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Abstract—Automated Electrocardiogram (ECG)-based ar-
rhythmia detection methods replace traditional, manual arrhyth-
mia detection reducing the requirement for trained medical staff.
Traditionally, ECG-based arrhythmia detection is performed via
QRS complex detection followed by feature extraction, based
on hand-crafted features, such as RR-intervals, Fast Fourier
Transform-based features, wavelet analysis, higher order statis-
tics and Hermite features. After the features are extracted, the
ECG segments are classified into pre-defined categories. This
study investigates the value of the feature extraction and selection
methods for ECG-based arrhythmia detection. That is, with the
emerging trend of deep learning methods which are capable of
automatic feature extraction and selection, the research question
addressed in this paper is if good classification performance can
be obtained by feeding the raw ECG sequence directly into
robust classifiers or handcrafted feature extraction/selection is
necessary. Classification performance across a range of state-of-
the-art classification methods indicates that feeding raw signals
into the convolution neural network-based classifiers usually leads
to the best performance but at the expense of high inference time.

Index Terms—arrhythmia classification, feature selection, se-
quence labeling, RF, CNN, RNN.

I. INTRODUCTION

Electrocardiogram (ECG) signal analysis is the most effec-
tive diagnostic tools to detect cardiac diseases [1]. Numerous
methods have been proposed in the literature that replace tradi-
tional, manual arrhythmia detection with automated processes
that do not require trained medical staff, and hence can be per-
formed remotely, at home. Automated ECG-based arrhythmia
detection methods start with QRS complex detection, to split
the ECG trace into non-overlapping segments, by identifying
Q-, P- and R-wave, that normally appear together and reflect
a single ECG trace event. Then, within each segment, feature
construction and extraction is performed [2]. The most pop-
ular, hand-crafted, features used in the literature include RR-
intervals ([3]), that is, the time elapsed between two successive
R-waves, Fast Fourier Transform (FFT) based features ([4]),
wavelet analysis ([5]), higher order statistics ([6]) and Hermite
features ([7]). After the features are extracted, the ECG
segments are classified into pre-defined categories, e.g., normal
beats, ventricular arrhythmia, supraventricular arrhythmia, etc.,
using traditional signal classification approaches, such as sup-

port vector machines, random decision forests, Hidden Markov
models, etc.

Note that the above methods rely on features traditionally
used for manual arrhythmia detection, such as the RR-interval,
or traditional approaches developed for time-series signal
processing analysis, such as FFT and wavelet analysis.

The recent development of deep learning has revolutionised
the field of machine learning (ML) based on vast amount of
data available to train the models. Deep learning approaches
can potentially replace handcrafted feature extraction via an
automated, deep feature extraction process relying on the
network to recognise and extract the discriminative patterns.

The goal of this paper is to compare the performance of
traditional feature extraction and selection methods prior to
classification, versus classifying ECG signals by feeding raw
signals into deep learning classifiers relying on the machine
to select the most appropriate features for the task. We
use two popular ‘traditional’ classifiers, based on support
vector machines (SVM) and random decision forests (RF),
and three different deep learning architectures. We assess the
performance of the classifiers when six different ‘traditional’
feature maps are compared to the case when we directly feed
raw ECG signals into the classifiers. Besides classification
accuracy measures, we use inference time to assess practicality
of the classification solutions.

Our methodology gives insights into ECG signal analysis,
importance of feature selection and extraction for ECG signal
analysis, relevance of different features, provides steps towards
interpretability and explainability of the results, and the way
machine processes these time-series signals.

Our simulation results indicate that feeding raw signals
into the convolution neural network (CNN)-based classifiers
usually leads to the best performance compared to using expert
knowledge to design handcrafted features, but at the expense
of high inference time.

The paper is organised as follows. First we describe the
setup used for evaluation of the sensitivity of feature selection
and extraction in classical sequence labeling machine learning
approaches and deep learning based approaches with regard
to the classification performance and computational efficiency.
Then, we provide our results and discussion. The final section
concludes the paper.
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Fig. 1: Many-to-One Architecture: One label is assigned to each ECG window. A frame refers to two samples, one from each
channel. ML Model 1 refers to SVM, RF, MLP, or CNN classifier. ML Model 2 refers to Bidirectional GRU classifier. The
time unit of time-series feature vectors that are feed into ML Model 2 depends on the feature extraction algorithms, i.e., time
resolution in wavelet transform.

