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Abstract
Efflux pumps are critically important membrane components that play a crucial role in strain

tolerance in Pseudomonas putida to antibiotics and aromatic hydrocarbons that result in

these toxicants being expelled from the bacteria. Here, the effect of propranolol on P. putida
was examined by sudden addition of 0.2, 0.4 and 0.6 mg mL-1 of this β-blocker to several

strains of P. putida, including the wild type DOT-T1E and the efflux pump knockout mutants

DOT-T1E-PS28 and DOT-T1E-18. Bacterial viability measurements reveal that the efflux

pump TtgABC plays a more important role than the TtgGHI pump in strain tolerance to pro-

pranolol. Mid-infrared (MIR) spectroscopy was then used as a rapid, high-throughput

screening tool to investigate any phenotypic changes resulting from exposure to varying

levels of propranolol. Multivariate statistical analysis of these MIR data revealed gradient

trends in resultant ordination scores plots, which were related to the concentration of pro-

pranolol. MIR illustrated phenotypic changes associated with the presence of this drug

within the cell that could be assigned to significant changes that occurred within the bacte-

rial protein components. To complement this phenotypic fingerprinting approach metabolic

profiling was performed using gas chromatography mass spectrometry (GC-MS) to identify

metabolites of interest during the growth of bacteria following toxic perturbation with the

same concentration levels of propranolol. Metabolic profiling revealed that ornithine, which

was only produced by P. putida cells in the presence of propranolol, presents itself as a

major metabolic feature that has important functions in propranolol stress tolerance mecha-

nisms within this highly significant and environmentally relevant species of bacteria.

Introduction
Active pharmaceutical compounds (APCs), in their original states or their metabolites, are
ubiquitous in the environment [1], and the levels of APCs in the aquatic ecosystems (e.g., lakes,
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rivers, seawater and estuaries) are a growing concern [2]. Pharmaceuticals are not only being
introduced into the environment after consumption, but also via the disposal of unused or
expired pharmaceuticals [3]. The levels of many pharmaceuticals in sewage treatment plants
(STPs) have been detected at low concentrations in the range of ng L-1 to μg L-1 [1, 4–6]. A
study in the United Kingdom revealed that the β-blocker propranolol is widely used, and for
instance, around 12 tonnes of propranolol are consumed each year [4, 6, 7]. In addition, Ash-
ton and co-workers (2004) showed that the presence of the β-blocker propranolol in STP efflu-
ents was highly likely at 76 ng L-1 (median level) [4].

Despite the fact that APCs are designed to have specific modes of action in the organism
they were designed for, similar targets might control different metabolic processes in different
species for which the original APC was not designed for [8]. In addition, the modes of action of
the drugs within microbial systems are not fully understood. Thus, we and others believe it is
necessary to increase our knowledge of the biological effects and fate of pharmaceuticals on
microorganisms in the environment to appreciate the risks [9–11].

Indeed, bacterial communities inhabiting the benthic environment of riverbeds can be
exposed to higher levels of APCs than expected, as it is known that these compounds can
become concentrated in these areas [12–14]. Additionally, pharmaceuticals tend to bioaccu-
mulate and induce impacts in aquatic and terrestrial environments due to their intrinsic phar-
macokinetic properties [12]. A major adverse side effect of the presence of APCs in the
environment is an increase in antimicrobial resistance that poses huge potential risk for the
future, making the treatment of infections very difficult to cure, and there are several studies
that have eloquently described the link between exposure to effluent and antimicrobial resis-
tance [15–18].

Bacteria can adapt the activity of toxic substances by the employment of several resistant
mechanisms including altering lipid composition, energy production, efflux pumps as well as
other processes [19–22]. Efflux pumps, which transport toxic chemicals (usually waste prod-
ucts from normal metabolism) from the bacterial cell into the extra-cellular environment, are
probably the most highly significant process which plays an important role in bacterial toler-
ance. One of these mechanisms is controlled by the ATP-binding cassette (ABC) transporters
via the hydrolysis of ATP, whereas the transmembrane electrochemical gradient, particularly
the proton motive force, is used by secondary transporters in order to drive drug efflux [23,
24]. In Pseudomonas putida DOT-T1E cells, three efflux pumps, which are genome-encoded,
have been identified, and are termed TtgABC, TtgDEF, and TtgGHI. The TtgABC and TtgGHI
pumps remove both organic solvents and some antibiotics, whereas the TtgDEF pump has
been shown to be induced only by aromatic hydrocarbons [25–27].

Many studies have found that an enormous number of multidrug resistance (MDR) trans-
port proteins are involved in the export of a wide range of antimicrobial compounds [23, 24,
28]. In Pseudomonas species, various studies linked solvent and antibiotic tolerance to the
action of several efflux pumps [22, 25, 29, 30]. Moreover, solvent-tolerant microorganisms
(e.g. P. putida DOT-T1E) play a crucial role in several biotechnological applications such as
bioremediation, biocatalysis and agriculture [31–34]. Thus, an understanding of bacterial toler-
ant mechanisms is very important, in order to enhance the resistant systems for non-patho-
genic strains and create altered strains with superior tolerance characteristics for industrial
bioprocessing.

