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Abstract

In this paper we develop and analyse domain decomposition methods
for linear systems of equations arising from conforming finite element dis-
cretisations of positive Maxwell-type equations. Convergence of domain
decomposition methods rely heavily on the efficiency of the coarse space
used in the second level. We design adaptive coarse spaces that comple-
ment the near-kernel space made of the gradient of scalar functions. This
extends the results in [2] to the variable coefficient case and non-convex
domains at the expense of a larger coarse space.

1 Domain decomposition and preliminaries

1.1 Domain decomposition

Our notation follows that in the article on inexact coarse solves [3, Section 2
“Basic definitions”], such as the definitions of k0 and k1. We will further rely
on the fictitious space lemma, as given in [3, Lemma 3.1], for example.
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1.2 Preliminaries

Let A P R
#Nˆ#N be a symmetric positive definite matrix, stemming from the

symmetric coercive bilinear form ap¨, ¨q on Ω, and suppose it has a large near-
kernel associated with the subspace G Ă R

#N (for instance, the gradient of H1

functions on Ω when a involves a curl operator). Define Gi :“ RiG, where Ri

is the restriction to Ωi, and let VG Ă R
#N be the vector space spanned by the

sequence pRT
i DiGiq1ďiďN , so that G Ă VG. Further, let Z P R

#NGˆ#N be a
rectangular matrix whose columns are a basis of VG and E the coarse space
matrix defined by E :“ ZTAZ.

For each subdomain i, let bi be a local symmetric coercive bilinear form
giving rise to the matrices Bi P R

#Niˆ#Ni , corresponding to local subdomain
solves. Within R

#Ni we define the bi-orthogonal complement of Gi

G
KBi

i :“
 
Ui P R

#Ni | @Vi P Gi, bipUi,Viq “ 0
(
. (1)

It is this space that we will predominantly want to work in. As such, let b
G

KBi
i

denote the restriction of bi to G
KBi

i so that

b
G

KBi
i

: G
KBi

i ˆ G
KBi

i ÝÑ R, pUi,Viq ÞÑ bipUi,Viq. (2)

The Riesz representation theorem gives the existence of a unique isomorphism

B
G

KBi
i

: G
KBi

i ÝÑ G
KBi

i into itself so that

b
G

KBi
i

pUi,Viq “ pB
G

KBi
i

Ui,Viq @Ui,Vi P G
KBi

i .

An important tool that we will use is the bi-orthogonal projection ξ0i from

R
#Ni on Gi parallel to G

KBi

i . This also enables us to express the inverse of

B
G

KBi
i

, which we will denote by B
:
i , through the following formula

B
:
i “ pI ´ ξ0iqB´1

i . (3)

In order to check this formula, we have to show that

B
G

KBi
i

pI ´ ξ0iqB´1
i y “ y (4)

for all y P G
KBi

i . Let z P G
KBi

i , using the fact that I ´ ξ0i is the bi-orthogonal

projection on G
KBi

i , we have

pB
G

KBi
i

pI ´ ξ0iqB´1
i y, zq “ bippI ´ ξ0iqB´1

i y, zq “ bipB´1
i y, zq “ py, zq.

Since this equality holds for any z P G
KBi

i , this proves that (4) holds and thus

that B:
i provides the inverse of B

G
KBi
i

.

2 An additive Schwarz method

Within this section we consider the additive Schwarz method and how it can
be suitably modified for our purposes. Our main premise is that the matrix A,
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defining the linear system we wish to solve, has a large near-kernel which can
cause problems numerically. Thus we would like to deal with it directly in the
coarse space in order that we can primarily work in the orthogonal complement,
avoiding the ill-conditioning in A from the near-kernel.

The additive Schwarz method is characterised by the choice of the subdomain
matrices Bi being given by the Dirichlet matrices RiAR

T
i , along with a suitable

choice of the operator R in the fictitious space lemma.

2.1 The underlying additive Schwarz method

We now define the abstract framework for the additive Schwarz preconditioner,
where the choice Bi “ RiAR

T
i is made. Let HD be defined as

HD :“ R
#NG ˆ

Nź

i“1

R
#Ni

endowed with the Euclidean scalar product. For U “ pU0, pUiq1ďiďN q P HD

and V “ pV0, pViq1ďiďN q P HD, with U0,V0 P R
#NG and Ui,Vi P R

#Ni for
1 ď i ď N , define the bilinear form b : HD ˆ HD ÝÑ R arising from the coarse
operator E and the local SPD matrices pBiq1ďiďN , where Bi “ RiAR

T
i , such

that

pU ,Vq ÞÑ bpU ,Vq :“ pEU0,V0q `
Nÿ

i“1

pRiAR
T
i Ui,Viq.

Further, we denote by B : HD ÝÑ HD the block diagonal operator such that
pBU ,Vq “ bpU ,Vq for all U ,V P HD. Now, using the A-orthogonal projection
P0 on VG, for any U “ pU0, pUiq1ďiďN q P HD we define the linear operator
RAS : HD ÝÑ H by

RASpUq :“ ZU0 ` pI ´ P0q
Nÿ

i“1

RT
i Ui.

In order to apply the fictitious space lemma three assumptions have to be
checked.

‚ RAS is onto:
Let U P H , we have

U “ P0U ` pI ´ P0qU
“ P0U ` pI ´ P0q řN

i“1 R
T
i DiRiU.

Now since P0U P VG there exists U0 such that ZU0 “ P0U. Therefore, we
have

U “ RASpU0, pDiRiUq1ďiďN q.
‚ Continuity of RAS :

We have to estimate a constant cR such that for all U “ pU0, pUiq1ďiďN q P HD

we have

apRASpUq,RASpUqq ď cR bpU ,Uq “ cR rpEU0,U0q `
Nÿ

i“1

pRiAR
T
i Ui,Uiqs.
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Now we have the following estimate using the A-orthogonality of I ´ P0 and
Lemma 7.9 in [1] (page 171):

apRASpUq,RASpUqq “ }ZU0 ` pI ´ P0q řN
i“1 R

T
i Ui}2A

“ }ZU0}2A ` }pI ´ P0q řN
i“1 R

T
i Ui}2A

ď pEU0,U0q ` k0
řN

i“1 }RT
i Ui}2A

ď k0

”
pEU0,U0q ` řN

i“1 }RT
i Ui}2A

ı
.

Thus the estimate of the constant of continuity of RAS can be chosen as

cR :“ k0.

‚ Stable decomposition with RAS :
Let U P H , we have

U “ P0U ` pI ´ P0qU
“ P0U ` pI ´ P0q řN

i“1 R
T
i DiRiU

“ P0U ` pI ´ P0q
řN

i“1 R
T
i DipI ´ ξ0iqRiU ` pI ´ P0q

řN
i“1 R

T
i Diξ0iRiUlooooooooooooooooomooooooooooooooooon

“0

.

