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Abstract: Corrosion in the marine environment is a complex mechanism. One of the most damaging
forms of corrosion is pitting corrosion, which is difficult to design and inspect against. In the North
Sea, multiple offshore wind structures have been deployed that are corroding from the inside out.
One of the most notable corrosion mechanisms observed is pitting corrosion. This study addresses
the lack of information both in the literature and the industry standards on the pitting corrosion
profile for water depth from coupons deployed in the North Sea. Image processing was therefore
conducted to extract the characteristics of the pit, which were defined as pit major length, minor
length, area, aspect ratio, and count. The pit depth was measured using a pit gauge and the maxi-
mum pit depth was found to be 1.05 mm over 111 days of exposure. The goal of this paper is to
provide both deterministic models and a statistical model of pit characteristics for water depth that
can be used by wind farm operators and researchers to inform and simulate pits on structures based
on the results of a real field experiment. As such, these models highlight the importance of adequate
corrosion protection.

Keywords: pitting corrosion; offshore wind structures; deterministic model; North Sea; image pro-
cessing; statistical model

1. Introduction

The effects of corrosion in the marine environment on offshore structures have been
well-documented [1]. Several incidents, including fatal ones such as the Piper Alpha inci-
dent, have identified corrosion as a contributing factor [2]. Different forms of corrosion
exist in the marine environment, among the most damaging of which is pitting corrosion
[3]. One of the features of pitting corrosion is that it is highly influenced by the environ-
ment, particularly when marine carbon steel is used in the fabrication of offshore struc-
tures such as ships, oil and gas platforms, pipes, as well as bottom fixed and floating off-
shore wind structures [4,5]. Thus, the association between corrosion and the design of
those structures is fundamental to their structural integrity and for ensuring fitness for
purpose. Corrosion is highly influential at every stage of the design for an offshore wind
turbine (OWT), and falls into four categories: ULS (ultimate limit state), FLS (fatigue limit
state), SLS (serviceability limit state), and ALS (accident limit state) [6-8]. Taking account
of the reduction in thickness, mass loss, and stress increasers caused by corrosion will
affect the four criteria in the following ways:

e The ULS will exhibit a reduction in thickness from corrosion that will increase the
chance of buckling or reduction of the strength of the material under extreme loads.
Localized corrosion will impact the structure by introducing a stress concentration
factor (SCF), thus increasing the chance of damage under a high design load.
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e  The FLS undergoes the same logic as the ULS and considers the SCF effects. Even
though the SN curves are tailored to address the influence of corrosion on the struc-
ture, it is important to note that the water in which it is tested is artificial seawater,
which poorly reflects the chemistry of actual seawater. The biological components
are absent but are known to significantly affect both uniform and pitting corrosion
[9].

e  The SLS will be impacted by mass loss, and this will induce a change in the natural
frequency of the structure.

e The ALS might also be affected owing to the reduction in strength of the material
caused by corrosion loss. This implies that the compressive/tensile stresses will be
higher.

The goal of this paper is to extract features fundamental to the assessment of pits
where coupons have been exposed to the North Sea for 111 days (fully detailed in [10]).
Coupons with dimensions of 400 x 90 x 6 mm were placed in the vicinity of the Western-
most Rough wind farm below the tidal area at depths of 1, 5.5, 10.5 and 16 m from the
seabed. The water depth for the experiment was 30 m. Five arrays, each holding four cou-
pons, were deployed but only two were recovered with the others being lost at sea. In the
two arrays recovered, three coupons were lost. The recovered coupons were brought to
the laboratory for further analysis [10]. The arrays were color-coded for ease of identifica-
tion and only the blue and black arrays were retrieved.

Following an acid bath, the coupons revealed pitting corrosion that was visible to the
naked eye. Due to their curvature during the experiment, the coupons could not be ana-
lyzed directly by image processing as the curvature would have provided a dimensional
inaccuracy and altered pit properties such as major and minor length. To counter this
problem, the surface of the coupon was replicated on paper to represent its surface
through the process of frottage. The shaded drawing was then scanned using a high def-
inition scanner and converted to a JPEG format before being processed using the Image
Processing Toolbox in MATLAB. (2020). version(R2020a). Natick, Massachusetts: The
MathWorks Inc [11].