The qualitative and quantitative measurements of the metabolome of an organism can
reveal its biochemical status and these data can be used to monitor and determine the function
of genes [35, 36]. Metabolomics enables the identification and quantification of endogenous
biochemical reaction products of cellular regulatory pathways and metabolite levels can be
regarded as the ultimate response of biological system to environmental alterations and/or
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genetic factors. Metabolome analysis provides relevant information about specific cell types
under different conditions that is important for a more holistic understanding of cell functions
and properties [35]. A comprehensive assessment of the alteration in the metabolite levels in P.
putida strains can be acquired using a combination of metabolic profiling and multivariate
data analysis approaches. The interpretation of metabolic data is complicated, thus a wide
range of different analytical strategies have been employed to measure the metabolome [37,
38]. By understanding metabolomics data the effect of stress on lowest molecular levels is
revealed. This enables better understanding of altering metabolic pathways that are directly
affected by change in bacterial genome.

In order to investigate the effects of propranolol on biological system, we have employed
Fourier-transform infrared (FT-IR) spectroscopy to acquire metabolic fingerprints [39–41].
FT-IR spectroscopy involves the observation of bond vibrations from within molecules when a
sample is excited by a beam from the mid-infrared region of the electromagnetic spectrum.
Briefly, the infrared beam is transmitted through or reflected from a sample, with some of the
infrared radiation being absorbed at particular wavelengths within the sample, and the remain-
der continuing on to a detector, before being Fourier transformed and analysed via a computer.
This results in an infrared absorbance spectrum which can be referred to as a metabolic “fin-
gerprint” as it is characteristic of any chemical or biochemical substance. The fundamentals of
FT-IR have been described in far greater detail elsewhere [40, 42] but its main advantages are
that it is very rapid (taking seconds per sample), high-throughput, with 96 and 384 well sam-
pling plates, reagentless, and non-destructive. FT-IR has been applied to a very wide-range of
biological studies including clinical [41, 43] and microbiological [44] analyses since the very
early 1990s when Dieter Naumann and co-workers demonstrated its potential use for bacterial
characterization [45]. Metabolic profiling approaches are powerful in that in contrast to FT-IR
spectroscopy they can be used to identify, quantify and detect the metabolites within the bio-
logical system, and gas chromatography mass spectrometry (GC-MS) is currently a very popu-
lar method for analyzing central carbon and nitrogen metabolism [46–48]. Changes identified
in the metabolome can be considered to be hypothesis generating and as such can inform our
biochemical knowledge [49, 50]. With respect to bacterial strain tolerance we believe that the
observed metabolite changes can prove to be indicative of novel adaption mechanisms or may
support postulated adaption mechanisms for which there is little evidence up to date.

The aim of this study was to investigate the changes in metabolite levels within P. putida
DOT-T1E strains in the presence and absence of propranolol and determine if these changes
were associated to efflux pumps or other adaptation mechanisms within these bacteria. To
enable this, FT-IR spectroscopy was utilised as a rapid, high-throughput screening tool in
order to identify phenotypic alterations in bacterial cultures exposed to propranolol, and meta-
bolic profiling using GC-MS was employed to examine the change in metabolites at specific
time points before and after challenge with propranolol.

Material and Methods

Bacterial Strains and Cultivation of Bacteria
Three bacterial strains of P. putida DOT-T1E were used in this study, their relevant character-
istics, and references for further information on each strain are listed in Table 1. All strains
were sub-cultured in triplicate to obtain axenic cultures. Individual colonies were then picked
and transferred from plates into 250 mL flasks containing 50 mL of autoclaved Lysogeny broth
(LB) medium and incubated at 24 h at 30°C in an orbital incubator (Infors HT Ltd, UK) shak-
ing at 200 rpm.
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Growth Curve Monitoring
Bacterial growth curves were monitored manually using an orbital incubator and UV instru-
ment at 660 nm (Biomate 5, CarePlanTM, UK). All samples were normalised to an optical den-
sity (OD) of 0.02 in 250 mL flasks containing 50 mL LB medium. P. putida DOT-T1E cultures
were incubated at 30°C and 200 rpm. During the 24 h time course of, 100 μL samples were
taken at various time points (0, 2, 4, 6, 8, 10, 12 and 24 h) for OD measurement.

Growth in Response to Propranolol Shock, Sample Collection and
Analysis
Cells were grown in 50 mL of LB medium for 5 h at 30°C and 200 rpm. Once cell cultures
reached the mid-exponential phase, samples were divided into two groups. One group was
kept as a control, and to the second group propranolol was added at three different concentra-
tions (0.2, 0.4 and 0.6 mg mL-1). These cultures were then incubated for an additional 8 h.

Growth curve measurement. At various time points (0, 1, 3, 5, 7, 9, 11 and 13 h) before
and after the addition of propranolol, a 100 μL sample was taken for ODmeasurement. Growth
was recorded as an increase or decrease in turbidity at 660 nm. This work was undertaken in
biological triplicates.

FT-IR sample collection. After 60 min of the addition of propranolol, an aliquot (2 mL)
sample was transferred to 2 mL tube, and the ODs of the samples were recorded for normalisa-
tion. All measurements were performed in triplicate.

Sample preparation for FT-IR spectroscopy. An aliquot (2 mL) sample from each flask
was transferred to 2 mL tube and centrifuged at 11500 ×g for 5 min at 4°C. The supernatant
was removed and discarded, and the remaining pellet was washed twice with 2 mL of physio-
logical saline solution (0.9% NaCl) and centrifuged (11500 ×g, 5 min, 4°C) and the supernatant
discarded. The remaining cell pellets were stored at -80°C until required.

