 − 1)
(𝑘′𝜃 −

𝛼

3
(𝜔𝑒𝑑) ⋅ 𝑥)

𝜔𝑥

𝑚
+𝛼𝜔𝑒𝑑 (10) 

𝜌(𝐱)𝐮̈(𝐱, 𝑡) = ∫ (𝐓[𝐱, 𝑡]〈𝐱′′ − 𝐱〉 − 𝐓[𝐱′′, 𝑡]〈𝐱 − 𝐱′′〉)𝑑𝑉𝐱′′

𝐻

+ 𝐛(𝐱, 𝑡)

+ ∫ (𝐓𝑛[𝐱, 𝑡]〈𝐱′ − 𝐱〉 − 𝐓𝑛[𝐱′, 𝑡]〈𝐱 − 𝐱′〉 + 𝐓𝑓[𝐱, 𝑡]〈𝐱′ − 𝐱〉
𝐻𝑐

− 𝐓𝑓[𝐱′, 𝑡]〈𝐱 − 𝐱′〉) 𝑑𝑉𝐱′ 

(11) 

𝐘 

𝒗 𝒗 

𝑻𝒇[𝒙′, 𝒕] 

𝑻𝒏[𝒙′, 𝒕] 𝑻𝒏[𝒙, 𝒕] 

𝑻𝒇[𝒙, 𝒕] 
𝜹𝒄 

𝒚′ 

y 

S 
y 

x 
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In equation 11, ∫ (𝐓[𝐱, 𝑡]〈𝐱′′ − 𝐱〉 − 𝐓[𝐱′′, 𝑡]〈𝐱 − 𝐱′′〉)𝑑𝑉𝐱′′
𝐻

  is the peridynamic force. 𝐛(𝐱, 𝑡) 

represents the external body force and ∫ (𝐓𝑛[𝐱, 𝑡]〈𝐱′ − 𝐱〉 − 𝐓𝑛[𝐱′, 𝑡]〈𝐱 − 𝐱′〉 + 𝐓𝑓[𝐱, 𝑡]〈𝐱′ − 𝐱〉 −
𝐻𝑐

𝐓𝑓[𝐱′, 𝑡]〈𝐱 − 𝐱′〉) 𝑑𝑉𝐱′  is the contact force acting on the material point x. Referring [53], the 

decomposition of the acceleration of material point x is shown in figure 3. 

 

Fig. 3 The decomposition of the acceleration of material point x 

Assuming the contact interface is along the y-axis of the local coordinate, the normal contact 

force and friction force can be respectively written as, 

𝐓𝑛〈𝐱′ − 𝐱〉 = −𝑡𝑛〈𝐱′ − 𝐱〉sgn(𝐘〈𝐱′ − 𝐱〉 ∙ 𝐞𝑥)𝐞𝑥 (12) 

𝐓𝑓〈𝐱′ − 𝐱〉 = 𝑡𝑓〈𝐱′ − 𝐱〉sgn [
𝜕

𝜕𝑡
((𝐘〈𝐱′ − 𝐱〉 − 𝐗〈𝐱′ − 𝐱〉) ∙ 𝐞𝑦)] 𝐞𝑦 (13) 

where 𝑡𝑛 and  𝑡𝑓 are the scalar of the contact force states. 𝐞𝑥 and 𝐞𝑦 represent the unit vector 

along the x-axis and y-axis directions, respectively. According to the Coulomb’s law, the 

relationship between the normal contact force and the friction contact force can be established as  

𝑡𝑓〈𝐱′ − 𝐱〉 = 𝑓𝑐𝑡𝑛〈𝐱′ − 𝐱〉 (14) 

in which fc stands for the friction coefficient of the interface. 

Compared to the contact model used in the two-dimensional axisymmetric pull-out numerical model 

by Zhang and Qiao [48], similar ideas have been implemented in this study for the ordinary two-

dimensional plate. Under the hypothesis of the small displacement, the normal contact force state 𝑡𝑛 is 

defined to restore the normal contact pressure 𝑝𝑐. It can be seen that the unit of the normal contact 

pressure state is Newton per square meter (N/m2), while the unit of the normal contact force is Newton 

per sixth power of meter (N/m6). The relationship between them is same as that of energy release rate 

𝐺𝑐 (J/m2) and critical bond energy density 𝑤𝑐 (J/m6) [54], shown in equation 15 as  

𝑤𝑐〈𝐱′ − 𝐱〉 =
3𝐺𝑐

2𝛿3𝑡ℎ
       (15) 

in which 𝑡ℎ is the thickness of the plate. 