Digital Image Processing is a technique that makes use of digital images and extracts
information from those pictures [12-15]. In the case of pitting corrosion, the image is con-
verted into a black and white format as colors introduce another layer of complexity that
is not necessary for detecting and sizing pits.

The MATLAB image processing toolbox provides the necessary tools for this type of
image processing. The processes underpinning image segmentation are included as a
function for thresholding and edge detection which can ultimately be used for feature
extraction and object counts [16]. Using the pixel area and converting it to the actual area
of the pit, the probability of pitting can be determined [15].

Within the literature, there is a major absence of details on pitting corrosion for steel
5355 to water depth; in the authors’ opinion, this is the first time such an exercise has been
performed to catalogue those variations, not only for that grade of steel but also for any
other material. The extracted features/characteristics of the pits were defined as follows:
The pit depth;

The pit major length;
The pit minor length;
The aspect ratio;

The area;

The number of pits.

SANRANE i

For each of the above features, the minimum, maximum, and mean of the pits from
each plate were extracted and plotted with the water depth of the deployed coupons.

Owing to its stochastic nature, the most appropriate statistical distribution was fitted
to each of the above pit characteristics from each side of the coupons.
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Shading of coupons ————»

Depth of pits from
pit gauge

Some noise was detected, and the area and major length were employed to filter this
out by applying a threshold of acceptance and rejection based on those dimensional quan-
tities. To make this process fruitful, the following steps were employed, as summarized
in the flowchart in Figure 1:

Scanning of shaded Application of image Detection and
image processing extraction of pits

|

-« Filtering

Deterministic
variation of pits
characteristics with
depth
A

Statistical fits —

Figure 1. Flowchart of analysis for pits detection and sizing.

To capture the depth, a mechanical pit gauge was employed to measure at least 20%
of the total pits on the surface. The statistical distribution and variation with depth were
then determined to characterize the pits on each side of the plates.

Such an exercise is beneficial in making both designers and offshore wind operators
aware of the variations caused by pitting corrosion and use realistic values to design
against this.

2. Methodology

To assess the coupon using image processing, frottage was employed to replicate the
surface of the coupon onto a paper without the effect of the curvature. The nature of this
curvature arose during the field experiment and not from manufacturing. The process of
frottage was important as this enabled the measured pixels to be converted effectively to
metric length when it is known that the length of the coupon is 400 mm.

Once the shading was completed, the drawing was digitalized using a high-resolu-
tion scanner. The image was scanned in a grayscale format at the highest resolution avail-
able. Unwanted white sections of the paper were digitally trimmed out which would be
used as the input for the algorithm.

The first step of the algorithm was the conversion of a grayscale image to a black and
white one. This conversion is known as thresholding, denoted in this study by the letter
T where a user-defined grey value was set to define the white and black regions, respec-
tively. The logic for the thresholding was as follows:

e When the value of T is less than the threshold value, the binarizing process turns to
zero, otherwise it is one.

Following this step, the pit was extracted. To do so, the process of edge detection was
applied whereby a closed region of zero was examined to define a pit. Once the pit was
obtained, the features characterizing the pit could be extracted.

2.1. Area

The first features extracted were the area, which was simply a count of pixels inside
each of the pits multiplied by the area of each pixel. The conversion was defined by the
area scale factor. The mathematical expressions are as follows:
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A= ipn )

where A is the total pixel area, P is the pixel area, and 7 is the number of pixels for one pit.

The area scale factor was dependent on the length and width of the plate or coupon
and was crucial in changing the units from pixel?to mm?2. The procedure below explains
how this was conducted, with Figure 2 presenting a schematic of the coupon.

“u
Pixel Area of Pit

Figure 2. Schematic of plate and pit for area unit conversion.

The geometrical area of the plate was:

A = Area = Length x Width (2)

PA = Pixel Area = P, X P, (3)

where PA is the pixel area of the whole plate determined from the pixel size of the image
for the length and width.
A

o7 =K )

where K is the area scale factor.
The actual area of the feature was calculated as:

Area of feature[mm?] = K X pixel area of feature (5)

2.2. Minor and Major Length and Aspect Ratio

The minor and major length of the zero clusters were then extracted.