II. BACKGROUND AND EVALUATION SETUP

Sequence labeling or sequence classification assigns cate-
gorical/classification labels to a sequence of data points based
either on a set of previous timestamped observations or based
on a specific time segment of the signal. Sequence labelling
is a pattern recognition task that in general can be: (1) one-to-
one: predict an individual label in a sequence using a previous
observation. (2) one-to-many: predict a sequence of (multiple)
labels by retaining states from labels’ previous outputs and
observations as inputs for the next one. (3) many-to-one:
predict a data label for a set of observations from multiple
previous observations. (4) many-to-many: assign labels to each
member of a subsequence given observations over a period of
time. The arrhythmia detection sequence labelling falls into
the many-to-one category as we classify each segment of ECG
signals into one beat class after QRS complex detection [2].

In the literature, two types of approaches are commonly
investigated: (1) Model-based labeling based on a probabilistic
model that finds the best matched label via statistical inference.
The most commonly used model sequence labeling relies on
Markov assumption, that is, the target label is dependent
only on the immediately adjacent labels/observations, such
as Hidden Markov Model (HMM) and Conditional Random
Fields (CRF). (2) Feature-based Labeling, which is a classical
classification mapping problem that relates the input obser-
vations (features) to a categorical label, using well-known

classifiers, such as support vector machines, random decision
forest, deep neural networks comprising multi-layer perceptron
(MLP), convolutional neural networks and recurrent neural
networks (RNN).

Regardless of the classifier used, feature selection is needed
to facilitate dimensionality reduction, by selecting the most
important features, removing the irrelevant features to make
interpretation easier and enable training a simple model with
less time, and finally, reducing the risk of over-fitting and
hence improving the generalization trading-off the bias and
variance. The task of feature selection is to select a subset of
the original features to maximise performance based on set
criteria, such as, QRS complex detection rate [2] performed
to detect the relevant ECG segments of interest.

Feature extraction is usually used to extract the most dis-
criminatory information, transforming the original constructed
features into an optimal set of new features. It improves the
final predictive performance and is conducted either before
applying a machine learning algorithm or within the algorithm
during feature engineering, such as linear and nonlinear fea-
tures used in [3], [4], [6], [8], [9].

For time-series features, sliding window is usually used
to represent the sequential pattern [10]. In the many-to-one
architecture model, the sliding window method reconstructs
the input as a window of observations around a reference
frame (R peak frame, extracted by QRS detection) as shown in
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Fig. 1 for the case with two ECG channels. The length of the
window controls the dimensionality of the input observations,
thus directly affecting the performance. Since ECG signals
are regular time-series signals of more-or-less fixed duration,
we apply a fixed window length and evaluate its resulting
predictive performance.

To evaluate the sensitivity of the feature engineering ap-
proaches for ECG arrhythmia classification using different
sequence labeling classifiers, we select the widely-used open-
access MIT-BIH Arrhythmia Dataset [11] to analyse the
sensitivity of different state-of-the-art features using classi-
cal sequence labeling approaches and deep learning based
approaches. The dataset contains ECG recordings from two
channels sampled at rate of 360 samples/sec/channel. We
separate the whole dataset into training, validation, testing sets
with proportions 0.5, 0.15, 0.35, respectively. We select a fixed
window length of 180 frames around the extracted segment.
The simulation setup is listed in Table I. All evaluations are
done in a server with an Intel i7-7800 3.5GHz CPU and
a NVIDIA Titan Xp GPU. For each evaluated method, 30
experiments are done to calculate the mean classification error
rate and inference speed using different random seeds.

TABLE I: Simulation Setup. N, V, Q, S, F refer to the
normal, ventricular ectopic, supraventricular ectopic, fusion,
and unknown beats, respectively. The feature map parameters
used are all as in the referenced literature. The right column
in the last six rows shows the number of real attributes for
each feature selection method.