Let us consider the last equality: since P0U P VG there exists U0 such that
ZU0 “ P0U, meanwhile the third term is zero since

řN
i“1 R

T
i Diξ0iRiU P VG.

Therefore, we have

U “ RASpU0, pDipI ´ ξ0iqRiUq1ďiďN q.

Determining the stability of this decomposition consists in estimating a constant
cT ą 0 such that

cT rpEU0,U0q `
Nÿ

j“1

pRjAR
T
j DjpI ´ ξ0jqRjU, DjpI ´ ξ0jqRjUqs ď apU,Uq.

We have

řN
j“1pRjAR

T
j DjpI ´ ξ0jqRjU, DjpI ´ ξ0jqRjUq ď τ0

řN
j“1pANeu

j RjU, RjUq
ď τ0k1 apU,Uq, (5)

where

τ0 :“ max
1ďjďN

max
VjPR#Nj

pRjAR
T
j DjpI ´ ξ0jqVj , DjpI ´ ξ0jqVjq

pANeu
j Vj ,Vjq , (6)

and in the second step we have used Lemma 7.13 in [1] (page 175). By applying
(5), we obtain

pEU0,U0q ` řN
j“1pRjAR

T
j DjpI ´ ξ0jqRjU, DjpI ´ ξ0jqRjUq

ď apP0U, P0Uq ` τ0k1 apU,Uq
ď p1 ` k1τ0q apU,Uq.
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Thus we can take

cT :“ 1

1 ` k1τ0
.

Finally, the condition number estimate given by the fictitious space lemma for
the induced preconditioner is

κpM´1
ASAq ď p1 ` k1τ0qk0.

The development that now follows is motivated by the fact that the number
τ0 may be very large due to the shape and size of the domain or the hetero-
geneities in the coefficients of the problem. This leads to a bad condition number
estimate. The fix is to enlarge the coarse space by the generalized eigenvalue
problem (GEVP) induced by its formula (6). More precisely, we introduce in
the next subsection a generalized eigenvalue problem and the related GenEO
coarse space.

2.2 Additive Schwarz with GenEO

GEVP 2.1 (Generalized Eigenvalue Problem for the lower bound) For

each subdomain 1 ď j ď N , we introduce the generalized eigenvalue problem

Find pVjk, λjkq P R
#Nj zt0u ˆ R such that

pI ´ ξT0jqDjRjAR
T
j DjpI ´ ξ0jqVjk “ λjkA

Neu
j Vjk.

(7)

Let τ ą 0 be a user-defined threshold, we define V τ
j,geneo Ă R

#N as the vector

space spanned by the family of vectors pRT
j DjpI ´ ξ0jqVjkqλjkąτ corresponding

to eigenvalues larger than τ . Let V τ
geneo be the vector space spanned by the

collection over all subdomains of vector spaces pV τ
j,geneoq1ďjďN .

In the theory that follows for the stable decomposition estimate but not in
the algorithm itself, we will make use of πj defined as the projection from R#Nj

on Vj,τ :“ SpantVjk|λjk ą τu parallel to SpantVjk|λjk ď τu. The key to
GEVP 2.1 is the following bound, derived from Lemma 7.7 in [1] (page 168):
for all Uj P R#Nj

pRjAR
T
j DjpI ´ ξ0jqpI ´ πjqUj , DjpI ´ ξ0jqpI ´ πjqUjq ď τ pANeu

j Uj ,Ujq.
(8)

We can now build the coarse space V0 from the near-kernel G along with
GEVP 2.1, defining the following vector space sum:

V0 :“ VG ` V τ
geneo. (9)

The coarse space V0 is spanned by the columns of a full rank rectangular matrix
with #N0 columns, which we will denote by Z.

We can now define the abstract framework for the additive Schwarz with
GenEO preconditioner. Let HD be defined by

HD :“ R
#N0 ˆ

Nź

i“1

R
#Ni

5
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endowed with the Euclidean scalar product. We now define the bilinear form
b : HD ˆ HD ÝÑ R arising from the coarse operator E “ ZTAZ and the local
SPD matrices pBiq1ďiďN , where Bi “ RiAR

T
i , such that

pU ,Vq ÞÑ bpU ,Vq :“ pEU0,V0q `
Nÿ

i“1

pRiAR
T
i Ui,Viq.

Further, we denote by B : HD ÝÑ HD the block diagonal operator such that
pBU ,Vq “ bpU ,Vq for all U ,V P HD. Using the A-orthogonal projection P0 on
V0, we define RAS,2 : HD ÝÑ H as

RAS,2pUq :“ ZU0 ` pI ´ P0q
Nÿ

i“1

RT
i Ui.

In order to apply the fictitious space lemma we check the three assumptions
as before. Surjectivity and continuity of RAS,2 follows identically to that for
RAS as in Section 2.1. Thus we need only consider the stable decomposition.

‚ Stable decomposition with RAS,2:
Let U P H , we have

U “ P0U ` pI ´ P0q řN
i“1 R

T
i DiRiU

“ P0U ` pI ´ P0q řN
i“1 R

T
i DipI ´ ξ0iqRiU ` pI ´ P0q řN

i“1 R
T
i Diξ0iRiUlooooooooooooooooomooooooooooooooooon

“0

“ P0U ` pI ´ P0q řN
i“1 R

T
i DipI ´ ξ0iqpI ´ πiqRiU

` pI ´ P0q
řN

i“1 R
T
i DipI ´ ξ0iqπiRiUlooooooooooooooooooooooomooooooooooooooooooooooon
“0

.

The very last term is zero since for all i, RT
i DipI´ξ0iqπiRiU P V τ

geneo Ă V0. Let

U0 P R
#N0 be such that ZU0 “ P0U, then we can choose the decomposition

U “ RAS,2pU0, pDipI ´ ξ0iqpI ´ πiqRiUq1ďiďN q.

With this decomposition, using the GEVP bound (8) and Lemma 7.13 in [1]
(page 175), we have

pEU0,U0q ` řN
j“1pRjAR

T
j DjpI ´ ξ0jqpI ´ πjqRjU, DjpI ´ ξ0jqpI ´ πjqRjUq

ď apZU0, ZU0q ` τ
řN

j“1pANeu
j RjU, RjUq

ď apP0U, P0Uq ` τk1 apU,Uq
ď p1 ` k1τq apU,Uq.

Thus the stable decomposition property holds with constant

cT :“ 1

1 ` k1τ
.

Altogether, for a given user-defined positive constant τ , the additive Schwarz
with GenEO preconditioner yields the condition number estimate

κpM´1
AS,2Aq ď p1 ` k1τqk0,

6
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where

M´1
AS,2 “ RAS,2B

´1R˚
AS,2

“ ZpZTAZq´1ZT ` pI ´ P0q
Nÿ

i“1

RT
i B

´1
i RipI ´ PT

0 q

“ ZpZTAZq´1ZT ` pI ´ P0q
Nÿ

i“1

RT
i pRiAR

T
i q´1RipI ´ PT

0 q.

