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Abstract: We demonstrate a dual-material integrated photonic thermometer, fabricated by high
accuracy micro-transfer printing. A freestanding diamond micro-disk resonator is printed in
close proximity to a gallium nitride on a sapphire racetrack resonator, and respective loaded
Q factors of 9.1× 104 and 2.9× 104 are measured. We show that by using two independent
wide-bandgap materials, tracking the thermally induced shifts in multiple resonances, and using
optimized curve fitting tools the measurement error can be reduced to 9.2 mK. Finally, for the
GaN, in a continuous acquisition measurement we record an improvement in minimum Allan
variance, occurring at an averaging time four times greater than a comparative silicon device,
indicating better performance over longer time scales.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal
citation, and DOI.

1. Introduction

Photonic integrated circuits (PICs) are increasingly being implemented in a variety of sensing
and metrology applications [1,2], with the often cited benefits being the reduction in size and
cost because of the small form factor of photonic devices, as well as improvements in stability,
robustness, and often sensitivity. Thermometry is an important application that could benefit from
PIC implementation [3–6], owing to the importance of accurate temperature measurements across
a number of fields, such as manufacturing [7], physiological monitoring [8,9], and environmental
engineering controls [10,11]. Although inexpensive, electrical resistance based thermometers
like the standard platinum resistance thermometer are sensitive to environmental conditions
and require recalibration due to resistance drift over time [12]. There has been much work
in developing photonic thermometers which are more robust to mechanical degradation and
electromagnetic interference, with recent work utilizing silicon resonators (both microrings [3,5]
and photonic crystal cavities [4]) which have high thermal sensitivities afforded by silicon’s
large thermo-optic coefficient. However, they are also more susceptible to long-term drift and
absorption based self-heating [4], both due to two-photon absorption and surface state absorption
[13], leading to inaccurate readings over longer time scales.

These issues may be addressed through the use of alternative integrated material platforms;
particularly those with wide-bandgaps [14]. Two such materials are gallium nitride (GaN) and
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diamond, whose respective band-gaps (3.4 eV and 5.4 eV) not only allow them to operate over
large transparency windows, but also help alleviate the absorption based self-heating present in
silicon devices. The thermal bistability present in some silicon devices [4,15] is also removed by
designing devices to have larger mode volumes, and using materials with lower thermo-optic
coefficients - such as GaN and diamond. Further, the use of resonators with high Q factors and
well defined lineshapes [16] provides a more effective tool with which to probe the environment
in the vicinity of the device.

Here we present a compact, dual material photonic device for optical thermometry, composed of
the wide-bandgap materials diamond and GaN. By using two materials in a compact footprint, their
independent thermo-optic coefficients will present different, but linearly correlated, wavelength
shifts with temperature. Any environmental changes that lead to variations in either of the
material’s refractive indices will be highlighted by deviations from a linear correlation in their
wavelength response. Furthermore, any drifts in device performance over time that result
in changes to the thermo-optic coefficients will also be highlighted by changes to the linear
correlation between the two materials. Our hybrid device consists of a transfer-printed diamond
micro-disk resonator and a GaN on sapphire racetrack, in close proximity on chip. The resonators
share a common bus channel, which is characterised from 1540 nm to 1600 nm, showing
resonances with loaded Q factors of 2.9×104 and 9.1×104 for the GaN and diamond respectively.
In a simultaneous thermal tuning approach, we are able to measure temperature shifts with an
error of 9.2 mK, while also demonstrating temperature noise stabilities with reduced minimum
Allan variances, occuring at an averaging time four times greater greater than a similar silicon
racetrack resonator. The uncertainties of our measurement are reduced by tracking the shifts of
multiple resonance peaks belonging to the two materials, where the position of each peak is in
effect an independent measurement of the local temperature, sampled simultaneously by the two
nearby resonators in one transmission sweep. Other methods to increase the number of peaks
available for this form of multi-peak tracking include using devices with smaller free spectral
ranges, or using cascaded resonators in a single material.