A 96-well silicon FT-IR plate (Bruker Optics, Banner Lane, Coventry, UK) was cleaned with
5% sodium dodecyl sulfate (SDS) and rinsed with deionised water and allowed to dry at room
temperature. Cell pellets were then removed from -80°C and allowed to thaw on ice. Samples
were normalised according to OD at 660 nm and resuspended in physiological saline and
gently vortexed. Aliquots (20 μL) of each sample were randomized and spotted in triplicate
onto a silicon FT-IR plate. The prepared plates were then dried on a desiccator at ambient tem-
perature for 7 h. This step was applied to minimise any signal arising from water absorbance in
the mid-IR region.

FT-IR setup. The prepared silicon sample plate was loaded onto a motorised microplate
module HTS-XT™ under the control of a PC programmed with OPUS software version 4. Spec-
tra were acquired using a Bruker Equinox 55 FT-IR spectrometer (Bruker Optics, Banner Lane,
Coventry, UK) in transmission mode as described previously [51], with a deuterated triglycine
sulfate (DTGS) detector over the wavenumber range 4000–600 cm-1, with a resolution of 4 cm-

1, 64 scans were co-added and averaged in order to improve the signal-to-noise ratio. Three
technical replicates were obtained from each sample, and a total of 324 spectra were collected.

Table 1. Bacteria used in this study.

Bacteria Relevant characteristicsa Reference

P. putida DOT-T1E Apr Rifr Tolr [84]

P. putida DOT-T1E-PS28 Rifr Smr ttgH::VSm [27]

P. putida DOT-T1E-18 Rifr Kmr ttgB::´phoA-Km [25]

a Resistance to Apr: ampicillin, Rifr: rifampin, Smr: streptomycin, Kmr: kanamycin and Tolr: toluene

doi:10.1371/journal.pone.0156509.t001

Metabolomics Analysis of Pseudomonas putidaChallenged with Propranolol

PLOS ONE | DOI:10.1371/journal.pone.0156509 June 22, 2016 4 / 23



FT-IR data analysis. FT-IR data were converted to ASCII format using OPUS reader soft-
ware and analysed using Matlab version 2012 (MathWorks, Natick, MA). All FT-IR spectra
were CO2 corrected by replacing the region from 2400 to 2275 cm-1 with a linear trend and
then scaled using extended multiplicative signal correction (EMSC) [52].

Statistical analysis of the preprocessed data was performed using principal component anal-
ysis (PCA) [53] and discriminant function analysis (DFA). PCA was used to generate set of
latent variables (PCs) which retain the major variance of the data whilst decreasing the
dimensionality; DFA was then used to create a set of discriminant functions (DFs) based on
PCs which maximize the differences between the known groups (classes) [54, 55]. PC-DFA
was performed using 10 PCs and 3 DFs, and the class structure for the DFA algorithm was
based on the biological replicates of samples of the same conditions.

GC-MS sample collection. 15 mL samples were quenched at three time points 0, 10 and
60 min before and after the addition of propranolol (0 min refers to the point immediately
before the addition of propranolol). This procedure was performed with four biological
replicates.

Metabolic quenching and metabolite extraction. Generally, a rapid inactivation of
metabolism is achieved by alteration in pH or temperature [56]. Thus, in order to halt metabo-
lism culture samples (15 mL) were plunged into a double volume of 60% cold methanol
(-50°C) in a 50 mL tube. The quenched culture mixture was centrifuged (3000 ×g, 10 min,
1°C), and then the supernatant was discarded, while the cell pellets were stored at -80°C until
required for metabolite extraction [57].

The biomass pellets were resuspended in 750 μL of freshly prepared cold methanol (80%).
The solution was then transferred to a 2 mL Eppendorf tube. This was followed by a freeze-
thaw cycle in order to extract the intracellular polar metabolites from the cells. Samples were
centrifuged at (13500 ×g, 3 min, 4°C) and the supernatant was transferred to new tubes and
stored on dry ice [57]. The extraction was performed again on the remaining pellet and both
supernatants were combined and again stored on dry ice. A final aliquot (1400 μL) of metabo-
lite extracts were normalised using 80% methanol according to OD at 660 nm. A quality con-
trol (QC) sample [58] was prepared by transferring 100 μL from each of the sample to a new
(15 mL) centrifuge tube. This was followed by the addition of (100 μL) of internal standard
solution (0.2 mg mL-1 glycine-d5, 0.2 mg mL-1 benzoic-d5 acid, 0.2 mg mL-1 lysine-d4, and 0.2
mg mL-1 succinic-d4 acid) to all samples. The samples were lyophilized for 16 h by speed vac-
uum concentrator (concentrator 5301; Eppendorf, Cambridge, UK), and then the pellet was
stored at -80°C for further analysis.

GC-MS derivatization process. Samples were derivatized prior to GC-MS analysis in two
stages as described previously by Wedge and co-workers [59]. The first step, (50 μL) of O-
methoxylamine hydrochloride diluted in pyridine (20 mg mL-1) was added to the samples and
then samples were heated on a heating block at 65°C for 40 min. The second step, (50 μL) of
MSTFA (N-methyl-trimethylsilyltrifluoroacetamide) was added to the samples followed by
heating for 40 min. At the end of second step, 20 μL of retention index was added. After each
addition in all three steps described above samples were vortexed for 10 s and centrifuged at
13500 ×g for 15 min.