For each feature that was selected, the minor and major lengths were characterized.
The major length was simply the longest distance of the pit, and the minor length, the
shortest perpendicular distance from that major length. The distance at this current stage
was measured in pixels. The orientation was also extracted from the algorithm, which was
the angle of the major axis to the x-axis (horizontal) as part of the regionprops function in
the image processing toolbox of MATLAB. (2020). version(R2020a). Natick, Massachusetts:
The MathWorks Inc [17].

The length scale factor (LSF) had to be measured in the two axes, where Px was the
pixel length in the x-axis and Py was the pixel length in the y-axis (vertical):

L

5 LSF x (6)
w

— = LSF

b, y (7)

The length Lx and L, represent the corrected major lengths and were calculated as
follows:

L, = Major Length X LSFx X cos(0) 8)
L, = Major Length X LSFx X sin(6) )
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The same procedure was performed for the minor length extracted, except that the
angle 6 was corrected by adding it to 90 degrees.
The actual minor and major length in millimeters were calculated using the Pythag-

orean theorem:
Major or Minor length = fLE, + W2 (10)

The aspect ratio is much simpler as it is dimensionless, and this was determined us-
ing the following equation:

Aspect Ratio = major length/minor length 171)

2.3. Filtering

The process of filtering was fundamental in removing all the unnecessary noise from
the picture. Rather than undergoing an elaborate filtering process, the area and major
length were sufficient to remove the unwanted points. The criteria of acceptance were:

e If a pit with a length of fewer than 20 pixels and more than 2 pixels was captured as
the major length, this was deleted from the collection of pits.
e If the area was larger than 30 pixel?, the pits were deleted.

2.3.1. Pit Depth

The pit gauge was used to measure the depth of the pit. To extract this information
using manual labor is time-consuming. For each pit, only 20% of the depth was measured
in a random manner for which a minimum, mean, and maximum were found.

The pit gauge had a resolution of 0.05 mm.

2.3.2. Statistical Fit

For the area, aspect ratio, angle, and major and minor length, the most appropriate
statistical fit was chosen from a list of the following statistical distributions from
MATLAB. These were evaluated against the Akaike Information Criterion (AIC) to deter-
mine which fit was the most representative [18]. As a reminder, the AIC assesses the bias
versus the precision of the fit. More parameters represent a higher bias and are penalized
accordingly:

AIC = —2log.(L) + 2q 12)
The likelihood L was calculated as:
n
L= ] [reo (13)
i=1

The following flowchart (Figure 3) summarizes the various steps involved:
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Figure 3. Flowchart for image processing.

3. Results
3.1. Number of Pits

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

The number of pits detected are presented in Table 1, which also displays the proba-
bility of pitting and pit intensity.

Table 1. Pit data.

Coupon Probability of Pitting Number of Pits  Pit Intensity (Pit/m?) Depth fr((::; Seabed

1 Blue back 0.18 124 3.44x103 16

1 Blue front 0.23 180 5.00x103 16

1 Black back 0.36 285 7.92x103 16

1 Black front 0.59 537 1.49x10% 16

2 Blue back 0.66 240 6.67x103 115

2 Blue front 0.054 17 4.72x102 11.5

3 Black back 0.67 315 8.75x103 5.5

3 Black front 0.63 23 6.39x102 55

4 Blue back 0.54 363 1.01x104 1

4 Blue front 0.069 373 1.04x104 1

The pit intensity was calculated as:

o . number of pits
pit intensity = ————— (14)

Area[m?]

3.2. Pit Major and Minor Length and Pit Depth

The minor and major lengths are important characteristics of the pit. They must be
extracted and have not been given sufficient attention in the literature. In the context of a
stress analysis, the pit characteristics are fundamental. The profiling of the pit is per-
formed in terms of the minimum, mean, and maximum length of the pit for each side of
the plate.

A fit was therefore applied to mathematically define the profiling to depth for each
of the quantities in Figure 4.
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Major length vs. depth
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Figure 4. (a-d): Variation in pit characteristics with depth.