2.3 Inexact coarse solves

In practice, the coarse operator E “ ZTAZ will be large, as it involves both the
near-kernel and the GenEO coarse space, and thus solving the linear systems
involving E presents a bottleneck within the two-level algorithm. As such, we
now consider the use of an inexact coarse solve, that is when we replace E by a
cheaper approximation

Ẽ « E,

in order to ameliorate this factor. We are then interested in the robustness of
the approach when inexact coarse solves are employed.

We make the following assumption on Ẽ throughout:

Assumption 2.1 The operator Ẽ is symmetric positive definite.

Let us also introduce the operator P̃0

P̃0 :“ ZẼ´1ZTA,

which approximates the A-orthogonal projection P0 on V0

P0 “ ZE´1ZTA.

Note that P̃0 is not a projection but, from Lemma 1 of [3], has the same range
and kernel as P0.

We now consider the additive Schwarz with GenEO preconditioner with
inexact coarse solves. We utilise the same framework as in Section 2.2 but now
make use of the bilinear form b̃ : HD ˆ HD ÝÑ R, with block diagonal matrix
form B̃, such that

b̃pU ,Vq :“ pẼU0,V0q `
Nÿ

i“1

pRiAR
T
i Ui,Viq,

and consider the linear operator rRAS,2 : HD ÝÑ H defined by

rRAS,2pUq :“ ZU0 ` pI ´ P̃0q
Nÿ

i“1

RT
i Ui.

Note that

rRAS,2pUq ´ RAS,2pUq “ pP0 ´ P̃0q
Nÿ

i“1

RT
i Ui P V0

since ImpP0 ´ P̃0q Ă V0.
Before continuing, we give a lemma which will prove useful in what follows.
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Lemma 2.1 Let U0 P R
#N0 , then

pẼU0,U0q ď λmaxpE´1Ẽq}ZU0}2A (10)

and

}ZU0}2A ď λmaxpEẼ´1qpẼU0,U0q. (11)

Proof First, for (10) we have that

pẼU0,U0q “ pE´1{2ẼE´1{2E1{2U0, E
1{2U0q

ď λmaxpE´1{2ẼE´1{2qpE1{2U0, E
1{2U0q

“ λmaxpE´1ẼqpZTAZU0,U0q
“ λmaxpE´1Ẽq}ZU0}2A.

In a similar manner

pẼU0,U0q “ pE´1{2ẼE´1{2E1{2U0, E
1{2U0q

ě λminpE´1{2ẼE´1{2qpE1{2U0, E
1{2U0q

“ λminpE´1Ẽq}ZU0}2A

and thus we deduce (11) from the equivalence

λminpE´1Ẽq´1 “ λmaxpẼ´1Eq “ λmaxpEẼ´1q,

the final equality arising since Ẽ´1E and EẼ´1 are similar matrices.

Predominantly following the arguments presented in [3], we now check the
three assumptions of the fictitious space lemma.

‚ rRAS,2 is onto:
For U P H we have that

U “ P̃0U ` pI ´ P̃0qU
“ P̃0U ` pI ´ P̃0q

řN
i“1 R

T
i DiRiU.

Let U0 P R
#N0 be such that ZU0 “ P̃0U, then we have the decomposition

U “ rRAS,2pU0, pDiRiUq1ďiďN q.

‚ Continuity of rRAS,2:
Let δ ą 0 be a positive parameter. For U “ pU0, pUiq1ďiďN q P HD, by using
the fact that ImpP0 ´ P̃0q is a-orthogonal to ImpI ´ P0q, the Cauchy–Schwarz
inequality, Young’s inequality (with parameter δ), A-orthogonality of I ´ P0,
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the bound (11) from Lemma 2.1, and Lemma 7.9 of [1] (page 171) we have

ap rRAS,2pUq, rRAS,2pUqq
“ }RAS,2pUq ` pP0 ´ P̃0q

řN
i“1 R

T
i Ui}2A

“ }RAS,2pUq}2A ` 2 apRAS,2pUq, pP0 ´ P̃0q řN
i“1 R

T
i Uiqq

` }pP0 ´ P̃0q
řN

i“1 R
T
i Ui}2A

“ }ZU0}2A ` }pI ´ P0q řN
i“1 R

T
i Ui}2A ` 2 apZU0, pP0 ´ P̃0q řN

i“1 R
T
i Uiq

` }pP0 ´ P̃0q
řN

i“1 R
T
i Ui}2A

ď }ZU0}2A ` } řN
i“1 R

T
i Ui}2A ` δ}ZU0}2A ` 1

δ
}pP0 ´ P̃0q řN

i“1 R
T
i Ui}2Aq

` }pP0 ´ P̃0q řN
i“1 R

T
i Ui}2A

ď p1 ` δq}ZU0}2A `
´
1 ` p1 ` 1

δ
q}P0 ´ P̃0}2A

¯
} řN

i“1 R
T
i Ui}2A

ď p1 ` δqλmaxpEẼ´1qpẼU0,U0q `
´
1 ` p1 ` 1

δ
q}P0 ´ P̃0}2A

¯
k0

řN
i“1 }RT

i Ui}2A
ď cR b̃pU ,Uq,

for

cR “ max
´

p1 ` δqλmaxpEẼ´1q,
´
1 ` p1 ` 1

δ
q}P0 ´ P̃0}2A

¯
k0

¯
.

As in [3], we can minimise over δ ą 0 by equating the two terms using

min
δą0

maxpc ` αδ, d ` βδ´1q “ d ` c `
a

pd ´ cq2 ` 4αβ

2
,

when all parameters are positive. Let us define ǫA :“ }P0 ´ P̃0}A along with
λ` :“ λmaxpEẼ´1q, then we can take

cR “ k0p1 ` ǫ2Aq ` λ` `
a

pk0p1 ` ǫ2Aq ´ λ`q2 ` 4λ`k0ǫ
2
A

2
. (12)

Further note that Lemma 4 from [3] gives that

ǫA “ max
´

|1 ´ λminpEẼ´1q|, |1 ´ λmaxpEẼ´1q|
¯
,

which allows for (12) to be given solely in terms of the constant k0 and the
minimal and maximal eigenvalues of EẼ´1.