GC-MS instrument setup. Samples were randomised and analysed by gas chromatogra-
phy electron ionisation time-of-flight mass spectrometry (GC-TOF-MS) using an Agilent 6890
GC instrument coupled to a LECO Pegasus III TOF mass spectrometer (Leco, St. Joseph, MI,
USA), as described previously [59–61]. GC column (VF-17MS column, 0.25 mm ID × 30
m × 0.25 μm film thickness, Varian, cat. no. CP8982) was employed at a constant helium car-
rier gas flow of 1 mL min-1, with a temperature program starts at 70°C and end at 300°C. The
mass spectrometer source is operated at a temperature of 250°C in electron ionization (EI)
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mode, with an electron energy of 70 eV and the detector is operated in the range 1400–1800 V.
Raw data processing was undertaken using LECO ChromaTOF v3.26 in order to construct a
data matrix of metabolite peak vs. sample and infilled with peak areas for metabolites that were
detected. A reference database was prepared that contained retention times, quant mass, peak
area, retention index value and peak number related to each peak by analysing QC samples.
The identification of analytes was based on both spectral similarity and matched with retention
indices. In-house library as well as NIST library was used for identification, and we followed
MSI guidelines for metabolite identification [62].

GC-MS data analysis. For statistical analysis multi-block PCA [63] was used with three
different types of blockings. The first type of blocking is strain | time×dosage blocking. This
blocking partitioned the data into 9 blocks. Each block contained all the samples from the same
time point with the same dosage of propranolol, e.g. all the samples with 0.2 mg mL-1 propran-
olol, collected at 0 min were assigned to one block, those with 0.4 mg mL-1 propranolol, col-
lected at 10 min were assigned to another block and so on. Across different blocks, the strains
were matched so that in every block the first 4 samples were P. putida DOT-T1E, the next 4
samples were P. putida DOT-T1E-18 and the last 4 samples were P. putida DOT-T1E-PS28.
Based on the same principle, dosage | strain×time blocking partitioned the data into 6 blocks
(samples at 0 min were not included for this type of blocking as this time point refers to the
point immediately before the addition of propranolol), each block had the samples of the same
strain and same time points, the dosage of propranolol were matched. Such blocking allowed
MB-PCA to detect the effect of each of the factor of interest (i.e., strain, time and dosage of pro-
pranolol) separately without the inference from others [64].

A total of 200 features were detected by GC-MS. The natural logarithm (ln) was first applied
on the peak area of the detected peaks. Data were mean centred and then auto-scaled then sub-
jected to MB-PCA. The potentially most significant variables were identified by selecting the
most predominant averaged block loadings. Finally, box-whisker plots were used to visualise
the data. These analyses were conducted using in-house scripts under the Matlab 2014a (Math-
works, Natick, MA) environment. The data are available at MetaboLights (http://www.ebi.ac.
uk/metabolights/): study identifier MTBLS320.

Results and Discussion

Characterization of P. putida DOT-T1E Strains
Growth curve experiments were undertaken for P. putida strains to determine the optimum
points to induce abiotic stress using propranolol. The resultant growth curves are displayed in
(Fig 1A) and these show that there were no significant differences in the pattern of growth
between the wild type DOT-T1E and the mutant DOT-T1E-PS28 (lacking the TtgGHI pump)
over the 24 h incubation period. Whilst under the same conditions, the mutant DOT-T1E-18
(lacking the TtgABC pump) grew slightly poorly in comparison to the other strains. This result
was in agreement with previous observations which show that P. putida DOT-T1E-PS28 grew
on LB medium and had similar growth generation time to the wild type [27]. However, the
mutant DOT-T1E-18 showed less growth compared to the wild-type and this could be a result
of the waste products made during cellular metabolic processes accumulating to toxic levels
due to the lack of TtgABC pump, resulting in slower growth. To be able to investigate the meta-
bolome changes between the wild type and the two mutants, cells were cultured in the absence
of propranolol, GC-MS analysis was performed and this was followed by chemometrics.

MB-PCA of all P. putida strains was carried out and the result showed an obvious clustering
pattern as can be seen in (S1 Fig). It was clear from this analysis that P. putida DOT-T1E-18
was very different to the other two strains although weak separation can also be observed
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between putida DOT-T1E and P. putida DOT-T1E-PS28. In addition, MB-PCA loading plots
were plotted in order to investigate the significant metabolites associated with the different
growth behaviour. It can be seen that many metabolites were most abundant in P. putida
DOT-T1E-18 and least abundant in P. putida DOT-T1E. Box-whisker plots were generated
and these generally supported the increased metabolite levels in DOT-T1E-18 (S2 Fig). During
the growth of the three P. putida strains, a number of metabolites detected by GC-MS were
compared (e.g. carbon and nitrogen metabolism; viz., sugars, sugar phosphates, amino acids,
organic acids).