4. Discussion
4.1. Visual Inspection of Pits

There were several pits, some in the development stage and others at a micro-level.
The image in Figure 5a depicts the pits at different stages of development under an optical
microscope along with variations on the same plate but in different areas. A high level of
pit density was observed in some plates, as indicated in Figure 5b.
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(b)
Figure 5. (a) Pits at different stages (from microscope image); (b) High pit density image.

4.2. Pit Detection and Counting

The coupons were all shaded and the surficial conversion of one coupon is depicted
in Figure 6. The original image on the diagram illustrates the shaded and scanned coupon.
It was then transformed into grayscale to remove the color dimensions of the image. This
was inverted for easier viewing of the pits and ultimately binarized through the thresh-
olding process. The images were scanned to a ratio of 1:1.
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Figure 6. Image conversion.

In this case, the pits were from a basic visual inspection. The image processing algo-
rithm was used to extract information about the pits but before doing so, the image had
to be re-characterized as a black and white one. The threshold levels also had to be ad-
justed and compared from a value of 0.75 to 0.95 in steps of 0.025. The comparison was
based on the pit count resulting from the algorithm and the pit counts were carried out
manually. The black and white image indicates the sensitivity of the thresholding effect
on the feature extracted. It is important to note that the thresholding is highly dependent
on the conditions of the shading and scanning. The former was conducted by the same
person with the same darkness of pencil lead to ensure consistency in the images.

The other aspect that had to be performed, once the white regions had been identi-
fied, was to extract the features and count the number of objects. At this stage, despite the
thresholding, there was a high level of noise that had to be removed.

The regionprops function in MATLAB. (2020). version(R2020a). Natick, Massachu-
setts: The MathWorks Inc was used to extract the potential pits.

The features were then extracted and converted. The smaller pits reached a size of
0.1 mm, which corresponded to the size of 1 pixel. To refine this further, a higher spec
scanner could be used, in which case the dimensional representation of the pits can be
significantly improved (more pixels to represent 1 mm) but that would add potentially
more noise and processing time as the matrix dimension would increase significantly. The
filtering allowed the smaller pixels to be removed and the number of pits obtained were
tabulated as presented in Table 2.

Table 2. Number of pits counted.

Number of Pits Counted
Count 1 498
Count 2 462
Count 3 514
Average 491

Following filtration, the maximum number of pits obtained was 537 and the mini-
mum number was 17.
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Three individuals counted the pits, and this was used as a benchmark to calibrate the
thresholding value for the binarizing process.

The number of pits counted three times and then averaged are presented in Table 2:

The closest to the average indicated in Table 2 is 545.

Table 3 presents the error due to the thresholding.

Table 3. Number of pits calibrated.

Threshold Number of Pits % Error

0.75 1216 142.55319
0.775 928 85.106383

0.8 884 76.329787
0.825 695 38.630319
0.85 623 24.268617
0.875 545 8.7101064

0.9 407 -18.81649
0.925 203 -59.50798
0.95 75 -85.03989

It is extremely difficult to fully understand the reason for this variation. The differ-
ences in the number of pits are twofold and were explored as:

1. between the same plates but different sides (front and back), and
2. between the plates at different depths (total number of pits per plate).

4.2.1. Part (1)

Two aspects of the number of pits were considered for analysis to depth, namely the
maximum number of pits for each coupon when compared between sides and finally, the
sum of two sides from the same coupon, as presented in Figure 7.

Threshold of conversion: 0.75 Threshold of conversion: 0.775

L

Scale 100mm

Threshold of

Threshold of conversion: 0.95

-

Figure 7. Effect of thresholding on a scanned image.

As indicated, the pitting pattern to depth follows a quadratic curve shown in Figure
8. This is counter to the accepted belief that with depth, there is less oxygen and ultimately,
less corrosion. This trend demonstrates the complex nature of pitting corrosion and sup-
ports the notion that with depth there are fewer pits [3]. This graph indicates that inspec-
tion strategies for pitting corrosion must be vigilant at both tidal regions and also seabed
regions, especially seabed regions where bending stresses are larger.
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Number of pits vs. distance from seabed.
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Figure 8. Number of pits to depth.

An alternative perspective is to consider the difference between the front and back
pitting difference, which is derived from the probability of pitting presented in Figure 9.
The probability of pitting is simply the ratio of the total area of pits to the total area of the
surface. In this analysis, there are three curves indicating:

1. The total area of pits that consider both sides of the coupon, namely the surface area
of one side of the coupon is multiplied by two.