‚ Stable decomposition with rRAS,2:
For U P H we have that

U “ P0U ` pI ´ P0qU “ P0U ` pI ´ P0q řN
i“1 R

T
i DiRiU

“ P0U ` pI ´ P0q
řN

i“1 R
T
i DipI ´ ξ0iqRiU

“ P0U ` pI ´ P0q řN
i“1 R

T
i DipI ´ ξ0iqpI ´ πiqRiU

“ FU ` pI ´ P̃0q
řN

i“1 R
T
i DipI ´ ξ0iqpI ´ πiqRiU,

where

FU “ P0U ` pP̃0 ´ P0q řN
i“1 R

T
i DipI ´ ξ0iqpI ´ πiqRiU P V0. (13)

9
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Let U0 P R
#N0 be such that ZU0 “ FU, then we have the decomposition

U “ rRAS,2pU0, pDipI ´ ξ0iqpI ´ πiqRiUq1ďiďN q “: rRAS,2pUq.
We now show that this decomposition is stable, again following an analogous
approach to [3]. Firstly, note that the GEVP bound (8) and Lemma 7.13 in [1]
(page 175) provides the bound

řN
i“1pRiAR

T
i DipI ´ ξ0iqpI ´ πiqRiU, DipI ´ ξ0iqpI ´ πiqRiUq

“ řN
i“1 }RT

i DipI ´ ξ0iqpI ´ πiqRiU}2A ď τk1 apU,Uq.
(14)

The remaining term in b̃pU ,Uq corresponds to the coarse operator Ẽ where,
using the bound (10) of Lemma 2.1, we have

pẼU0,U0q ď λmaxpE´1Ẽq}ZU0}2A “ λmaxpE´1Ẽq}FU}2A.
Now from (13), letting δ ą 0 be a positive parameter, making use of the Cauchy–
Schwarz inequality, Young’s inequality (with parameter δ), Lemma 7.9 of [1]
(page 171) and (14) gives

}FU}2A ď }P0U}2A ` 2apP0U, pP̃0 ´ P0q řN
i“1 R

T
i DipI ´ ξ0iqpI ´ πiqRiUq

` }pP̃0 ´ P0q řN
i“1 R

T
i DipI ´ ξ0iqpI ´ πiqRiU}2A

ď p1 ` δq}P0U}2A ` p1 ` 1
δ

q}pP̃0 ´ P0q
řN

i“1 R
T
i DipI ´ ξ0iqpI ´ πiqRiU}2A

ď p1 ` δqapU,Uq ` p1 ` 1
δ

qǫ2A} řN
i“1 R

T
i DipI ´ ξ0iqpI ´ πiqRiU}2A

ď p1 ` δqapU,Uq ` p1 ` 1
δ

qǫ2Ak0
řN

i“1 }RT
i DipI ´ ξ0iqpI ´ πiqRiU}2A

ď
`
p1 ` δq ` p1 ` 1

δ
qǫ2Ak0k1τ

˘
apU,Uq.

We can minimise over the parameter δ, yielding δ “ ǫA
?
k0k1τ , and thus

pẼU0,U0q ď λmaxpE´1Ẽqp1 ` ǫA
a
k0k1τ q2apU,Uq.

Combining this estimate with (14) gives b̃pU ,Uq ď c´1
T apU,Uq where

cT “ 1

k1τ ` λmaxpE´1Ẽqp1 ` ǫA
?
k0k1τ q2

“ λminpEẼ´1q
p1 ` ǫA

?
k0k1τq2 ` λminpEẼ´1qk1τ

. (15)

Thus we see that the constant in (15) is given solely in terms of the constants
k0, k1 and τ , and the minimal and maximal eigenvalues of EẼ´1.

Altogether, the fictitious space lemma provides the following spectral bounds

cT apU,Uq ď a
´
M̃´1

AS,2AU,U
¯

ď cR apU,Uq

for all U P H “ R
#N , where cR and cT are given by (12) and (15) respectively,

and

M̃´1
AS,2 “ rRAS,2B̃

´1 rR˚
AS,2

“ ZẼ´1ZT ` pI ´ P̃0q
Nÿ

i“1

RT
i B

´1
i RipI ´ P̃T

0 q

“ P̃0A
´1 ` pI ´ P̃0q

Nÿ

i“1

RT
i pRiAR

T
i q´1RipI ´ P̃T

0 q.
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3 A SORAS method

In this section we address the symmetrised optimised restricted additive Schwarz
(SORAS) method. Here the symmetric positive definite subdomain matrices Bi

stem from using e.g. Neumann matrices or optimised transmission conditions
rather than the Dirichlet matrices RiAR

T
i within the additive Schwarz method.

In addition, the partition of unity matrices Di are used symmetrically within
the method in order that we can apply the present theory. As with the additive
Schwarz method of the previous section, we utilise a coarse space including VG

to ameliorate the near-kernel G.

3.1 The underlying SORAS method

We now define the abstract framework for the SORAS preconditioner. Let HD

be defined as

HD :“ R
#NG ˆ

Nź

i“1

G
KBi

i

endowed with the Euclidean scalar product. For U “ pU0, pUiq1ďiďN q P HD

and V “ pV0, pViq1ďiďN q P HD, with U0,V0 P R
#NG and Ui,Vi P G

KBi

i for
1 ď i ď N , define the bilinear form b : HD ˆ HD ÝÑ R arising from the coarse
operator E and the local SPD matrices pBiq1ďiďN such that

pU ,Vq ÞÑ bpU ,Vq :“ pEU0,V0q `
Nÿ

i“1

pBiUi,Viq.

Further, we denote by B : HD ÝÑ HD the block diagonal operator such that
pBU ,Vq “ bpU ,Vq for all U ,V P HD. Now, using the A-orthogonal projection
P0 on VG, for any U “ pU0, pUiq1ďiďN q P HD we define the linear operator
RSORAS : HD ÝÑ H by

RSORASpUq :“ ZU0 ` pI ´ P0q
Nÿ

i“1

RT
i DiUi.

In order to apply the fictitious space lemma we check the three assumptions
required.

‚ RSORAS is onto:
Let U P H , we have

U “ P0U ` pI ´ P0qU
“ P0U ` pI ´ P0q řN

i“1 R
T
i DiRiU

“ P0U ` pI ´ P0q řN
i“1 R

T
i DipI ´ ξ0iqRiU ` pI ´ P0q řN

i“1 R
T
i Diξ0iRiUlooooooooooooooooomooooooooooooooooon

“0

.

Let us consider the last equality: since P0U P VG there exists U0 such that
ZU0 “ P0U, meanwhile the third term is zero since

řN
i“1 R

T
i Diξ0iRiU P VG.

Note also that pI ´ ξ0iqRiU P G
KBi

i . Therefore, we have

U “ RSORASpU0, ppI ´ ξ0iqRiUq1ďiďN q. (16)
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Two-level DDM preconditioners for positive Maxwell equations



‚ Continuity of RSORAS :
We have to estimate a constant cR such that for all U “ pU0, pUiq1ďiďN q P HD

we have

apRSORASpUq,RSORASpUqq ď cR bpU ,Uq “ cR rpEU0,U0q `
Nÿ

i“1

pBiUi,Uiqs.

Note that Ui P G
KBi

i here for 1 ď i ď N . Now we have the following estimate
using the A-orthogonality of I ´ P0 and Lemma 7.9 in [1] (page 171):

apRASpUq,RASpUqq “ }ZU0 ` pI ´ P0q
řN

i“1 R
T
i DiUi}2A

“ }ZU0}2A ` }pI ´ P0q řN
i“1 R

T
i DiUi}2A

ď pEU0,U0q ` k0
řN

i“1 }RT
i DiUi}2A

ď pEU0,U0q ` k0γ0
řN

i“1pBiUi,Uiq,

where

γ0 :“ max
1ďiďN

max
ViPG

KBi
i

}RT
i DiVi}2A

pBiVi,Viq
“ max

1ďiďN
max

ViPG
KBi
i

pDiRiAR
T
i DiVi,Viq

pBiVi,Viq
.