A schematic summary of the detected metabolites by GC-MS of central metabolic pathways
in P. putida DOT-T1E strains is shown in S3 Fig and S1 Table. It can be seen that the level of a
total of 9 metabolites were similar in the mutant DOT-T1E-PS28 compare to the wild-type
DOT-T1E, while only 3 metabolites had similar levels in the mutant P. putida DOT-T1E-18 in
comparison to the wild type. These results would suggest that the TtgABC pump is involved in

Fig 1. Growth curves of P. putida strains. (A) all three P. putidaDOT-T1E strains in LB medium without propranolol; (B) P. putidaDOT-T1E, (C) P. putida
DOT-T1E-PS28, and (D) P. putidaDOT-T1E-18 in the presence of propranolol. A 1/10 dilution of 100 μL samples were prepared for ODmeasurement at 660
nm.

doi:10.1371/journal.pone.0156509.g001
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the removal of toxic metabolites produced during the log phase. In addition, the accumulation
of toxic products might result in changes in the level of amino acids due to the activation of
other metabolic pathways to deal with waste products.

Characterization of P. putida DOT-T1E Strains to Propranolol Shocks
Minimal inhibitory concentration (MIC). In order to study the effect of propranolol on

P. putida DOT-T1E cultures, it was necessary to establish the MIC of each bacterial strain
when cultured in LB media and challenged with different levels of propranolol and the results
are recorded in S2 Table. The visible growth of the wild-type DOT-T1E, mutant DOT-T1E-
PS28 and mutant DOT-T1E-18 were inhibited at 1.5, 1.5 and 0.8 mg mL-1 of propranolol
respectively. The resistance of DOT-T1E-PS28 to propranolol was the same as the wild-type.
However, it was reduced for the mutant DOT-T1E-18, suggesting that the extrusion of pro-
pranolol by the TtgABC pump could play a more crucial role than TtgGHI pump. Observa-
tions similar to these findings have been reported by Rojas and co-workers [27] testing MIC of
several antibiotics for P. putida DOT-T1E strains, in which the DOT-T1E-18 mutant was more
sensitive to those antibiotics than DOT-T1E. Nevertheless, the DOT-T1E-PS28 mutant showed
similar sensitivity to the wild-type.

Bacterial growth in the presence of propranolol. From interpretation of the growth
curves (Fig 1A), it was decided to induce propranolol stress after 5 h (once the cultures reached
their mid-exponential phase) at three different concentrations of propranolol (0.2, 0.4 and 0.6
mg mL-1) below the MIC. The effect of propranolol on P. putida cells was then studied in liquid
culture medium after cells had been pre-grown on LB liquid medium, and following challenge
with propranolol. Growth curve results from P. putida cultures are shown in (Fig 1B–1D). In
general, slight variations were noted in the growth patterns between P. putida DOT-T1E and
DOT-T1E-PS28 species exposed to 0.2 and 0.4 mg mL-1 propranolol, though considerable
effects on the same cultures were observed when cultures were exposed to 0.6 mg mL-1 pro-
pranolol across a 13 h growth period.

By contrast, a marked effect was observed in P. putida DOT-T1E-18 when exposed to 0.4
and 0.6 mg mL-1 concentrations of propranolol. Strain tolerance is an energy intensive process,
and it was noted that the growth yields of P. putida DOT-T1E cultures in the presence of 0.6
mg mL-1 were reduced by five-fold compared to the control cultures. This decrease in the
growth yield might result in consumption of energy by various mechanisms in order to protect
the cells from further damage. One study examined the growth yields of Pseudomonas upon
sub-lethal toluene dosages and it was found that the presence of toluene led to lower yields and
that the growth yield reduced linearly with increasing toluene concentrations [65]. This report
deduced that the decrease in yield associated with the presence of toluene could be due to
energy-consuming adaptation mechanisms initiated to protect cells from excessive damage.

To assess bacterial membrane integrity during the growth of bacteria following propranolol
perturbation a LIVE/DEAD BacLight bacterial viability assay was used, and the green and red
fluorescence emissions were measured using a Flexstation 3 Microplate Reader (Molecular
Devices, USA). The ratio of green to red fluorescence and the percentage of live cells from TVC
plates estimations in the P. putida suspension are shown (S3 Table). It was clear from these
measurements that cell viability decreased linearly with increasing propranolol indicating the
toxic effect of propranolol on P. putida DOT-T1E strains.

FT-IR fingerprinting of cell cultures. FT-IR spectroscopy was employed to investigate
whether the phenotype of an organism had changed by exposing it to gradient levels of pro-
pranolol. PC-DFA scores plots were produced in order to visualise the distribution of samples
based on their IR metabolic fingerprints (Fig 2A–2C). From inspection of the PC-DFA scores
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Fig 2. PC-DFA scores plots of FT-IR data for three different strains of P. putida strains upon propranolol shock. Symbols
represent different strains. (A) P. putidaDOT-T1E is the wild type (stars) and ten PCs with a total explained variance (TEV) of
99.43% were used for the DFA, (B) P. putidaDOT-T1E-PS28 is the mutant (closed triangles) and ten PCs with a TEV of 99.65%
were used for the DFA, (C) P. putida DOT-T1E-18 is the mutant (closed circles) and ten PCs with a TEV of 99.03%were used for
the DFA. Colour coding: control with no propranolol (red), cells exposed to 0.2 mg mL-1 propranolol (black), 0.4 mg mL-1
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plots of the biomass samples, it was possible to determine that there was an obvious separation
between the different culture conditions. There was also a clear trajectory based on concentra-
tion (annotated with arrows) with samples from control cultures following a trend from right
to left across the plot space due to the increase of propranolol concentrations. This clustering
pattern was anticipated and suggests that propranolol stress has had a clear additive effect on
the bacterial cells and this is reflected in the FT-IR results. In other analyses these PC-DFA
models were validated by test set projection (S4 Fig) and these ensure that the model quality is
of a high standard, and that the obtained subsequent conclusions drawn from the data are valid
and robust.