2. Device fabrication and characterization

The device comprises a GaN racetrack (coupling length 65 µm, bend radius 30 µm) and a
diamond disk (radius 12.5 µm) sharing a common GaN waveguide bus. The device fabrication,
outlined in Fig. 1, involves electron beam lithography in hydrogen silsequioxane (HSQ) negative
resist, and inductively-coupled plasma (ICP) reactive-ion etching for both GaN and single crystal
chemical vapour deposition diamond.

The GaN receiver chip consists of 650 nm of c-plane GaN grown on sapphire with a ∼ 350 nm
aluminium nitride buffer layer, which is patterned with of an array of laterally coupled racetrack
resonators of waveguide width 1 µm. After the HSQ mask is transferred to the GaN with an
Ar/Cl2 etch, residual resist is removed in a buffered oxide solution. Finally, the end portions of
the chip are cleaved off to allow optical coupling to the waveguide facets with a lensed fiber.

Separately, single crystal CVD diamond is laser diced and polished from its as-grown
dimensions to a 2 mm square, with an approximate thickness of 30 µm. Following previous
work in our group on diamond lithography [17–19], the diamond is first cleaned in a piranha
solution of three parts H2SO4 to one part H2O2, before being thinned to ∼1 µm in an Ar/Cl2
etch, which also smooths the surface of the diamond to below 1 nm rms roughness. The diamond
is then transferred with capillary-assisted bonding to a silicon chip readied with electron-beam
alignment markers for the patterning step, again utilising HSQ resist. The etch chemistry used
to transfer the pattern to the diamond is Ar/O2, which unlike Ar/Cl2 has a favorable selectivity
between diamond and mask. The residual HSQ is removed with a CF4/H2 RIE etch, and the disk
selected for printing has a thickness of 1.8 µm.
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Fig. 1. (a) The parallel process flow: (i) The GaN wafer is (ii) patterned with HSQ e-beam
resist and (iii) etched in an ICP-RIE using Ar/Cl2 chemistry. (iv) The diamond is thinned
to ∼ 1µm - 2µm , also with an Ar/Cl2 ICP etch before being (v) transferred to a silicon
chip pre-patterned with e-beam alignment markers, whereupon HSQ is spun and patterned
into disks. (vi) An Ar/O2 ICP etch down to the silicon exposes the disks, before a disk of
thickness 1.8 µm is (vii) transfer printed on to the GaN chip. (b) Device dimensions. (c)
Cross-sectional dimensions, showing a total waveguide height of 1 µm consisting of 650 nm
of GaN and 350 nm of AlN buffer layer.

A NanoInk NLP2000 dip pen nanolithography tool, modified for micro-transfer printing, is
used to assemble the final device (Fig. 2(b)). The tool consists of a stack of high precision motion
control stages with an integrated optical microscope. The stage on which donor and receiver
chips are mounted has five degrees of freedom - x, y, z, and two tilt axes [20]. An elastomeric
polydimethylphenylsiloxane (PDMS) stamp (Fig. 2(a)), patterned with deformable pyramidal
features [21,22], is mounted on the rigid connection between the microscope objective and the
stage. During the printing process, the donor and receiver samples are brought into contact with
the stamp through the relative motion of the substrate stage, which is fully controllable with the
system software [23]. AFM line scans along the tops of disks of similar thickness printed in
the same way show a linear height profile along the direction perpendicular to the waveguide,
indicating the disk rests rigidly atop the guide, allowing vertical coupling to the disk’s whispering
gallery modes. Interference fringes visible in Fig. 2(c) indicates that a portion of the diamond is
not in direct contact with the sapphire substrate.