Thus, by substituting the energy release rate and the critical bond energy density, the normal contact 

force state can be calculated as 

𝑡𝑛〈𝐱′ − 𝐱〉 = {

3𝑝𝑐

2𝛿3𝑡ℎ
                 if |𝐘〈𝐱′ − 𝐱〉| < 𝛿𝑐                                          

 0                       otherwise                                                      

       (16) 

When the bond is ruptured, only contact force is considered between material points x and 𝐱′, as 

the peridynamic force vanishes.  

 

𝛿 

PD horizon 

= + + 

interfac

𝛿𝑐 

contact 

body force 
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Referring to equation of pairwise force in the bond-based peridynamics, the normal contact pressure 

𝑝𝑐 can be evaluated proportional to the stretch of the virtual bond along the normal force direction, 

𝑝𝑐 = 𝐸𝑐 (
|𝐗〈𝜉〉 ⋅ 𝐞𝑥| − |𝐘〈𝜉〉 ⋅ 𝐞𝑥|

|𝐗〈𝜉〉 ⋅ 𝐞𝑥|
) (16) 

Here, 𝐸𝑐 is called the contact stiffness which can be evaluated in the 2D PD contact model as [55], 

1

𝐸𝑐
=

1 − 𝑣1
2

𝐸1
+

1 − 𝑣2
2

𝐸2
 (17) 

in which 𝐸1 and 𝐸2 are the elastic moduli of the two contact bodies on both sides of the interface. 

To reduce the computation cost, we define a pre-contact area near the crack and the area of potential 

damage. For instance, as shown in Figure 4, the pre-contact areas are set along the boundary of plates. 

The width of the area is defined as twice of critical contact distance here (𝐿𝑐 = 2𝛿𝑐) to ensure all the 

contact pair can be included in it. Since the contact interaction only exists in the rupture bond, we link 

the detection of contact with the failure coefficient, as shown in Figure 5. Under the assumption of small 

deformation, the corresponding contact material point can be considered inside the horizon centered by 

current referred particle. Therefore, when the failure coefficient equals to 0, which means the bond is 

broken, the distance between the two material points in the current configuration will be calculated. If 

the distance is shorter than the critical contact distance, there is contact interaction between two particles.  

  

Fig.4 The schematic of pre-contact area Fig.5 The schematic of detection of contact 

4.Numerical Results  

In this section, several static numerical cases have been analyzed by using the peridynamic contact 

model described above. The numerical results will be compared with the results obtained from FEM to 

verify the accuracy of the peridynamic contact model. Finally, the propagation of the frictional crack will 

be calculated in the peridynamic framework. 

4.1 The sliding of the plate under compression with vertical contact surface 

In this case, two thin plates with the length L of 60mm and the width D of 32mm are interacting 

with each other under compression state. Both of the plates are considered behaving as linear elastic 

material and both have the same material properties, of which the elastic modulus E is 60GPa and the 

Poisson’s ratio 𝜐 is 0.20. The thickness of the plate h is 2mm. For the boundary loading condition, 

uniformly distributed horizontal displacement 𝑑0 = 0.8mm is applied at the right boundary of the right 

plate to generate the compressive state of the plate. While vertical displacement 𝑑1 = 0.8mm is added 

at the top boundary of the left plate to pull out the plate. Because of the shrinkage of the plate, there will 

be friction between the two plates if the friction coefficient of the interface is not equal to zero. To transfer 

𝐿𝑐 

pre-contact area 

Plate Ⅰ 

Plate Ⅱ 

𝛿 

𝛿𝑐 

𝑖 

no contact 

contact 

crack 
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the external loading displacements to the internal material points inside the plate, three fictious layers of 

particles are added at the top edge of the left plate and the right edge of the right plate. All the three 

virtual layers are subjected to loading displacement. In the numerical model, each plate is uniformly 

divided into 80 material points in horizontal direction and 150 material points in vertical direction, 

respectively, with the distance of Δ𝑥 = 0.4mm between the particles. The radius of the horizon is defined 

as 𝛿 = 3Δ𝑥 , while the contact radius for searching the contact material points is 𝛿𝑐 = Δ𝑥 . Three 

fictitious layers of particles are added at the left boundary of the left plate by setting the horizontal 

displacement to zero to constrain the model. The same fictitious layers are applied at the bottom edge of 

the right plate as well, limiting the vertical displacement of the particles to zero to provide sufficient 

constrain for the calculation. Since the interaction process is regarded as quasi-static, the adaptive 

dynamic relaxation method (ADR) is used in the numerical simulation. Totally 10000 time steps are 

calculated to reach convergence. In this section, two friction coefficients are implemented in the 

simulation to show the effect of friction force.  