The front coupon indicates the probability of pitting for the front marked surface.

3. The back coupon indicates the probability of pitting for the back marked surface.

N

Probability of pitting

0.002
.
0.0015
[N L 2
£ - y = 1E-05%2 - 0.0003x + 0.0016
5 0001
5]
e N
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Linear {Probability of pitting Back) Poly. (Probability of pitting Front)

Figure 9. Probability of pitting.

Despite having pits in the front, this method indicates that between 5.8 and 11.5 m in
depth, the number of pits becomes negative. This shows that there are limitations to pro-
filing, which could be averted by deploying more coupons to cover those depths. Chlorine
ions are known to be fundamental in the pitting corrosion process. Pitting corrosion is an
auto-catalytic process whereby the chlorine ions ensure that the pitting potential is main-
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tained and therefore, progression from initiation, propagation and growth [3]. It is instruc-
tive to note that the difference between front and back close to the seabed is negligible.
This is where the high nitrogen content of rust and higher levels of sulfur are found. The
corrosion attack in terms of pitting corrosion is equally bad. Further away, there is an
increasing difference in the number of pits. Here, the levels of oxygen in the Energy Dis-
persive X-ray Spectroscopy (EDS) results are higher and that of sulfur is lower. This is a
clear illustration that the sulfur, which might be a manifestation of Sulphate Reducing
Bacteria (SRB), is more prominent and that nitrogen, which enhances marine growth, has
a major impact on the chemistry of corrosion but that influence is confined to the seabed
area. Oxygen becomes more dominant below the tidal region; therefore, aerobic corrosion
is fundamentally more present and the pits initiated are richer in the area where the oxy-
gen levels are higher.

A substantial difference was observed between the back and front of each plate and
is plotted in Figure 10. This was quantified in two ways, namely the probability of pitting
and the absolute number of pits. In both cases, the variations followed the same trend, but
the values were different. The reason for this cannot be fully explained and further mon-
itoring is required to provide a more informed explanation.

% Difference between front and back of each plate

2000
1500
®  Absolute number of pits
" L]
< 1000 % difference in
K ; - probabilty of pitting
E s K
E 500 e B Poly. (Absolute number
@ > ' of pits)
0 . [ ] Poly. (% difference in
0 5 10 15 20 probabilty of pitting)
-500
Depth [m]

Figure 10. Difference between pits in terms of probability of pitting.

4.2.2. Part (2)

One hypothesis is that close to the sea surface, the levels of oxygen are richer, and
this oxygen-rich environment helps to incubate more pits than those exposed at deeper
levels. That said, the problem is not simply related to oxygen; it also concerns the chemical
composition of the water and the biological content present in the marine ecosystem. The
seabed is teeming with life and biological corrosion will have a greater chance of occur-
ring. When the rust sample was subjected to EDS analysis (refer to Table Al in Appendix
A and Figure 11), nitrogen content was found only at the bottom plate, and is an element
known to enhance marine fouling. The presence of sulfur is also highly indicative of bio-
logical activities. Two other elements must be considered to obtain a better picture of the
pitting pattern being observed: chlorine and sulfur. An environment where pitting corro-
sion thrives must have chlorine as this allows the corrosion current to remain within the
pitting range. As indicated in the literature, the higher the percentage composition of chlo-
rine, the higher the pitting corrosion current, which reflects the pitting corrosion rate.
Thus, the more pits that are detected, the higher the chlorine levels. The data indicates
otherwise and demonstrates that the interacting chemicals in the rust tell a different story.
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Figure 11. (a-d). EDS spectra of iron rusts adapted from [10].

Figures 11 and 12 indicate that chlorine has a major influence but becomes more pro-
nounced between 1.6 and 2.6%. This seems to disprove the idea that more chlorine means
there is more pitting corrosion, which holds true in a controlled environment but not a
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marine one. The sulfur follows a quadratic format, with a maximum at 16 and 1 m. In
terms of corrosion rate, this is highly influenced by the chlorine and follows a trend similar
to that of the corrosion rate with depth. The corrosion rate is also strongly influenced by
the presence of nitrogen which causes it to increase drastically. Regarding the number of
pits, these increase with chlorine content except for the lowest point. The coupon with the
rust containing nitrogen is the second highest. This is due to the pits being larger and the
presence of pit coalescence. It is an extremely complex analysis as the corrosion takes place
in an environment that has a chemical, biological, and physical interaction, each of which
is influenced by multiple actors that are dynamic at every single level. Those interactions
have to be understood to determine those factors that influence pitting corrosion.