Fig. 2. Plan view optical micrographs of (a) PDMS stamp during the printing process, (b)
the final device, and (c) detail of the printed diamond disk, with a diameter of 25 µm. All
scale bars are 50 µm.
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Finally, the device is characterized with an end-fire fiber injection rig, shown in Fig. 3. An
Agilent 8164B laser which is equipped with a single-mode fiber output passes light through a
polarization isolator, before coupling to a polarization maintaining lensed fiber. By rotating this
fiber we can excite either TE or TM modes in the waveguide. All results in this work correspond
to TE mode injection. A microscope objective collects the light transmitted through the device
and focuses it onto a photodetector and an imaging camera via a beam splitter. Transmission
spectra are constructed by synchronously running a wavelength sweep on the laser, and taking a
time trace of the voltage at the detector with an oscilloscope.

Fig. 3. Schematic of end-fire fiber injection rig used to optically characterize the devices.
DUT: Device under test, PBS: Polarizing beamsplitter, PD: Photodiode.

2.1. GaN racetrack transmission

An example GaN racetrack transmission spectrum is shown in Fig. 4(a). The resonator is
single-mode, with a free spectral range (FSR) of ∼3 nm, from which we calculated a group index,
ng, of 2.503, using:

ng =
λ2

FSR × L
, (1)

where L is the cavity length. Resonance dips are fitted with a nonlinear least-squares method and
the following all-pass transmission function [24]:

Tpass =
a2 + r2 − 2racos(ϕ)

1 + (ra)2 − 2racos(ϕ)
, (2)

where a is the single-pass field amplitude transmission, r is the self-coupling coefficient, and
ϕ relates to the propagation constant β through ϕ = βL. An example of such a fit is shown
in Fig. 4(b), for a resonator of coupling length 30 µm, extracting a peak loaded Q factor of
2.9 × 104, and a mean loaded Q factor over 37 resonances and two nominally identical resonators
of 2.6 × 104. From a, a minimum distributed loss of 3.13 dB/cm is calculated, which in addition
to waveguide propagation loss, includes losses due to the coupling section. A peak intrinsic Q
factor of 1.22 × 105 is found, calculated from the loaded Q and the normalised on-resonance
transmission, T , and the following:

Qint =
2Q

1 ± T1/2 , (3)

where the summation (subtraction) is taken in the denominator in the case of under-coupling
(over-coupling).

2.2. Diamond on GaN transmission

The channel on which the diamond disk is printed is characterized before and after the printing
process (Fig. 5(a,b)). Because the GaN is single-mode its regularly spaced resonances can be
easily distinguished from the additional diamond disk lines.
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Fig. 4. (a) GaN racetrack transmission spectrum. (b) Example fit of a resonance at
1558.8437 nm.

Fig. 5. (a) Receiver GaN spectrum before print. (b) The same spectrum after print, now
featuring diamond resonances. (c) An under-coupled diamond resonance at 1542.6089 nm.
(d) An over-coupled diamond resonance at 1550.4125 nm.

After printing, two diamond resonances, one under-coupled and one over-coupled, are shown
in Fig. 5(c,d) respectively, with Q factors of 9.1×104 and 4.5×104. Finally, we extract distributed
losses of 1.70 dB/cm and 4.39 dB/cm and intrinsic Q factors of 2.67 × 105 and 9.91 × 104 for
the over-coupled and under-coupled fits respectively. Average loss and intrinsic Q values over 7
identifiable resonances are 3.51 dB/cm and 1.57 × 105. Related to the self-coupling coefficient, r,
is the power cross-coupling coefficient, κ, given by (1− r2)1/2. For the GaN peaks in Fig. 5(b) we
calculate a mean power cross-coupling fraction of 4.6%. For the diamond, which features both
under-coupled and over-coupled resonances, the power cross-coupling varies from 0.8% to 1.5%.