(17)

Thus the estimate of the constant of continuity of RAS can be chosen as

cR :“ maxp1, k0γ0q.

‚ Stable decomposition with RSORAS :
Let U P H be decomposed as in (16). Determining the stability of the decom-
position consists in estimating a constant cT ą 0 such that

cT rpEU0,U0q `
Nÿ

j“1

pBjpI ´ ξ0jqRjU, pI ´ ξ0jqRjUqs ď apU,Uq.

We have

řN
j“1pBjpI ´ ξ0jqRjU, pI ´ ξ0jqRjUq ď τ0

řN
j“1pANeu

j RjU, RjUq
ď τ0k1 apU,Uq, (18)

where

τ0 :“ max
1ďjďN

max
VjPR#Nj

pBjpI ´ ξ0jqVj , pI ´ ξ0jqVjq
pANeu

j Vj ,Vjq , (19)

and in the second step we have used Lemma 7.13 in [1] (page 175). By applying
(18), we obtain

pEU0,U0q `
řN

j“1pBjpI ´ ξ0jqRjU, pI ´ ξ0jqRjUq
ď apP0U, P0Uq ` τ0k1 apU,Uq
ď p1 ` k1τ0q apU,Uq.
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Thus we can take

cT :“ 1

1 ` k1τ0
.

Note that the choice Bj :“ ANeu
j would give τ0 “ 1. The condition number

estimate given by the fictitious space lemma for the induced preconditioner is

κpM´1
SORASAq ď p1 ` k1τ0qmaxp1, k0γ0q.

The development that now follows is motivated by the fact that the numbers
γ0 and τ0 may be very large due to the shape and size of the domain or the
heterogeneities in the coefficients of the problem. This leads to a bad condition
number estimate. The fix is to enlarge the coarse space by GEVPs induced by
the formulae (17) and (19). More precisely, we introduce in the next subsection
two generalized eigenvalue problems and the related GenEO coarse space.

3.2 SORAS with GenEO

GEVP 3.1 (Generalized Eigenvalue Problem for the lower bound) For

each subdomain 1 ď j ď N , we introduce the generalized eigenvalue problem

Find pVjk, λjkq P R
#Nj zt0u ˆ R such that

pI ´ ξT0jqBjpI ´ ξ0jqVjk “ λjkA
Neu
j Vjk.

(20)

Let τ ą 0 be a user-defined threshold, we define V τ
j,geneo Ă R

#N as the vector

space spanned by the family of vectors pRT
j DjpI ´ ξ0jqVjkqλjkąτ corresponding

to eigenvalues larger than τ . Let V τ
geneo be the vector space spanned by the

collection over all subdomains of vector spaces pV τ
j,geneoq1ďjďN .

In the theory that follows for the stable decomposition estimate but not in
the algorithm itself, we will make use of πj defined as the projection from R#Nj

on Vj,τ :“ SpantVjk|λjk ą τu parallel to SpantVjk|λjk ď τu. The key to
GEVP 3.1 is the following bound, derived from Lemma 7.7 in [1] (page 168):
for all Uj P R#Nj

pBjpI ´ ξ0jqpI ´ πjqUj , pI ´ ξ0jqpI ´ πjqUjq ď τpANeu
j Uj ,Ujq. (21)

GEVP 3.2 (Generalized Eigenvalue Problem for the upper bound) For

each subdomain 1 ď i ď N , we introduce the generalized eigenvalue problem

Find pUik, µikq P G
KBi

i zt0u ˆ R such that

DiRiAR
T
i DiUik “ µikB

G
KBi
i

Uik.
(22)

Let γ ą 0 be a user-defined threshold, we define V
γ
i,geneo Ă G

KBi

i as the vector

space spanned by the family of vectors pRT
i DiUikqµikąγ corresponding to eigen-

values larger than γ. Let V γ
geneo be the vector space spanned by the collection

over all subdomains of vector spaces pV γ
i,geneoq1ďiďN .

In our theory for the continuity estimate but not in the algorithm itself, we

will make use of the projection ηi from G
KBi

i on Vi,γ :“ spantUik|µik ą γu
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parallel to spantUik|µik ď γu. The key to GEVP 3.2 is the following bound,

derived from Lemma 7.7 in [1] (page 168): for all Ui P G
KBi

i

pART
i DipI ´ ηiqUi, R

T
i DipI ´ ηiqUiq ď γpB

G
KBi
i

Ui,Uiq “ γpBiUi,Uiq. (23)

We can now build the coarse space V0 from the near-kernel G along with
GEVPs 3.1 and 3.2, defining the following vector space sum:

V0 :“ VG ` V τ
geneo ` V γ

geneo. (24)

The coarse space V0 is spanned by the columns of a full rank rectangular matrix
with #N0 columns, which we will denote by Z.

We can now define the abstract framework for the SORAS with GenEO
preconditioner. Let HD be defined by

HD :“ R
#N0 ˆ

Nź

i“1

G
KBi

i

endowed with the Euclidean scalar product. We now define the bilinear form
b : HD ˆ HD ÝÑ R arising from the coarse operator E “ ZTAZ and the local
SPD matrices pBiq1ďiďN such that

pU ,Vq ÞÑ bpU ,Vq :“ pEU0,V0q `
Nÿ

i“1

pBiUi,Viq.

Further, we denote by B : HD ÝÑ HD the block diagonal operator such that
pBU ,Vq “ bpU ,Vq for all U ,V P HD. Using the A-orthogonal projection P0 on
V0, we define RSORAS,2 : HD ÝÑ H as

RSORAS,2pUq :“ ZU0 ` pI ´ P0q
Nÿ

i“1

RT
i DiUi.

In order to apply the fictitious space lemma we check the three assumptions
as before. Surjectivity of RSORAS,2 follows identically to that for RSORAS as
in Section 3.1. Thus we need only consider continuity and the stable decompo-
sition.

‚ Continuity of RSORAS,2:
For U “ pU0, pUiq1ďiďN q P HD, by A-orthogonality of I ´P0, using Lemma 7.9
in [1] (page 171) along with the GEVP bound (23) we have

apRpUq,RpUqq “ }ZU0 ` pI ´ P0q
řN

i“1 R
T
i DiUi}2A

“ }ZU0}2A ` }pI ´ P0q řN
i“1 R

T
i DiUi}2A

“ pEU0,U0q ` }pI ´ P0q
řN

i“1 R
T
i DipI ´ ηiqUi}2A

ď pEU0,U0q ` pAřN
i“1 R

T
i DipI ´ ηiqUi,

řN
i“1 R

T
i DipI ´ ηiqUiq

ď pEU0,U0q ` k0
řN

i“1pART
i DipI ´ ηiqUi, R

T
i DipI ´ ηiqUiq

ď pEU0,U0q ` k0γ
řN

i“1pBiUi,Uiq.