Configuration Description
Raw Feature 2 ECG Channels × 180 (Frames) per

Detected QRS Segment
Data Scale 126 Records (613 Strides) with 73854

Segments
Data Distribution Train: 44179, Valid: 13242, Test: 31002

Class Distribution
N: 74683, V: 6605, Q: 3880,

S: 2469, F: 786

Feature Map
(Real Attributes

per Segment)

RR-Intervals
(RRI) [3] 4

Fast Fourier
Transform (FFT)

[4]
35 × 2

Wavelet 23 × 2
Wavelet with

Uniform Local
Binary Pattern

(WaveletULBP)
[5]

59 × 2

Higher order
statistics (HOS)

[6]
4 × 5 × 2

Hermite [7] 22 × 2

A. Classifier Setup

We evaluate the sensitivity of different feature selection
methods listed in Table I via Bidirectional GRU (Bi-GRU),

SVM, RF, MLP, CNN classifiers. Note that, in the paper,
we denote by “MLP” a deep learning based classifier that
only uses fully connected layers, and does not use standard
convolutional layers and bidirectional GRUs.

For the RF-based classifier, we employ 30 decision trees
with depth of 20. The deep learning architectures used in this
research are shown in Figs. 2–4 for Bi-GRU, MLP, CNN
classifiers, respectively, with respect to the dimensions of
input observations. The hyper-parameters used for the MLP
classifier are listed in Table II.
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Fig. 2: Deep learning architecture for bidirectional GRU based
classifier. ‘GRU’ refers to the gated recurrent unit (GRU) based
recurrent neural network layer with parameters of hidden state
size. ‘drop’ refers to the dropout layer with keeping ratio. ‘fc’
means the fully connected layer with number of neurons.
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Fig. 3: Deep learning architecture for the MLP classifier. The
number of neurons υ1,υ2,υ3 in fully-connected (fc) layers
vary dependent on the dimension of the input data (see details
in Table II).

TABLE II: Hyper-parameters used in the MLP classifier: The
number of neurons υ1,υ2,υ3 in fully-connected (fc) layers.

Dimensions of Observation υ1 υ2 υ3
<8 16 32 None

≥8 and <16 32 64 32
≥16 and <32 64 128 32
≥32 and <64 128 256 64
≥64 and <128 256 512 64

≥128 512 1024 128
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(a) Block diagram of the architecture when number of features
<8
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(b) Block diagram of the architecture when number of features
≥8 and <16
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(c) Block diagram of the architecture when number of features ≥16 and
<32
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(d) Block diagram of the architecture when number of features ≥32 and
<64















































(e) Block diagram of the architecture when number of features
≥64 and <128
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Fig. 4: Deep learning architecture for the CNN-based classifier.
‘conv’ refers to the 1D convolutional layer with parameters of
kernel size, filter number and constant one stride size. ‘BN’
refers to the batch normalization layer. Hyper-parameters of
different layers vary dependent on the dimensions of the input
observation.

III. RESULTS AND DISCUSSION

In this section, we first compare the predictive performance
of different classifiers using the state-of-the-art feature selec-
tion/extraction methods. We discard the RRI, FFT, Waveke-
tULBP, HOS, Hermite features for Bidirectional GRU, since
they are designed to explore the relations across multiple
frames in the sequence.

We show the classification error rates and F-measure for

TABLE III: Classification Error Rate (%) for each of five
classes (N, S, V, F, and Q. ∗ refers to deep learning based
feature extraction approach. Bold numbers show the best
performance for each classifier.

Method Feature Map Arrhythmia Classes
N S V F Q Avg

Bi-GRU∗ Raw 0.6 25.6 5.6 25.2 0.5 11.5
Wavelet 0.5 33.8 5.1 24.7 0.6 13.0

SVM

Raw 5.1 12.1 3.8 8.9 0.4 6.0
RRI 1.3 98.6 92.4 85.1 56.8 66.8
FFT 0.0 100 100 100 100 80.0

Wavelet 0.0 60.9 96.5 96.8 97.6 70.4
WaveletULBP 35.8 37.2 39.1 27.7 19.9 31.9

HOS 1.0 15.7 3.3 22.7 4.0 9.3
Hermite 36.6 15.5 27.2 21.6 5.4 21.3

RF

Raw 0.1 40.2 6.1 38.8 1.0 17.3
RRI 1.6 31.1 20.4 77.0 14.2 28.9
FFT 0.6 59.8 51.8 96.3 84.7 58.6