3. Hybrid device thermometry

In order to highlight the benefits of using a dual material, dual resonator device for tasks such
as thermometry, we carry out both stability measurements in time and multi-peak tracking
with temperature. The device is placed on on a Peltier heating module, bonded with thermal
grease to aid heat transport. Once aligned to a waveguide facet as in Fig. 3, the fiber is fixed
in place and a baffle enclosure is set up around the sample and fiber injection apparatus, thus
minimising both airflow across the device and cantilever oscillations of the fiber tip affecting
the optical transmission. Temperature is measured locally with a resistance thermometer. At
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all points, the Peltier was in a positive bias condition, meaning it was at a higher temperature
than the environment. When the Peltier was off, the ambient temperature measured was 293 K.
Transmission spectra are taken for increasing Peltier voltages, where the time taken for one full
spectra is 3 s, limited by the laser sweep speed of 20 nm/s.

The temperature-dependent resonance wavelength of a ring resonator thermometer is given by:

λm =
neff (λ, T)L(T)

m
, (4)

where neff is the effective index of the circulating mode and m is the mode number. Formally, a
shift in resonance wavelength for a temperature change ∆T is given by [3]:

∆λm =
⎛⎜⎜⎝
(︂
∂neff
∂T

)︂
+ neff

(︂
∂L
∂T

)︂ (︂
1
L

)︂
ng

⎞⎟⎟⎠ (∆T × λm) (5)

The temperature dependence of the cavity length L is neglected as the thermal-expansion
coefficient (∂L/∂T) is dominated by the thermo-optic coefficient (∂neff /∂T). Thus a temperature
measurement amounts to the accurate determination of the resonant wavelength shift.

Figure 6(a) shows the red-shift of diamond and GaN peaks, with two nearby peaks highlighted
in Fig. 6(b). The left peak is a diamond resonance, the right a GaN, and their relative shifts are
plotted in Fig. 6(c) with a correlation coefficient approaching 1. Owing to diamond’s smaller
thermo-optic coefficient, its shift is approximately 0.23 times that of GaN. We can evaluate the
thermo-optic coefficients directly by rearranging Eq. (5), and noting that the slope of a plot of
∆λ/λ against T will yield the thermo-optic coefficient scaled by the group index. GaN’s group
index has already been calculated to be 2.503, based on Eq. (1). For the multimode diamond, it
is difficult to obtain a group index value from the FSR. Instead we can use the fit variables a and
r, and the following [24]:

ng =
(1 − ra)λ2

πL(ra)1/2
FWHM−1, (6)

which yields a value of ng = 2.52. With these, and plots of ∆λ/λ against T for each GaN and
each diamond peak in the spectra (two of which are shown in Fig. 6(d,e)), we calculate mean
thermo-optic coefficients of ∂n/∂T = 6.068 × 10−5 K−1 and ∂n/∂T = 1.425 × 10−5 K−1 for
the GaN and diamond respectively, matching well literature values [25,26].

3.1. Resonance position determination

To best evaluate the resonant wavelength, we fit the lineshape with a simple Lorentzian in favor
of Eq. (2). Doing so simplifies the extraction of the peak wavelength, as the Lorentzian is directly
a function of centre wavelength. However, this value is also strongly influenced by the span
of the fitting window and any asymmetry in the off-resonance background transmission levels.
Therefore, in order to systematically and accurately extract the true resonant wavelength these
factors need to be taken into account. Compare for example the improvements in the fit between
Figs. 7(a) and (c), where the fit is weighted around the peak and the off-resonant background is
fit with a third-order polynomial. The squared norm of the residuals around the peak centre are
reduced by a factor of 11. For each peak in Fig. 6(b), the order of the polynomial background
correction and span of the fitting window are parameterized in order to systematically extract
each resonant wavelength.

In favor of Eq. (5), the following simpler analysis is used:

λ(T + ∆T) = λ(T) +
dλ
dT
∆T , (7)

which is valid over the temperature ranges measured here, where dλ/dT can simply be considered
the calibration of our measurement tool, including the dispersion present in the full analysis
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Fig. 6. (a) Thermally induced red-shifting of device transmission spectra. (b) Two nearby
peaks, one diamond and one GaN. (c) Relative shifts of the mean values of the full sets of
GaN and diamond peak positions. Peak shifts against temperature for the (d) diamond and
(e) GaN.