Thus the estimate of the constant of continuity of RSORAS,2 can be chosen as

cR :“ maxp1, k0γq.
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‚ Stable decomposition with RSORAS,2:
Let U P H , we have

U “ P0U ` pI ´ P0q řN
i“1 R

T
i DiRiU

“ P0U ` pI ´ P0q řN
i“1 R

T
i DipI ´ ξ0iqRiU ` pI ´ P0q řN

i“1 R
T
i Diξ0iRiUlooooooooooooooooomooooooooooooooooon

“0

“ P0U ` pI ´ P0q řN
i“1 R

T
i DipI ´ ξ0iqpI ´ πiqRiU

` pI ´ P0q
řN

i“1 R
T
i DipI ´ ξ0iqπiRiUlooooooooooooooooooooooomooooooooooooooooooooooon
“0

.

The very last term is zero since for all i, RT
i DipI´ξ0iqπiRiU P V τ

geneo Ă V0. Let

U0 P R
#N0 be such that ZU0 “ P0U, then we can choose the decomposition

U “ RSORAS,2pU0, ppI ´ ξ0iqpI ´ πiqRiUq1ďiďN q.
With this decomposition, using the GEVP bound (21) and Lemma 7.13 in [1]
(page 175), we have

pEU0,U0q ` řN
j“1pBjpI ´ ξ0jqpI ´ πjqRjU, pI ´ ξ0jqpI ´ πjqRjUq

ď apZU0, ZU0q ` τ
řN

j“1pANeu
j RjU, RjUq

ď apP0U, P0Uq ` τk1 apU,Uq
ď p1 ` k1τq apU,Uq.

Thus the stable decomposition property holds with constant

cT :“ 1

1 ` k1τ
.

Altogether, for given user-defined positive constants τ and γ, the SORAS
with GenEO preconditioner yields the condition number estimate

κpM´1
SORAS,2Aq ď p1 ` k1τqmaxp1, k0γq,

where

M´1
SORAS,2 “ RSORAS,2B

´1R˚
SORAS,2.

In order to specify this preconditioner we need the adjoint operator R˚
SORAS,2

which now requires an additional projection. Let qi denote the (l2-)orthogonal

projection from R
#Ni on G

KBi

i , then the adjoint is defined by the relationship

pU ,R˚
SORAS,2pVqqHD

“ pRSORAS,2pUq,VqH
“ pZU0,Vq `

´
pI ´ P0q řN

i“1 R
T
i DiUi,V

¯

“ pU0, Z
TVq ` řN

i“1

`
Ui, DiRipI ´ PT

0 qV
˘

“ pU0, Z
TVq ` řN

i“1

`
Ui, qiDiRipI ´ PT

0 qV
˘

for all U “ pU0, pUiq1ďiďN q P HD and V P H . Note that the projection qi

ensures that qiDiRipI ´ PT
0 qV P G

KBi

i while leaving the (l2-)inner product

unchanged as Ui P G
KBi

i . Hence we identify that

R˚
SORAS,2pVq “ pZTV, pqiDiRipI ´ PT

0 qVq1ďiďN q
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and thus

M´1
SORAS,2 “ ZpZTAZq´1ZT ` pI ´ P0q

Nÿ

i“1

RT
i DiB

:
i qiDiRipI ´ PT

0 q.

To determine an explicit form for qi, suppose we wish to apply the projection
to Ui P R

#Ni , then qiUi satisfies the constrained minimisation problem1

min
ViPG

KBi
i

1

2
}Vi ´ Ui}2 “ min

Vi | GT
i BiVi“0

1

2
}Vi ´ Ui}2. (25)

We can solve the optimisation problem (25) using the Lagrange multiplier
method. Introducing the multipliers λ P R

#NGi , the optimality conditions
for Vi “ qiUi are given by

pqiUi ´ Uiq ´ BiGiλ “ 0,

GT
i BiqiUi “ 0.

Solving for λ yields

λ “ ´pGT
i B

2
i Giq´1GT

i BiUi,

and thus, as Ui P R
#Ni was arbitrary, we can derive the explicit form

qi “ I ´ BiGipGT
i B

2
i Giq´1GT

i Bi.

We also require an explicit expression for B
:
i “ pI ´ ξ0iqB´1

i . Since ξ0i is the

Bi-orthogonal projection from R
#Ni on Gi parallel to G

KBi

i it is given by

ξ0i “ GipGT
i BiGiq´1GT

i Bi

and thus we have

pI ´ ξ0iqB´1
i qi “ pB´1

i ´ GipGT
i BiGiq´1GT

i qpI ´ BiGipGT
i B

2
i Giq´1GT

i Biq
“ B´1

i ´ GipGT
i BiGiq´1GT

i

´ GipGT
i B

2
iGiq´1GT

i Bi ` GipGT
i B

2
iGiq´1GT

i Bi

“ B´1
i ´ GipGT

i BiGiq´1GT
i

“ pI ´ ξ0iqB´1
i .

From the penultimate expression we see that we have symmetry of B:
i qi and,

moreover, that the inclusion of qi is, in theory, unnecessary since B
:
i qi “ B

:
i .

Hence, we find that the two-level preconditioner can be given by

M´1
SORAS,2 “ ZpZTAZq´1ZT ` pI ´ P0q

Nÿ

i“1

RT
i DipI ´ ξ0iqB´1

i DiRipI ´ PT
0 q.

1Here, by abuse of notation, Gi represents a matrix whose columns form a basis for the

near-kernel space Gi.

16

Two-level DDM preconditioners for positive Maxwell equations



Further, note that we have pI ´ P0qRT
i DipI ´ ξ0iqUi “ pI ´ P0qRT

i DiUi for
any Ui P R

#Ni since RT
i Diξ0iUi P VG Ă V0. Additionally, note that the A-

orthogonal projection P0 on V0 is given by

P0 “ ZpZTAZq´1ZTA.

Hence, we deduce that we can write the SORAS with GenEO preconditioner in
a simpler expression as

M´1
SORAS,2 “ P0A

´1 ` pI ´ P0q
Nÿ

i“1

RT
i DiB

´1
i DiRipI ´ PT

0 q. (26)

3.3 Inexact coarse solves

We now consider the SORAS with GenEO method with inexact coarse solves
given by Ẽ satisfying Assumption 2.1. We follow the same premise as Section 2.3
and again let P̃0 :“ ZẼ´1ZTA be the inexact coarse solve approximation of
P0 “ ZE´1ZTA. Our analysis predominantly follows that in [3].