Wavelet 0.1 38.9 5.7 37.1 0.9 16.5
WaveletULBP 0.4 58.4 32.9 48.0 28.9 33.7

HOS 0.1 35.1 5.7 35.6 2.2 15.7
Hermite 0.3 36.6 6.6 30.1 0.73 14.8

MLP∗

Raw 0.4 12.3 1.9 19.1 0.4 6.8
RRI 0.4 95.2 74.5 100 100 74.0
FFT 1.7 66.2 54.3 86.4 70.5 55.8

Wavelet 0.4 17.3 3.9 19.7 0.4 8.4
WaveletULBP 1.4 45.3 21.9 39.9 15.7 24.8

HOS 0.5 18.3 2.8 20.1 0.4 8.4
Hermite 0.6 35.7 5.1 32.5 1.2 15.0

CNN∗

Raw 0.3 10.6 3.0 16.7 0.4 6.8
RRI 3.2 56.5 39.9 100 60.4 52.0
FFT 1.4 57.7 56.7 83.1 82.1 56.2

Wavelet 0.4 13.4 2.7 17.7 0.4 6.9
WaveletULBP 1.1 56.3 46.8 41.2 24.3 33.9

HOS 0.4 12.1 2.7 16.0 0.3 6.3
Hermite 0.6 24.6 4.4 29.6 0.6 12.0

each class in Tabs. III and IV, respectively. It is clear that
‘raw’ zero-mean standardized ECG signals fed directly into
the classifiers outperform feature extractions across all bench-
marked classifiers.

It can be seen from the two tables that both SVM classifier
and deep learning-based classifiers achieve high predictive
performance when raw data is fed directly into the classifier.
Deep learning-based classifiers that automatically extract deep
features achieve comparable mean classification error rate and
F-measure using Wavelet and HOS feature extraction methods.
This indicates that investing time and effort on hand-crafting
the features following traditional approaches is redundant.

Note that, the inference speed rapidly increases as the model
size grows with the increasing dimensionality of input obser-
vations/features, that is, increasing the window size. Especially
for deep learning based classifiers, a deeper architecture that
automatically extracts deeper features suffers from a signifi-
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TABLE IV: F-Measure for each of five classes. ∗ refers to
deep learning based feature extraction approach. Bold numbers
show the best performance for each classifier.

Method Feature Map Arrhythmia Classes
N S V F Q Avg

Bi-GRU∗ Raw 0.99 0.80 0.95 0.80 0.99 0.91
Wavelet 0.99 0.77 0.95 0.81 0.99 0.90

SVM

Raw 0.97 0.57 0.95 0.74 0.99 0.84
RRI 0.92 0.03 0.14 0.17 0.56 0.36
FFT 0.92 0.00 0.00 0.00 0.00 0.18

Wavelet 0.92 0.56 0.07 0.06 0.05 0.33
WaveletULBP 0.77 0.29 0.44 0.10 0.51 0.42

HOS 0.99 0.85 0.94 0.84 0.98 0.92
Hermite 0.77 0.16 0.80 0.15 0.97 0.57

RF

Raw 0.99 0.75 0.96 0.74 0.99 0.89
RRI 0.97 0.79 0.82 0.32 0.86 0.75
FFT 0.94 0.57 0.61 0.07 0.26 0.49

Wavelet 0.99 0.76 0.96 0.76 0.99 0.89
WaveletULBP 0.97 0.58 0.77 0.66 0.80 0.76

HOS 0.99 0.78 0.96 0.77 0.99 0.90
Hermite 0.99 0.77 0.95 0.80 1.00 0.90

MLP∗

Raw 0.99 0.90 0.98 0.86 1.00 0.95
RRI 0.92 0.09 0.38 0.00 0.00 0.28
FFT 0.94 0.47 0.57 0.21 0.41 0.52

Wavelet 0.99 0.86 0.97 0.86 0.99 0.94
WaveletULBP 0.97 0.67 0.82 0.68 0.86 0.80

HOS 0.99 0.86 0.97 0.86 1.00 0.94
Hermite 0.99 0.75 0.95 0.79 0.99 0.89

CNN∗

Raw 1.00 0.91 0.97 0.87 1.00 0.95
RRI 0.94 0.59 0.67 0.00 0.44 0.53
FFT 0.94 0.55 0.55 0.24 0.28 0.51

Wavelet 0.99 0.89 0.97 0.87 0.99 0.95
WaveletULBP 0.96 0.59 0.67 0.59 0.79 0.72

HOS 0.99 0.89 0.97 0.87 1.00 0.95
Hermite 0.99 0.81 0.96 0.80 0.99 0.91

TABLE V: Inference Speed (microseconds/frame). ∗ refers to
automatic feature extraction approach.