160N W4 0.85 900
L] ¢
L] .
T X ) | 4 800 [
2 n ¢ [ ]
0.75 700
o = ¢*
10
= ¢
= 07 600
E >
£ £ 2
o
a
© 065 500 -
‘ .
on
e
06 400
4
= ¢
5 0.55 30 e
[ [ ]
n ¢ ° ¢ ¢

% % %

Figure 12. % composition vs. water depth, corrosion rate (CR), and number of pits.

However, at this stage aforementioned, only a partial picture is available; further
monitoring of the dynamics of the water quality of the oceans is required to provide ad-
ditional details. Another explanation might relate to the microstructure of the coupons.
Even though the plates are manufactured from the same batch, there may be potential
variabilities in their microstructure, which will tend to increase the number of pits. This
is a tedious process and will require an elaborate microstructural analysis before and after
the coupon is deployed.

4.2.3. Pits’ Characteristics of Statistical Distributions

The plates used to determine the most appropriate statistical fit were those with the
most pits at each height. Although it might prove to be rather conservative, the difference
is so substantial that it is more optimal to adopt a conservative philosophy rather than a
more relaxed one on pitting corrosion.

The best fit for each of them, along with the parameters describing the most appro-
priate distributions assessed by the AIC, are given in Tables 4-6.

Table 4. Major length statistical fit.

Major Length
Coupon Distribution Distribution Name Distribution Values
1 blue back ‘Generalized ExtremeValue’ w ‘o’ ‘K’ 0.19 0.48 1.89
1 blue front ‘GeneralizedExtremeValue’ w ‘o’ ‘K 0.46 0.68 1.96
1 black back ‘GeneralizedExtremeValue’ 'y ‘o’ ‘K 0.16 0.46 1.84
1 black front ‘Generalized ExtremeValue’ w ‘o’ ‘K’ 0.22 0.73 2.20
2 blue back ‘GeneralizedExtremeValue’ w ‘o’ ‘K 0.34 0.68 1.99
2 blue front ‘GeneralizedExtremeValue’ W ‘o’ ‘K 0.40 0.51 217
3 black back ‘GeneralizedExtremeValue’ w ‘o’ ‘K 0.25 0.72 2.03
3 black front ‘lognormal’ w ‘o’ ‘N/A 0.88 0.36 0.00
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0.62
0.69

1.97
2.02

0.25
0.36

4 blue back
4 blue front

‘GeneralizedExtremeValue’ w ‘o’ ‘K
‘GeneralizedExtremeValue’ U g ‘K

Table 5. Minor length statistical fit.