To assess the relevant metabolites causing these separations in PC-DFA scores plots, the
loadings plots for the first discriminant functions were plotted (Fig 2D–2F). Multiple changes
occur within these loadings plot with the largest variances being observed between wavenum-
bers 1700–1600 cm-1. In this region of the mid-infrared the majority of vibrational bands are
associated with protein components of the sample; most notably amide I (C = O stretching at
1690–1620 cm-1) and amide II (combination of C-N stretching and N-H bending). These
results suggest that the most significant effect over the duration of the 1 h incubation period
following drug shock is associated with alterations to proteinaceous components of bacteria.
The profile of proteins in different P. putida strains—T1E and S12—upon exposure to toluene
has been investigated previously, and it was revealed that almost 90 proteins were up-regulated
as a result of an exposure of strains to toluene in which some of these proteins relate to efflux
pump systems [22, 66, 67]. Therefore, it is perhaps not surprising that the most significant
changes observed from the interpretation of infrared spectra were in the vibrational frequency
of the proteins components, and we can infer from this that some proteins were up-regulated
to cope with the presence of propranolol.

GC-MS metabolic profiling of cell cultures. Recently, attention has been focused on
studying the stress responses in bacteria employing metabolomics-based approaches [68–70],
and this has involved a wide range of disciplines such as drug discovery, metabolic engineering
and medical sciences [71–75]. In this study, we employed GC-MS to create metabolic profiles
of bacterial stress to propranolol, as the knowledge of variations within the metabolome follow-
ing chemical perturbation could lead to a more in-depth understanding of strain specific stress
responses within these bacteria.

As there are multiple potentially interacting factors that we have in our experiment with
respect to propranolol dose, bacterial strain, as well as time, MB-PCA was used for analysis.
MB-PCA with dosage | strain×time blocking (see materials and methods) was undertaken and
a gradient effect corresponding to differing dosages of propranolol can be seen on the resultant
scores plot (S5 and S6 Figs). We observed nine metabolites that were differentially expressed
between control and different dosages of propranolol and these were statistically significant.
However, four metabolites (cystathionine, glutamine and two unknowns) decreased with
increase in dosage of propranolol, four metabolites (ornithine, propranolol and two unknowns)
increased with dosage whereas no clear pattern was seen for one metabolite (unknown).

Interestingly, it was found that two of these metabolites (variables 180 and 100) were only
detected following the exposure of P. putida strains to all three concentrations of propranolol
groups but not in the control. Variable 180 was identified by an in-house database as proprano-
lol itself, and Fig 3A shows that exposure of cells to propranolol resulted in the accumulation

propranolol (brown), and 0.6 mg mL-1 propranolol (blue). Arrows indicate the direction of shift because of the increase of
propranolol concentration. (D) PC-DFA loadings plot for P. putidaDOT-T1E. (E) PC-DFA loadings plot for P. putida
DOT-T1E-PS28, (F) PC-DFA loadings plot for P. putidaDOT-T1E-18. Significant loadings were assigned to bacterial proteins.

doi:10.1371/journal.pone.0156509.g002
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Fig 3. Box-whisker plots showing the changes in metabolite levels in control and cells exposed to propranolol for 4
biological replicates. Variable 180 was identified as propranolol. (Red line) indicates the medianm/z intensity. (A) Represent the
data for 3 P. putida strains, 4 concentrations of propranolol and 3 time points, dashed lines separate different concentration levels
of propranolol and solid line separates different strains. (B) Represent the data for 3 P. putida strains, 3 concentrations of
propranolol and 1 time point at 60 min, dashed lines separates different strains.

doi:10.1371/journal.pone.0156509.g003
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of propranolol in comparison to non-exposed cells. These data also show that the level of pro-
pranolol in P. putida stains were detected at both time points at 10 and 60 min, and it was
noticed that the accumulation of propranolol in the exposed cells increased as the concentra-
tion of the propranolol increased.

In addition, comparing the level of propranolol between the wild-type and the mutants only
at 60 min (Fig 3B), it was observed that P. putida DOT-T1E (wild-type) and P. putida DOT-
T1E-PS28 (lacking TtgGHI pump) showed high similarities in the level of propranolol at all
tested concentrations. By contrast, the amount of propranolol accumulating in the P. putida
DOT-T1E-18 (lacking TtgABC pump) was higher than the other strains. This could be further
evidence for the activity of efflux pump system in P. putida cells due to the presence of pro-
pranolol at different levels. In addition, these results would suggest that the TtgABC efflux
pump is the main extrusion pump for propranolol and that it plays a more important role than
the TtgGHI pump. These findings, which agree well with other studies, show that the TtgABC
pump in P. putida DOT-T1E is the main antibiotic extrusion pump, and it has the ability to
extrude flavonoids, tetracycline, chloramphenicol and ampicillin in addition to other solvents
such as toluene [76–78].