Feature Map Method
Bi-GRU∗ SVM RF MLP∗ CNN∗

Raw 33259 8275 8 838 1366
RRI — 2803 4 429 556
FFT — 5376 4 514 936

Wavelet 3673 2811 4 506 833
WaveletULBP — 6633 4 575 1133

HOS — 540 4 537 854
Hermite — 2944 4 568 943

cantly longer inference time shown in Tab. V, limited by the
size of model and computation capacity.

IV. CONCLUSION

This paper first reviews the state-of-the-art feature selec-
tion and extraction methods for arrhythmia detection. Then,

classification error rates and inference speed are measured to
analyze the sensitivity of these methods, either with or without
domain knowledge. Experimental results indicate that the
feature selection/extraction methods, namely FFT and Wavelet
transforms, are not as critical to the arrhythmia sequence label-
ing classification task compared to raw and statistical features,
such as HOS. Given sufficient training data, the deep learning-
based feature extraction approaches, i.e., Bidirectional GRU,
MLP and CNN, achieve better generalization and classification
performance. However, they often operate slower at inference,
thus require to be accelerated by modern computing devices.

V. ACKNOWLEDGMENT
This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant
agreement No 734331. The University of Strathclyde
gratefully acknowledges the support of NVIDIA Cor-
poration with the donation of the Titan Xp GPU used
for this research.

REFERENCES

[1] S. Gayathri, M. Suchetha, and V. Latha, “Ecg arrhythmia detection and
classification using relevance vector machine,” Procedia engineering,
vol. 38, pp. 1333–1339, 2012.

[2] A. Ligtenberg and M. Kunt, “A robust-digital qrs-detection algorithm for
arrhythmia monitoring,” Computers and Biomedical Research, vol. 16,
no. 3, pp. 273–286, 1983.

[3] P. De Chazal, M. O’Dwyer, and R. B. Reilly, “Automatic classification of
heartbeats using ecg morphology and heartbeat interval features,” IEEE
transactions on biomedical engineering, vol. 51, no. 7, pp. 1196–1206,
2004.

[4] E. R. Adams and A. Choi, “Using neural networks to predict cardiac
arrhythmias,” in 2012 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), 10 2012, pp. 402–407.

[5] S. Nikan, F. Gwadry-Sridhar, and M. Bauer, “Pattern recognition appli-
cation in ecg arrhythmia classification,” BIOSTEC 2017, p. 48, 2017.

[6] Y. Kaya, H. Pehlivan, and M. E. Tenekeci, “Effective ecg beat classifi-
cation using higher order statistic features and genetic feature selection.”
Biomedical Research, vol. 28, no. 17, pp. 7594–7603, 2017.

[7] M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, and L. Sornmo,
“Clustering ecg complexes using hermite functions and self-organizing
maps,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 7,
pp. 838–848, 2000.

[8] F. A. Elhaj, N. Salim, A. R. Harris, T. T. Swee, and T. Ahmed,
“Arrhythmia recognition and classification using combined linear and
nonlinear features of ecg signals,” Computer Methods and Programs in
Biomedicine, vol. 127, no. C, pp. 52–63, 2016.

[9] T. Teijeiro, P. Félix, J. Presedo, and D. Castro, “Heartbeat classification
using abstract features from the abductive interpretation of the ecg,”
IEEE journal of biomedical and health informatics, vol. 22, no. 2, pp.
409–420, 2016.

[10] T. G. Dietterich, “Machine learning for sequential data: A review,” in
Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition
(SSPR). Springer, 2002, pp. 15–30.

[11] G. B. Moody and R. G. Mark, “The impact of the mit-bih arrhyth-
mia database,” IEEE Engineering in Medicine and Biology Magazine,
vol. 20, no. 3, pp. 45–50, May 2001.

Feature selection and extraction in sequence labeling for arrhythmia detection 

5


	Feature Selection and Extraction in SequenceLabeling for Arrhythmia Detection
	Abstract
	I. INTRODUCTION
	II. BACKGROUND AND EVALUATION SETUP
	III. RESULTS AND DISCUSSION
	IV. CONCLUSION
	V. ACKNOWLEDGMENT
	REFERENCES