Fig. 7. (a) Lorentzian fit (red line) of the above diamond peak at 1593.22 nm with 95%
confidence intervals (blue dashes). (b) Detail of the peak minimum. (c) The same Lorentzian
fit, modified with fitting weights and a polynomial background correction. (d) Detail of
the peak minimum, showing a much better fit. (e) Error in each temperature measurement
using the GaN and diamond peaks shown in Fig. 6(a), with improved combined error. (f)
Minimization of temperature errors by utilizing an increasing number of peaks from the
spectra, taken for the second T setpoint in (e)).
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of Eq. (5). Then, the magnitude of a temperature shift can be simply measured by accurate
evaluations of resonance wavelength positions, and since we have multiple such independent
measurements of the same temperature shift, the error is reduced. We have a wavelength shift
given by:

∆λ = λ2 − λ1, (8)

where λ2 = λ(T + ∆T) and λ1 = λ(T). Their errors add in quadrature:

σ(∆λ) = [σ(λ2)
2 + σ(λ1)

2]1/2, (9)

where σ(λ1,2) are the standard errors in the wavelength positions at T and T + ∆T . These values
are extracted from the Lorentzian fit variance-covariance matrix [27]. The temperature shift is
calculated by rearranging Eq. (7) for ∆T:

∆T = ∆λ
(︃
dλ
dT

)︃−1
, (10)

where dλ/dT is the slope of that resonance’s straight line fit calibration measurement (e.g. similar
to those in Fig. 6(d,e)). Call that slope s. Following a simple propagation of errors, including the
error in the straight line fits of the slope, s, the error in ∆T is found to be:

σ(∆T) = ∆T

[︄(︃
σ(∆λ)

∆λ

)︃2
+

(︃
σ(s)

s

)︃2
]︄1/2

(11)

Finally, over all peaks, the combined weighted average is calculated with the following:

∆T =
∑︁

peaks ∆T/σ(∆T)2∑︁
peaks 1/σ(∆T)2

, (12)

with standard error given again by propagation of errors and found to be:

σ(∆T) =

[︄
1∑︁

peaks σ(∆T)−2

]︄1/2

. (13)

For the single pair of red-shifted GaN and diamond peaks shown in Fig. 6(a), the error in each
temperature shift (peak position) is plotted in Fig. 7(e). The combined error in each shift takes
the form of a weighted average of each material’s individual measurement as in Eq. (13), and the
improvement is evident in Fig. 7(e).

We see that the diamond in general performs better than the GaN in a single measurement due
to its lower thermal-conductivity, and with a full characterization of each peak (for each material),
the best accuracy in a 1 K temperature increase can be reduced to a value of 8.2 mK in Fig. 7(f),
with an average over the 8 temperature set-points (c.f. Figure 6) of 8.7 mK. Finally, by noting that
the correlation between the diamond and GaN peak shifts is near unity (Fig. 6(c)), it is possible
to combine all wavelength shifts into a single set of values using the above slope of 0.2347 as a
conversion factor. These combined values, and their associated temperatures are plotted in Fig. 8,
which is well modelled by a second order polynomial function, whose mean fit residual (with
standard error) is is 9.2 ± 1.8 mK - of the same order as the error estimate above. Thus by taking
into account optimized fitting, the use of two independent wide-bandgap materials, and multiple
peak averaging, there is a nearly fivefold improvement in accuracy compared to similar single
peak silicon devices [4].
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Fig. 8. Measured temperature against combined wavelength shift values, with error bars
indicating the standard error in each temperature estimate.