Minor Length
Coupon Distribution Distribution Name Distribution Values
1 blue back ‘lognormal’ ‘w ‘o’ ‘N/A 0.01 0.25 0.00
1 blue front ‘lognormal’ ‘w ‘o’ ‘N/A’ -0.10 0.31 0.00
1 black back ‘GeneralizedExtremeValue’ ‘w ‘o’ K’ 0.08 0.27 1.04
1 black front ‘gamma’ ‘a’ v’ ‘N/A 7.84 0.20 0.00
2 blue back ‘GeneralizedExtremeValue’ ‘w ‘o’ ‘K’ 0.09 0.30 1.02
2 blue front ‘rayleigh’ ‘A ‘B 'N/A 0.89 0.00 0.00
3 black back lognormal’ ‘w ‘o’ ‘N/A 0.21 0.34 0.00
3 black front ‘lognormal’ ‘w ‘o’ ‘N/A’ 0.13 0.31 0.00
4 blue back ‘lognormal’ ‘w ‘o’ ‘N/A 0.19 0.33 0.00
4 blue front ‘GeneralizedExtremeValue’ ‘W ‘o’ ‘K’ 0.13 0.28 0.97
Table 6. AR statistical fit.
Aspect Ratio
Coupon Distribution Distribution Name Distribution Values
1 blue back ‘lognormal’ w ‘o’ ‘N/A’ 0.76 0.35 0.00
1 blue front ‘GeneralizedExtremeValue’ w ‘o’ ‘K’ 0.34 0.96 2.18
1 black back ‘GeneralizedExtremeValue’ w ‘o’ K’ 0.06 0.41 1.60
1 black front ‘GeneralizedExtremeValue’ 'y ‘o’ ‘K’ 0.33 0.37 1.50
2 blue back ‘GeneralizedExtremeValue’ w ‘o’ K’ 0.23 0.58 1.76
2 blue front ‘GeneralizedExtremeValue’ w ‘o’ ‘K’ 0.66 0.80 1.70
3 black back ‘GeneralizedExtremeValue’ w ‘o’ K’ 0.19 0.51 1.69
3 black front ‘lognormal’ w ‘o’ ‘N/A 0.74 0.39 0.00
4 blue back ‘GeneralizedExtremeValue’ w ‘o’ K’ 0.27 0.49 1.63
4 blue front ‘GeneralizedExtremeValue’ ‘W ‘o 'K’ 0.29 0.63 1.86
4.2.4. Pit Depth
Approximately 20% of the total number of pits were randomly measured using a pit
gauge. They were then tabulated and the data presented in a histogram for best statistical
fit evaluations.
The results for each of the selected coupons are presented in Table 7.
Table 7. Pit depth statistical fit.
Pit Depth
Coupon Distribution Distribution Name Distribution Values
1 blue back ‘ExtremeValue’ ‘w ‘o’ ‘N/A 0.2441442 0.0471388 0
1 blue front ‘GeneralizedExtremeValue’ ‘w ‘o’ K’ 2.6787865 1.56E-09 0.05
1 black back ‘GeneralizedExtremeValue’ ‘w ‘o’ ‘K’ 3.594312 8.12E-05 0.050022
1 black front ‘rayleigh’ A ‘o’ ‘N/A’ 0.2427394 0 0
2 blue back ‘Nakagami’ ‘w ‘o’ ‘N/A 1.9877973 0.0092857 0
2 blue front ‘GeneralizedExtremeValue’ ‘w ‘o K’ 3.335662 1.68E-05 0.050005
3 black back ‘ExtremeValue’ ‘w ‘o’ ‘N/A 0.7111769 0.1776861 0
3 black front ‘GeneralizedExtremeValue’ ‘w ‘o’ K’ 0.4137141 0.030785 0.061047
4 blue back ‘rayleigh’ A ‘B ‘N/A 0.1516998 0 0
4 blue front ‘GeneralizedExtremeValue’ ‘w ‘o’ ‘K’ 3.1221115 1.25E-09 0.05

The maximum pit depth was 1.05 mm on the coupon closest to the seabed.

The MATLAB. (2020). version(R2020a). Natick, Massachusetts: The MathWorks Inc
image processing toolbox provides the necessary tools for this type of image processing.
The processes of image segmentation are included as a function for thresholding and edge
detection, which can ultimately be used for feature extraction and object counts [16].
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5. Conclusions

This study demonstrates the variation of pitting corrosion with respect to depth. Alt-
hough a trend has been observed, to build more confidence in the results, similar experiments
will have to be repeated in different environments. The variation at the deterministic level
indicates that pitting corrosion varies in a quadratic manner with all the characteristics of the
pits in the immersed region.

The region close to the seabed has a different environment and, despite lower levels of
oxygen, the presence of nitrogen in the rust substrate proved to be a factor that determined
not only the higher number of pits but also the deepest ones. The 111 days of exposure also
indicates that pit coalescence was taking place where several pits were combining to form a
new larger pit. Within those larger pits, smaller pits or micro pits were formed, a factor that
tends to be excluded in some studies. According to the literature, these micro pits can increase
the SCF by a factor of two [19].

The image processing threshold was set to 0.875 to match the counted pits; once this cal-
ibration was completed, the characteristics of the pit were extracted using the region- props
function in MATLAB. The probability of pitting was found to be high in the area concerned at
0.6. Another method for determining the probability of pitting as a pit count was also identi-
fied, with significant differences observed in both methods.