 

Fig. 6 The geometry sketch of the plates in contact 

 

  

(a) The horizontal displacement of the plates in contact 

  

(b) The vertical displacement of the plates in contact 

Fig. 7 The comparison of the displacements of the plates between the peridynamics and FEM (fc =0.8) 

L 

D 

d0 

d1 
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(a) The left plate (b) The right plate 

Fig. 8 The comparison of the horizontal displacement of along the central x axis between FEM and 

peridynamics (fc =0.8) 

 

Fig. 9 The comparison of the vertical displacement along the vertical line (x=0.032) of the right plate 

between FEM and peridynamics (fc =0.8) 

When the coefficient fc is equal to 0.8, as shown in Figures 7, 8 and 9, it can be clearly seen that the 

peridynamic numerical results show very good agreement with the FEM results obtained from ANSYS, 

a commercially available finite element software. Small difference only occurs in the vertical 

displacement field at the boundary of the plate due to the lack of intact horizon. 

For the friction coefficient equals to 0.01, the peridynamic and FEM results of the sliding of the 

plate under compression are shown in Figures 10, 11, 12. From these figures, we can see that the 

displacement results of the peridynamics match well with the results obtained from FEM. For the material 

points near the boundary, there is some error in the vertical displacement field, as shown in Figure 12. 

When compared with the high value friction coefficient case, it can be seen that under same loading 

condition, when the contact surface is rougher, the peridynamic contact model shows higher accuracy. 

 

 

(a) The horizontal displacement of the plates in contact 
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(b) The vertical displacement of the plates in contact 

Fig. 10 The comparison of the displacement of the plate between the peridynamics and FEM (fc 

=0.01) 

  

(a) The left plate (b) The right plate 

Fig. 11 The comparison of the horizontal displacement along the central x axis between FEM and 

peridynamics (fc =0.01) 

 

Fig. 12 The comparison of the vertical displacement along the vertical line (x=0.032) of the right 

plate between FEM and peridynamics (fc =0.01) 

When the friction coefficient equals to 0.8, different critical contact distances have been investigated. As 

shown in figure 13 and figure 14, the displacement results show convergence when the critical contact 

distance values are between 0.8 to 1.0 times of the distance between particles. When the critical distance 

equals to the space between the material points, the horizontal and vertical displacements match the FEM 

results best. 
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Fig. 13 The comparison of the vertical 

displacement along the vertical line (x=0.032) of 

the right plate with different critical contact 

distances 

Fig. 14 The comparison of the horizontal 

displacement of along the central x axis of the right 

plate with different critical contact distances 

 

4.2 The sliding of the plate under compression with inclined contact surface 

In this case, the two thin plates have a length of 𝑙0=1.0 × 10−3m. The height of the shorter edge 𝑙1 

is set as 0.2 × 10−3m, while the height of the longer edge 𝑙2 is 1.0 × 10−3m. The angle of the inclined 

contact surface is 45 degrees. Both plates are considered as linear elastic material, and both have the 

same material properties, of which the elastic modulus E is 10GPa and the Poisson’s ratio 𝜐 is 0.20. The 

thickness of the plate t is 0.02mm. As the boundary loading condition, uniformly distributed horizontal 

displacement 𝑑0 = 0.5 × 10−6 m is applied at the top boundary of the top plate to generate the 

compressive state of the plate, as shown in Figure 15. The loading displacement is imposed inside the 

fictious boundary region, which is composed of three virtual layers of particles added at the top edge of 

the top plate. Fictious layers of material points are also added at the bottom edge of the plate with the 

vertical displacement setting as zero to support efficient constraint. Horizontal constraint is applied on 

the shorter boundary of plate with additional three fictious layers of particles. The plates are discretized 

with 100 particles along the horizontal direction and 120 particles along the vertical direction, 

respectively. The contact radius here is defined as ∆𝑥=1.0 × 10−5m, same as the spacing between the 

material points. The radius of horizon 𝛿 is equal to 3∆𝑥 = 3.0 × 10−5m. In total 20000 time steps have 

been calculated to reach convergence.  