First we revisit the eigenvalue problems in GEVPs 3.1 and 3.2. Recall that
πj is the projection from R

#Nj on Vj,τ :“ SpantVjk|λjk ą τu parallel to
SpantVjk|λjk ď τu, where pVjk, λjkq are eigenpairs from GEVP 3.1. Similarly,

ηi is the Bi-orthogonal projection from G
KBi

i on

Vi,γ :“ spantUik|µik ą γu

parallel to

Wi,γ :“ spantUik|µik ď γu,

where pUik, µikq are eigenpairs from GEVP 3.2. Now, for 1 ď j ď N , let us
define the pI ´ ξT0jqBjpI ´ ξ0jq-orthogonal projection pj from R#Nj on

Vj,τ,γ :“ Vj,τ ` Vj,γ .

Note that Vj,γ Ă G
KBj

j and Gj Ę Vj,τ since any vector in Gj corresponds to
a zero eigenvalue of GEVP 3.1. Thus Gj X Vj,τ,γ “ t0u and the projection is
well-defined and, letting Y be a basis of Vj,τ,γ , given by the formula

pj “ Y
`
Y T pI ´ ξT0jqBjpI ´ ξ0jqY

˘´1
Y T pI ´ ξT0jqBjpI ´ ξ0jq.

While pI´ξT0jqBjpI´ξ0jq is singular onGj , it is nonsingular on rangepY q “ Vj,τ,γ

and thus we can take the required inverse.
We now show that suitable analogous results to Lemma 5 in [3] for pj hold

in our case. Owing to GEVP 3.1, we have that for all Uj P R#Nj

τpANeu
j Uj ,Ujq

ě pBjpI ´ ξ0jqpI ´ πjqUj , pI ´ ξ0jqpI ´ πjqUjq
“ pBjpI ´ ξ0jqpI ´ pj ` ppj ´ πjqqUj , pI ´ ξ0jqpI ´ pj ` ppj ´ πjqqUjq
“ }pI ´ ξ0jqpI ´ pjqUj}2Bj

` }pI ´ ξ0jqppj ´ πjqUj}2Bj

` 2 pBjpI ´ ξ0jqpI ´ pjqUj , pI ´ ξ0jqppj ´ πjqUjq
“ }pI ´ ξ0jqpI ´ pjqUj}2Bj

` }pI ´ ξ0jqppj ´ πjqUj}2Bj
,
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the cross term in the penultimate line being zero due to the fact that pj is the
pI ´ ξT0jqBjpI ´ ξ0jq-orthogonal projection and noting that πj also projects into

Vj,τ,γ . Thus we deduce that for all Uj P R#Nj

pBjpI ´ ξ0jqpI ´ pjqUj , pI ´ ξ0jqpI ´ pjqUjq ď τpANeu
j Uj ,Ujq

and, moreover, letting Uj “ RjU, summing over j and using Lemma 7.13 of [1]
(page 175), for all U P R#N we have

Nÿ

j“1

pBjpI ´ ξ0jqpI ´ pjqRjU, pI ´ ξ0jqpI ´ pjqRjUq ď k1τ apU,Uq. (27)

In defining the preconditioner, we will want to operate within the spaceWi,γ .
Let bWi,γ

denote the restriction of bi to Wi,γ ˆ Wi,γ so that

bWi,γ
: Wi,γ ˆ Wi,γ ÝÑ R, pUi,Viq ÞÑ bipUi,Viq.

The Riesz representation theorem gives the existence of a unique isomorphism
BWi,γ

: Wi,γ ÝÑ Wi,γ into itself so that for all Ui,Vi P Wi,γ we have

bWi,γ
pUi,Viq “ pBWi,γ

Ui,Viq.

The inverse of BWi,γ
will be denoted by B̃

:
i and is given by the following formula

B̃
:
i “ pI ´ ηiqpI ´ ξ0iqB´1

i . (28)

In order to check this formula, we have to show that

BWi,γ
pI ´ ηiqpI ´ ξ0iqB´1

i y “ y (29)

for all y P Wi,γ . Let z P Wi,γ , using the fact that pI ´ ηiqpI ´ ξ0iq is the
bi-orthogonal projection on Wi,γ , we have

pBWi,γ
pI ´ ηiqpI ´ ξ0iqB´1

i y, zq “ bippI ´ ηiqpI ´ ξ0iqB´1
i y, zq

“ bipB´1
i y, pI ´ ξ0iqpI ´ ηiqzq

“ bipB´1
i y, zq “ py, zq.

Since this equality holds for any z P Wi,γ , this proves that (29) holds and thus

that B̃:
i provides the inverse of BWi,γ

.
We now define the abstract framework for the preconditioner. Let HD be

defined by

HD :“ R
#N0 ˆ ΠN

i“1Wi,γ

endowed with standard Euclidean scalar product. We make use of the bilinear
form b̃ : HD ˆ HD ÝÑ R, with block diagonal matrix form B̃, such that

b̃pU ,Vq :“ pẼU0,V0q `
Nÿ

i“1

pBiUi,Viq,
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and consider the linear operator rRSORAS,2 : HD ÝÑ H defined by

rRSORAS,2pUq :“ ZU0 ` pI ´ P̃0q
Nÿ

i“1

RT
i DiUi.

Note that

rRSORAS,2pUq ´ RSORAS,2pUq “ pP0 ´ P̃0q
Nÿ

i“1

RT
i DiUi P V0

since ImpP0 ´ P̃0q Ă V0 .
Following similar arguments to those presented in [3], we now check the three

assumptions of the fictitious space lemma.
‚ rRSORAS,2 is onto:

For U P H we have that

U “ P0U ` pI ´ P0qU “ P0U ` pI ´ P0q řN
i“1 R

T
i DiRiU

“ P0U ` pI ´ P0q
řN

i“1 R
T
i DipI ´ ξ0iqRiU

“ P0U ` pI ´ P0q řN
i“1 R

T
i DipI ´ ηiqpI ´ ξ0iqRiU

“ F0U ` pI ´ P̃0q řN
i“1 R

T
i DipI ´ ηiqpI ´ ξ0iqRiU,

where

F0U “ P0U ` pP̃0 ´ P0q řN
i“1 R

T
i DipI ´ ηiqpI ´ ξ0iqRiU P V0.

Let U0 P R
#N0 be such that ZU0 “ F0U, then we have the decomposition

U “ rRSORAS,2pU0, ppI ´ ηiqpI ´ ξ0iqRiUq1ďiďN q.