Interestingly, the other significant variable, 100, was identified as ornithine (ChEBI ID
15729) again from an in-house library generate on the same instrument [62]. Ornithine pro-
duction was detected within 10 min after exposure to propranolol, and the level of ornithine in
the wild-type DOT-T1E and mutant DOT-T1E-PS28 shows an increase at 0.2 mg mL-1 pro-
pranolol and a further almost linear increase in the presence of 0.4 and 0.6 mg mL-1 proprano-
lol (Fig 4). By contrast, the production of this metabolite in the mutant DOT-T1E-18 exhibits
an increase at 0.2 mg mL-1 propranolol followed by a further increase at 0.4 mg mL-1 followed
by a decrease toward 0.6 mg mL-1 propranolol. Furthermore, the level of ornithine was further
decreased, from 10 to 60 min at 0.6 mg mL-1 propranolol for both P. putida DOT-T1E and
DOT-T1E-PS28, while it was increased for P. putida DOT-T1E-18 under the same conditions.
This metabolite is very important, as it is only produced by the P. putida cells in the presence
of propranolol and our data suggest that this is linked to bacterial tolerance mechanisms, fur-
ther studies are needed in order to understand this role and comprehend whether this is a
cause or effect relationship.

In addition, in P. putida T1E and S12 proteomic analysis found that several proteins of the
TCA cycle involved in energy production were up-regulated upon toluene exposure, indicating
a requirement for enhanced metabolism and high energy demands because of toluene exposure
in order to power efflux pumps that extrude solvent from the cells [22, 66], which is in agree-
ment with several proteomics, and transcriptomics studies [66, 79]. The up-regulation of sev-
eral terminal oxidase genes upon solvent stress in P. putida T1E suggests that demands on
energy consumption are necessary to cope with the presence of solvents, in particular due to
high activity of efflux pumps [80]. Ornithine can be synthesised via the TCA cycle in which
glutamate is converted into ornithine, as previously reported for P. putida [81]. The production
of ornithine in the presence of propranolol is interesting, as this observation would suggest that
P. putida DOT-T1E may use this amino acid for energy production to power efflux pumps,
or in order to activate other metabolic pathways that are important in bacterial tolerance to
propranolol.

In addition, the primary building block of biological membranes mainly consists of glycero-
phospholipids such as phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and cardio-
lipin (CL); however, other lipids classes (e.g. ornithine lipids) have been described as well,
which contain a 3-hydroxy fatty acyl group attached in amide linkage to the α-amino group of
ornithine. This lipid can be formed only by specific groups of bacteria or under certain stress
conditions [82]; although these have not yet been reported in P. putida. It is possible that the
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ability to produce ornithine under propranolol stress in P. putida strains is linked to lipid pro-
duction, however we have no direct evidence for this yet.

It is clear from the above that there are changes in central metabolism in response to pro-
pranolol exposure. Therefore, we investigated whether the levels of metabolites in the central
metabolic pathways of P. putida strains were significantly altered or not between control and
propranolol challenged samples for each bacterial strain independently. Metabolic pathways
that were changed during propranolol stress were identified utilising untargeted GC-MS analy-
sis. A comparative summary of central metabolic pathways between control and propranolol
challenged cells for 10 or 60 min in P. putida DOT-T1E (Fig 5), P. putida DOT-T1E-18 (Fig 6)
and P. putida DOT-T1E-PS28 (S7 Fig) were generated and large effects were seen in amino
acid biosynthesis. In total, 17 metabolites were differentially produced or consumed in the
presence of 3 different concentrations of propranolol, compared to the control sample at two
time points. Major metabolites that were changed significantly during propranolol stress were
serine, glycine, tryptophan, phenylalanine, tyrosine, alanine, valine, leucine, citrate, fumarate,
glutamine, ornithine, aspartic acid, lysine, methionine, threonine and isoleucine, and box-
whisker plots of these metabolites show the changes in these metabolite levels (S8–S11 Figs).

Fig 4. Box-whisker plot showing the changes in ornithine levels (variable id 100) in control and exposed cells to
propranolol. (Red line) indicates the medianm/z intensity. These plots represent the data for 3 P. putida strains, 4 concentrations
of propranolol and 3 time points, for 4 biological replicates. Dashed lines separate different concentration levels of propranolol and
solid line separates different strains.

doi:10.1371/journal.pone.0156509.g004
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Fig 5. Schematic metabolic diagram of central carbonmetabolism in P. putidaDOT-T1E adapted to
propranolol showing the level of metabolites for cells exposed to propranolol compared to the control.
Metabolites were detected and identified by GC-MS. Metabolites indicated in black were observed, while
metabolites indicated in grey were not detected. The medianm/z intensity (red line) in the box- whisker plots was
used to compare the level of metabolites. (A) Represent the level of metabolites at 10 min, while (B) the level of
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In P. putida DOT-T1E, 10 metabolites were found to be consumed, 4 metabolites produced
and 3 metabolites did not change at 10 min, while 4 metabolites were down-regulated and 13
metabolites up-regulated at 60 min. In the mutant DOT-T1E-18, 10 min following exposure to
propranolol the levels of 2 metabolites increased, 8 metabolites were consumed and 7 metabo-
lites remained constant. After 60 min following exposure to propranolol, the levels of 11
metabolites were increased, 3 metabolites were consumed and 3 remained constant. In P.
putida DOT-T1E-PS28, although similar patterns in the level of metabolites was observed
compared to the wild- type in the absence of propranolol, different patterns were observed in
the presence of propranolol. Both mutants showed different metabolic profiles compared to
the wild type and this could be due to the lack of the pump leading to over-expression of cer-
tain amino acids that are important to activate specific pumps or other metabolic pathways to
cope with the stress.