3.2. Stability measurement

The frequency stabilities, which rely on the transient responses of each device, are now analyzed
on an individual basis, and are not a combined steady-state measurement as above. To measure
the long term stability of a resonant peak position a transmission spectrum is first taken to identify
a suitable resonance. Then, following a similar method laid out in [3], the laser wavelength is
parked on the side of the resonance, where the slope of the transmission function is greatest.
Here, temperature fluctuations give the greatest fluctuations in the optical intensity transmitted
through the chip. The laser is left running and a time trace of the light intensity transmitted
through the chip is taken. A separate silicon chip featuring racetrack resonators of similar size
and Q factor (coupling length 60 µm, bend radius 15 µm, waveguide width 500 nm) is used to
compare and benchmark the diamond-on-GaN device. To account for the differences in on-chip
optical power between the GaN and silicon (owing to a significant facet loss improvement of
16.11 dB for the silicon chip), the injected laser power is first attenuated before being launched

Fig. 9. Time traces of the intensity transmission with the laser parked on the side of a
resonance for each material. Also included is the system noise trace.
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into the silicon. This ensures an equal on-chip power for both chips, with a value of 4 µW. For
these measurements, the Peltier was held at a constant 1 V (303 K).

Time traces, shown in Fig. 9, were taken for 500 s, with a sampling frequency of 4 kHz.
The system noise trace was generated in the absence of a device chip in the optical path, with
the injection fibre aligned directly to the collection optics (Fig. 3). The frequency analyses of
these signals are shown in Fig. 10(a), which show the typical 1/f noise for low frequencies for
each material. We note also improvements on these low frequency noise levels for the GaN
and diamond over the silicon, with the diamond performing best. The noise floor is set by
the total system noise (purple line, Fig. 10), which includes noise contributions from intensity
fluctuations in the laser source. Allan variance plots (Fig. 10(b)) show a fourfold improvement
in the minimum Allan variance averaging times of both diamond and GaN over the silicon,
indicating improved sensor performance over longer time scales.

Fig. 10. (a) Fast Fourier transform amplitude spectra of the transmitted intensity time trace.
(b) Allan variance plots for each resonator. (c) Equivalent FFT spectra in temperature units.
(d) Allan variance plots of the temperature amplitude spectra.

While the diamond performs best in a like-for-like comparison of the through-chip intensity
transmission, it is perhaps surprising that when the detector voltage traces are converted to
an effective temperature trace the diamond performs poorly compared to the other materials.
This conversion is done simply by taking the intensity trace as the codomain of a function (the
side-of-fringe lineshape), whose domain is wavelength, or by Eq. (7), temperature. Since there
is no such lineshape for the system trace, system noise cannot be included here. The diamond
and GaN still share minimum Allan variance averaging times that are four times longer than
the silicon, but now only the GaN features an improvement of the minimum Allan variance
value itself. Previous work has shown that diamond disks printed onto SiO2 are characterized
by the strong confinement of heat to the diamond disk [19]. Other recent work has shown a
significant barrier to thermal transport between Van der Waals bonded GaN on diamond [28].
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These problems will be exacerbated by the presence of an air gap between the diamond and
substrate as stated above, and the subsequent trapping of heat in the diamond is the likely source
of the poorer diamond performance measured here.

4. Conclusion

We have demonstrated a dual material diamond-GaN photonic thermometry device. Our GaN
photonic circuit features high Q factor resonators with low losses, and provides an excellent
receiver platform for transfer-printed diamond components. For the GaN, in a continuous
acquisition measurement we record an improvement in minimum Allan variance, occurring at an
averaging time four times greater than a comparative silicon device, indicating better performance
over longer time scales. In single-scan measurements, our dual-material dual-resonator approach
decreases the measurement error to 9.2 mK by using simultaneous measurements of a temperature
induced wavelength shift across the two materials, and multiple resonance peaks. This device
was left air-clad, but future work could utilise a top cladding of SiO2 or Al2O3 to encapsulate the
sensing devices and protect them from longer term environmental changes that may also shift
resonances. Furthermore, it should be possible to reduce errors further by utilising even higher
Q factor devices, or more devices from other materials integrated in one sensor line.
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