 

Fig. 15 The geometry sketch of the plates in contact with inclined contact 

surface 

Both frictionless and friction case have been simulated. The comparison of the displacement field 

between the peridynamics and FEM is depicted in Figures 16 and 17, which clearly shows very good 

agreement. In the frictionless case, only normal contact force is considered. Compared with the friction 

case, the displacement field of frictionless one indicates higher accuracy. While for the case with the 

d
0
 

𝑙0 

𝑙1 

ℎ 
𝑙2 
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friction coefficient of 0.8, there is some error in the horizontal displacement field near the sharp angle of 

the plate. From equation 13, it can be seen that the calculation of the friction force is related to the velocity 

of the particle. Therefore, in the static problem, the algorithm will bring some error, but the accuracy of 

the result is still acceptable. 

  

(a) The comparison of the horizontal displacement with the friction coefficient equal to 0.8 

  

(b) The comparison of the horizontal displacement without friction 

Fig. 16 The comparison of the horizontal displacement between PD and FEM 

  

(a) The comparison of the vertical displacement with the friction coefficient equal to 0.8 
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(b) The comparison of the vertical displacement without friction 

Fig. 17 The comparison of the vertical displacement between PD and FEM 

4.3 The plate under compression with a pre-existing crack inside 

In this section, an initial crack is added inside the plate to investigate the influence of friction for 

the fracture. However, to simplify the problem, the propagation of the crack is not considered in this case. 

Here, the plate has a width of 1m, and a length of 1m. It is uniformly distributed into 100 particles along 

the vertical and horizontal directions, with a total of 10000 particles inside the solution domain. The 

radius of horizon 𝛿 is defined as 3.0 × 10−2m, 3 times of the spacing between material points. A pre-

existing crack is set at the center of the plate, with the angle of 45 degrees to the positive x direction. The 

tips of the crack are located at the coordinates of (-0.2, -0.2) and (0.2, 0.2) respectively, as shown in 

Figure 18. By breaking the bonds crossing the connecting line between (-0.2, -0.2) and (0.2, 0.2), the 

initial crack is inserted in the plate. Three fictious layers of material points are added at the bottom 

boundary of the plate to constrain the plate. Both the horizontal and vertical displacements of the fictious 

material points are set as 0. Uniform vertical displacement 𝑑 = 9mm is applied at the top boundary of 

the plate to generate deformation. To transfer the loading displacement to the internal plate, three virtual 

layers of particles are added as fictious boundary region at the top edge of the plate. The vertical 

displacement of the particles in this fictious boundary region is set as 𝑑 = 9mm, while the horizontal 

displacement is constrained as 0. To ensure the stability of the numerical simulation, the adaptive 

dynamic relaxation is utilized. The contact radius 𝛿𝑐 is equal to ∆𝑥 here. 

 

Fig. 18 The geometry sketch of the plate under compression with an initial crack inside 

To study the effect of the contact model, three numerical cases have been considered; the case 

without contact, the case without friction, and the case with the friction coefficient of 0.8. From Figures 

19, 20 and 21, it can be seen that the peridynamic results match well with the FEM results in all three 

cases. The comparison between Figures 19 and 20 shows that the normal contact force has an obvious 

influence on the horizontal displacement field. The normal contact force repels the particles getting close 

with each other, avoiding the penetration of the material points along the crack. Nevertheless, there is no 

much difference between Figures 20 and 21, which indicates less effect of friction force. Since the 

relative displacement along the crack direction is not obvious, the friction force is much smaller in 

comparison with the normal contact force, resulting in the less influence of friction force being 

insignificant in the displacement field.  