The statistical fits are important, and it is the first time in the pitting literature that this
exercise has been carried out for such profiling. There tends to be a bias for the Generalized
extreme value distribution for the major length, pit depth, and the aspect ratio, and lognormal
for the minor length after using the AIC.

The purpose of this study was to provide meaningful results that can be used for both
simulations of pits at a design level but also from an operational and maintenance perspective.

The key findings can be summarized as follows:

1. The number of pits follows a quadratic curve in the immersed region with respect to
the pit properties.

2. The maximum pit depth was found to be 1.05 mm and was closest to the seabed.

3. The experiment needs to be repeated in different environments to increase confi-
dence in the model.

4.  Statistical fits assessed with the AIC can be used to express the variation of the pits.

5. Image processing can be applied to extract pit information such as pit area, pit aspect
ratio, and pit minor and major lengths.

Author Contributions: Conceptualization, W.K.; Data curation, W.K.; Funding acquisition, F.B.;
Methodology, W.K.; Software, W.K.; Supervision, F.B.; Visualization, W.K.; Writing-original draft,
W.K,; Writing-review and editing, F.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by grant EP/L016303/1 for Cranfield University, the University
of Oxford and Strathclyde University, Centre for Doctoral Training in Renewable Energy Marine
Structures (REMS) (http://www.rems-cdt.ac.uk/) (accessed on 30 August 2021) from the UK Engi-
neering and Physical Sciences Research Council (EPSRC).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
Percentage weight table

Table Al. EDS table percentage weight of elements.

2 Blue
Statistics N Mg Al Si P S Cl K Ca Ti \4 Cr Mn Fe
Max 0 0.44 1.22 2.34 0.28 1.33 421 0.43 12 0 2.17 1.08 0.54 57.14
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Min 0 0.66 0.18 0.24 0.22 0.11 0.45 221 0.07 0.07 0 0.11 0.14 0.21 36.55
Average 0 1.4 0.31 0.71 1.09 0 0.79 2.9 0.3 0.46 0 0 0 0 46.86
1 Black
Statistics N Na Mg Al Si P S Cl K Ca Ti \ Cr Mn Fe
Max 0 1.39 0.49 0.62 1.12 0 0.57 322 0.22 0.32 0 0.28 0.2 0 61.06
Min 0 0.43 0.19 0.3 0.44 0 0.17 0.88 0.07 0.09 0 0.28 0.2 0 40.56
Average 0 0.8 0.33 0.43 0.7 0 0.34 1.86 0.13 0.22 0 0 0 0 52.55
4 Blue
Statistics N Na Mg Al Si P S Cl K Ca Ti \ Cr Mn Fe
Max 6.5 2.52 0.81 3.23 5.58 0.63 1.23 3.22 1.08 1.51 0.18 0.67 0.72 0.35 55.83
Min 44 1.02 0.12 0.21 0.28 0.06 0.31 1.35 0.07 0.13 0.18 0.15 0.72 0.35 4.58
Average 53 1.51 0.52 1.45 227 0.21 0.89 2.29 0.55 0.65 0 0 0 0 39.19
3 Black
Statistics N Na Mg Al Si P S Cl K Ca Ti \4 Cr Mn Fe
Max 0 0.94 0.38 1.63 2.78 0.05 0.66 2.36 0.34 0.23 0.11 0 0 0.5 64.67
Min 0 0.16 0.37 0.1 0.23 0.05 0.25 0.64 0.12 0.07 0.11 0 0 0.5 40.69
Average 0 0.53 0 0.71 1.2 0 0.48 1.6 0.22 0 0 0 0 0 50.34
1 Blue
Statistics N Na Mg Al Si P S Cl K Ca Ti \ Cr Mn Fe
Max 0 2.8 1.48 4.31 11.29 0.23 2.04 4.26 1.46 3.2 0.33 0 0.93 0.41 67.36
Min 0 0.54 0.26 0.49 0.46 0.04 0.31 1.34 0.19 2.34 0.33 0 0.28 0.41 14.3
Average 0 1.3 0 1.75 4.77 0 1.09 2.53 0.68 0 0 0 0 0 38.67
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