‚ Continuity of rRSORAS,2:
Let δ ą 0 be a positive parameter. For U “ pU0, pUiq1ďiďN q P HD, by using the
fact that pI ´ ηiqUi “ Ui for 1 ď i ď N (recall that Ui P Wi,γ), ImpP0 ´ P̃0q is
a-orthogonal to ImpI ´P0q, the Cauchy–Schwarz inequality, Young’s inequality
(with parameter δ), A-orthogonality of I ´P0, the bound (11) from Lemma 2.1,
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and Lemma 7.9 of [1] (page 171) we have

ap rRSORAS,2pUq, rRSORAS,2pUqq
“ }RSORAS,2pUq ` pP0 ´ P̃0q řN

i“1 R
T
i DiUi}2A

“ }RSORAS,2pUq}2A ` 2apRSORAS,2pUq, pP0 ´ P̃0q řN
i“1 R

T
i DiUiqq

` }pP0 ´ P̃0q řN
i“1 R

T
i DiUi}2A

“ }ZU0}2A ` }pI ´ P0q řN
i“1 R

T
i DiUi}2A ` 2apZU0, pP0 ´ P̃0q řN

i“1 R
T
i DiUiq

` }pP0 ´ P̃0q řN
i“1 R

T
i DiUi}2A

ď }ZU0}2A ` } řN
i“1 R

T
i DiUi}2A ` δ}ZU0}2A ` 1

δ
}pP0 ´ P̃0q řN

i“1 R
T
i DiUi}2Aq

` }pP0 ´ P̃0q
řN

i“1 R
T
i DiUi}2A

ď p1 ` δq}ZU0}2A `
´
1 ` p1 ` 1

δ
q}P0 ´ P̃0}2A

¯
} řN

i“1 R
T
i DiUi}2A

ď p1 ` δqλmaxpEẼ´1qpẼU0,Uq `
´
1 ` p1 ` 1

δ
q}P0 ´ P̃0}2A

¯
k0

řN
i“1 }RT

i DiUi}2A
“ p1 ` δqλmaxpEẼ´1qpẼU0,Uq

`
´
1 ` p1 ` 1

δ
q}P0 ´ P̃0}2A

¯
k0

řN
i“1pART

i DipI ´ ηiqUi, R
T
i DipI ´ ηiqUiq

ď cR b̃pU ,Uq,

with

cR “ max
´

p1 ` δqλmaxpEẼ´1q,
´
1 ` p1 ` 1

δ
q}P0 ´ P̃0}2A

¯
k0γ

¯
.

Note that this continuity constant is similar to the case of the AS algorithm,
only now we have an additional factor of γ in the second term. Again, we can
minimise over δ ą 0 enabling us to take

cR “ k0γp1 ` ǫ2Aq ` λ` `
a

pk0γp1 ` ǫ2Aq ´ λ`q2 ` 4λ`k0γǫ
2
A

2
. (30)

‚ Stable decomposition with rRSORAS,2:
For U P H we have that

U “ P0U ` pI ´ P0qU “ P0U ` pI ´ P0q
řN

i“1 R
T
i DiRiU

“ P0U ` pI ´ P0q řN
i“1 R

T
i DipI ´ piqRiU

“ P0U ` pI ´ P0q
řN

i“1 R
T
i DipI ´ ξ0iqpI ´ piqRiU

“ FU ` pI ´ P̃0q řN
i“1 R

T
i DipI ´ ξ0iqpI ´ piqRiU,

where

FU “ P0U ` pP̃0 ´ P0q řN
i“1 R

T
i DipI ´ ξ0iqpI ´ piqRiU P V0. (31)

Let U0 P R
#N0 be such that ZU0 “ FU, then we have the decomposition

U “ rRSORAS,2pU0, ppI ´ ξ0iqpI ´ piqRiUq1ďiďN q “: rRSORAS,2pUq.

We now show that this decomposition is stable, again following an analogous
approach to [3]. Firstly, note that the bound in (27) applies to the domain
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decomposition part of b̃pU ,Uq. The remaining term in b̃pU ,Uq corresponds to
the coarse operator Ẽ where, using the bound (10) of Lemma 2.1, we have

pẼU0,U0q ď λmaxpE´1Ẽq}ZU0}2A “ λmaxpE´1Ẽq}FU}2A.

Now from (31), letting δ ą 0 be a positive parameter, making use of the Cauchy–
Schwarz inequality, Young’s inequality (with parameter δ), Lemma 7.9 of [1]
(page 171) gives

}FU}2A ď }P0U}2A ` 2apP0U, pP̃0 ´ P0q
řN

i“1 R
T
i DipI ´ ξ0iqpI ´ piqRiUq

` }pP̃0 ´ P0q řN
i“1 R

T
i DipI ´ ξ0iqpI ´ piqRiU}2A

ď p1 ` δq}P0U}2A ` p1 ` 1
δ

q}pP̃0 ´ P0q
řN

i“1 R
T
i DipI ´ ξ0iqpI ´ piqRiU}2A

ď p1 ` δqapU,Uq ` p1 ` 1
δ

qǫ2A} řN
i“1 R

T
i DipI ´ ξ0iqpI ´ piqRiU}2A

ď p1 ` δqapU,Uq ` p1 ` 1
δ

qǫ2Ak0
řN

i“1 }RT
i DipI ´ ξ0iqpI ´ piqRiU}2A

ď p1 ` δqapU,Uq ` p1 ` 1
δ

qǫ2Ak0γ
řN

i“1 }pI ´ ξ0iqpI ´ piqRiU}2Bi

ď
`
p1 ` δq ` p1 ` 1

δ
qǫ2Ak0k1τγ

˘
apU,Uq,

where in the penultimate step we have made use of Lemma 6 in [3] (applied
with A replaced by DiRiAR

T
i Di and B by B

G
KBi
i

) and in the last step utilised

the bound in (27).
We can minimise over the parameter δ, yielding δ “ ǫA

?
k0k1τγ, and thus

pẼU0,U0q ď λmaxpE´1Ẽqp1 ` ǫA
a
k0k1τγq2apU,Uq.

Combining this estimate with (27) gives b̃pU ,Uq ď c´1
T apU,Uq where

cT “ 1

k1τ ` λmaxpE´1Ẽqp1 ` ǫA
?
k0k1τγq2

“ λminpEẼ´1q
p1 ` ǫA

?
k0k1τγq2 ` λminpEẼ´1qk1τ

. (32)

Thus we see that the constant in (32) is given solely in terms of the constants
k0, k1, τ and γ, and the minimal and maximal eigenvalues of EẼ´1.

Altogether, the fictitious space lemma provides the following spectral bounds

cT apU,Uq ď a
´
M̃´1

SORAS,2AU,U
¯

ď cR apU,Uq

for all U P H “ R
#N , where cR and cT are given by (30) and (32) respectively,

and

M̃´1
SORAS,2 “ rRSORAS,2B̃

´1 rR˚
SORAS,2

“ ZẼ´1ZT ` pI ´ P̃0q
Nÿ

i“1

RT
i B̃

:
i qiRipI ´ P̃T

0 q

“ P̃0A
´1 ` pI ´ P̃0q

Nÿ

i“1

RT
i pI ´ ηiqpI ´ ξ0iqB´1

i RipI ´ P̃T
0 q.

Note that in this case of inexact coarse solves we must retain the projection
onto Wi,γ in the form of the preconditioner.
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Disclaimer

This document provides a working draft, which details new theoretical results
of interest, but is not yet fully complete in background and scope. As such, it
is supplied as a pre-print draft version.
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