 

O x 

y 

d 
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(a) The horizontal displacement field of the plate with initial crack inside 

  

(b) The vertical displacement field of the plate with initial crack inside 

Fig. 19 The comparison of the displacement field between PD and FEM without contact 

  

(a) The horizontal displacement field of the plate with initial crack inside 

  

(b) The vertical displacement field of the plate with initial crack inside 

Fig. 20 The comparison of the displacement field between PD and FEM without friction 
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(a) The horizontal displacement field of the plate with initial crack inside 

  

(b) The vertical displacement field of the plate with initial crack inside 

Fig. 21 The comparison of the displacement field between PD and FEM (fc = 0.8) 

  

 𝛿𝑐= 0.80∆𝑥 

  

𝛿𝑐 = 1.00∆𝑥 𝛿𝑐= 1.20∆𝑥 
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𝛿𝑐= 2.00∆𝑥 𝛿𝑐= 2.50∆𝑥 

Fig. 22 The comparison of the horizontal displacement field with different contact radius 

The effect of the contact radius on the fracture of plate is also investigated in this section. Figure 22 

indicates the horizontal displacement of the plate without friction (fc = 0). By changing the contact radius, 

the horizontal displacement shows small difference. In this case, the friction model is less sensitive to 

the critical contact radius. 

4.4 The propagation of the frictional crack 

In this section, the peridynamic contact model is considered to investigate the propagation of an 

initial crack. The geometry of the numerical case is depicted in Figure 23. The plate has a length of 

L=4.0m and a width of W=2.0m. An inclined pre-existing crack is included with 45 degrees to the x axis 

from coordinate (0,0.7) to (1.3,2.0) inside the plate. To insert the initial crack, the bonds passing through 

the connecting line between (0,0.7) and (1.3,2.0) need to be set as ruptured bonds. The plate behaves as 

a linear elastic material with the elastic modulus of E=10GPa and Poisson’s ratio of v=0.3. A 

displacement with a constant increment of ∆𝑑 = 2.5 × 10−3m at every time step is applied on the top 

boundary of the plate, with total 6 load steps during the simulation. Three fictious layers of material 

points are added at the top edge of the plate as the fictious region to transfer the external loading. The 

horizontal displacement of the particles in the fictious region is set to zero. The adaptive dynamic 

relaxation is used in each time step to guarantee the stability of the numerical algorithm. To constrain the 

plate, three virtual layers of material points are added at the bottom edge of the plate, setting the vertical 

displacement as zero. In order to constrain the right bottom corner of the plate, a 3 × 3 matrix of fictious 

particles is added by defining the displacement as zero. The solution domain is discretized into 100 and 

200 material points along the horizontal and vertical directions, respectively. The radius of horizon is 

defined as 𝛿 = 6.0 × 10−2m, i.e. three times of the distance between material points. The contact radius 

here is equal to ∆𝑥. The friction coefficient of the contact surface is set as 0.3.  

 

Fig. 23 The geometry sketch of the frictional crack propagation 
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Under the assumption of small deformations, when searching the corresponding contact points of a 

material point near the crack, the corresponding points can be regarded inside the horizon centered by 

this referred particle. Thus, the estimation of whether there is a contact force between two particles can 

be linked with the failure coefficient of the bond. When the bond is ruptured, the failure coefficient is 

equal to 0, which means if the distance between two material points is shorter than the contact radius in 

the current configuration, the contact interaction needs to be considered between this pair of particles. 

Otherwise, no contact force exists inside the pair of material points. To find out the fracture mode of the 

plate in this case, the stress intensity factor is calculated by ANSYS as 

KI = 4.7262 × 106Pa ⋅ √m       KII = 2.6020 × 107Pa ⋅ √m (18) 

The equation 18 shows clearly that the shear dominates the fracture. Therefore, the critical energy release 

rate 𝐺𝑐 is regarded as mode II fracture energy here, defined as 𝐺𝑐 = 50KJ/m2. Since, the critical stretch 

failure criterion is no longer useful for mode II fracture, a new failure criterion needs to be proposed. In 

this section, the critical skew (CSK) criterion [56] is utilized to estimate the rupture of bond. According 

to Zhang and Qiao [56], the critical skew 𝛾𝑐 can be expressed as, 

𝛾𝑐 = √
75𝐺𝑐𝜋

64𝜇𝛿
 (19) 

To calculate the bond skew 𝛾, which is regarded as the reason to generate the shear deformation, a 

concerned bond is supposed to be introduced [56]. As shown in Figure 24, a reference bond 𝜉𝑅0 and a 

concerned bond 𝜉𝑅1 are defined in the reference configuration, starting from the same point 𝐱𝑂. After 

deformation, the reference bond 𝜉𝑅0 and the concerned bond 𝜉𝑅1 are denoted with 𝜉𝐶0 and 𝜉𝐶1 in 

the current configuration, respectively. Bond 𝜉𝐶0 and 𝜉𝑅0 can be linked with the rotation matrix R, as 

defined in equation 20 as 

𝜉𝐶0 = 𝐑𝜉𝑅0 (20) 

where R can be expressed as 

𝐑 = [
cos𝛽 −sin𝛽
sin𝛽 cos𝛽

] (21) 

in which 𝛽 is rotation angle of the reference bond. 

 

Fig. 24 The schematic to calculate bond skew 

Under simple shear loading condition, the bond skew can be obtained from the deformation of the 

concerned bond 𝜉𝑅1 relative to the reference bond 𝜉𝑅0 as  

𝛾 = |
(𝜉𝑅1

′ − 𝜉𝑅1) ⋅ 𝑒1

𝜉𝑅1 ⋅ 𝑒2
| (22) 

in which 𝑒1 and 𝑒2 are the unit vectors along the axis of local coordinate. Here, 𝑒1 is defined parallel 

to the reference bond vector 𝜉𝑅0 . 𝜉𝑅1
′  represents the current concerned bond in the reference 

configuration, starting with point 𝐱𝑂, defined as 

𝐱𝑂 
𝜉𝑅0 

𝜉𝑅1 
𝜉𝑅1

′  
𝜉𝑅1𝑦

 

𝛾𝜉𝑅1𝑦
 

𝐱𝐶 

𝜉𝐶1 𝜉𝐶0 

𝛽 

𝑂 

𝑦 

𝑥 

𝐑 

𝑒2 
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𝜉𝑅1
′ = 𝐑𝑇𝜉𝐶1 (23) 

In this case, the reference bond is defined along the direction of the crack. Thus, it can be regarded 

as unbroken bond and no updating of the reference bond is needed during the simulation. 

    

d = 5.0× 10−3m d = 1.0× 10−3m d = 1.25 × 10−2m d = 1.5 × 10−2m 

Fig.25 The distribution of the local damage of the plate under different loading conditions 

    

d = 5.0× 10−3m d = 1.0× 10−2m d = 1.25 × 10−2m d = 1.5 × 10−2m 

Fig.26 The vertical displacement of the plate under different loading conditions 

    

d = 5.0× 10−3m d = 1.0× 10−2m d = 1.25 × 10−2m d = 1.5 × 10−2m 

Fig.27 The horizontal displacement of the plate under different loading conditions 

Figure 25 indicates the propagation path of the frictional crack during the simulation. It can be seen 

clearly that when the loading displacement reached d = 1.0 × 10−3m, the crack started to propagate. 

There was an obvious sliding along the crack. As the crack propagated, the sliding distance became more 

apparently, which can be seen in Figure 27. The crack grew along the direction of the crack. When the 

applied loading displacement is d = 1.25 × 10−2m, the crack propagated through the whole plate, and 

the plate broke into two parts. It is clear to see the sliding on the tip angle of the plate. Then with the 

increase in the loading displacement, at the boundary of the plate, the growth path of the crack turned 

into a gentle curve. Peridynamic results are similar to the results given in [22] which were obtained by 
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using phase-field method.  

 

5.Conclusion 

In this paper, the propagation of frictional crack is modelled based on the ordinary state based 

peridynamics. A peridynamic contact model is introduced, in which the contact force is defined as a 

short-range force, occurred within a critical distance. Therefore, no other sophisticated algorithm is 

needed to impose the no-penetration constrains. In addition, compared with traditional numerical method 

like FEM, peridynamics has advantages dealing with the discontinuity issue, due to the integral form of 

the displacements in the equation of motion. In two-dimensional peridynamic contact model, the normal 

contact force is defined proportional to the deformation of the fictious bond along the normal direction, 

similar as idea of pairwise force in the bond based peridynamics. The friction force can be calculated 

with the Coulomb’s law. By modelling the sliding of two plates and the plate with an initial crack under 

compression, the peridynamic contact model was validated. The contact model shows less sensitivity to 

the critical contact radius. Finally, based on the skew bond criterion, the propagation of the frictional 

crack is investigated. In conclusion, it was demonstrated that peridynamics can be an alternative option 

for modeling the frictional interfaces. 
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