Pathway analysis also revealed that glutamine and ornithine, which shows similar meta-
bolic changes in all P. putida DOT-T1E strains, as major pathways impacted by propranolol
stress. It is possible that glutamine could be being consumed by the cells in order to respond
to high energy demands due to propranolol exposure. Another possible suggestion is that the
decrease in the level of glutamine may be due to the biosynthesis of ornithine which could be
the key stress-responsive metabolite involved to cope with stress following perturbation by
propranolol. Therefore, cells may convert glutamate into ornithine instead of glutamine,
resulting in a decrease in the level of glutamine. In contrast, in comparison to the wild type
both mutants undergo different metabolic changes in other detected metabolites, mainly ali-
phatic amino acids, aromatic amino acids, and the aspartate family. This might be explained
by the lack of the efflux pump in each mutant leading to the induction of certain metabolic
pathways resulting in the production or consumption of certain amino acids associated with
specific pumps.

Conclusion
Here we have shown that propranolol had a measurable biological effect on all three strains of
bacteria studied. The results demonstrated that the mutant P. putida DOT-T1E-18 was more
sensitive to propranolol than the other strains analysed due to the lack of TtgABC pump. With
respect to exposure to propranolol, data from FT-IR revealed that propranolol had an effect on
protein components of the bacterial cells. The investigation of the characterization of the meta-
bolome of P. putida DOT-T1E strains upon exposure to propranolol revealed the important
role of efflux pump activity and the production of ornithine as major key elements for adapta-
tion mechanisms. This information can be useful in bioengineering to create engineered P.
putida strains or even other bacteria with superior tolerance characteristic for bioprocesses,
which in turn can help to remediate simple or complex mixtures of pollutants from environ-
ment. Similar to the case where lactate tolerance was improved in an engineered strain produc-
ing ascorbic acid, a well-known reactive-oxygen species scavenger [83]. Furthermore, both
screening tools and metabolic profiling in combination with multivariate statistical methods,
seem ideally suited to monitoring the phenotypic responses occurring within microbial cul-
tures under different growth conditions and subjected to abiotic stress.

metabolite at 60 min. Traffic light system represents different concentration of propranolol. Red, yellow and green
represent exposed cells to 0.2, 0.4 and 0.6 mg/mL of propranolol respectively. Up-arrow, down-arrow and steady
arrow indicate an increase, a decrease and no change in the level of metabolite respectively. The number of
arrows represents the level of metabolites. Slight change (single arrow), medium change (double arrows) and high
change (triple arrows).

doi:10.1371/journal.pone.0156509.g005
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Fig 6. Schematic diagram of central carbonmetabolism in P. putidaDOT-T1E-18 adapted to propranolol
showing the level of metabolites for cells exposed to propranolol compared to the control ones.
Metabolites were detected and identified by GC-MS. Metabolites indicated in black were observed, while
metabolites indicated in grey were not detected. The medianm/z intensity (red line) in the box- whisker plots
was used to compare the level of metabolites. (A) Represent the level of metabolites at 10 min, while (B) the
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Supporting Information
S1 Fig. MB-PCA scores plot of GC-MS data for the wild type and the mutants in the absence
of propranolol. Colours represent different strains. (A) P. putida DOT-T1E is the wild type
(red), (B) P. putida DOT-T1E-PS28 (green), and (C) P. putida DOT-T1E-18 (blue).
(PDF)

S2 Fig. Box-whisker plots of a few selected most significant metabolites between the wild
type and the mutants in the absence of propranolol. (A) P. putida DOT-T1E is the wild type,
(B) P. putida DOT-T1E-PS28, and (C) P. putida DOT-T1E-18. Variables 9 (unknown), Vari-
ables 29 (leucine), Variables 37 (leucine^), Variables 70 (unknown), Variables 134 (à-D-
glucopyranoside�), Variables 163 (D-ribonic acid/ D-glucose�), Variables 185 (á-N-acetylneur-
aminic acid/ D-Glucose�), Variables 188 (sucrose), and Variables 198 (á-N-acetylneuraminic
acid�). ^ multiple derivatives of same compound. �multiple assignments as identification is
putative only.
(PDF)

S3 Fig. Schematic metabolic pathway diagram of central carbon metabolism in P. putida
DOT-T1E showing the level of metabolites for both mutants compared to the wild type.
Metabolites were detected and identified by GC-MS. Metabolites indicated in black were
observed, while metabolites indicated in grey were not detected. The medianm/z intensity (red
line) in the box-whisker plots was used to compare the level of metabolites. Blue and brown
represent the mutant DOT-T1E-PS28 and DOT-T1E-18 respectively. Up-arrow, down-arrow
and steady arrow indicate an increase, a decrease and no change in the level of metabolite
respectively. The number of arrows represents the level of metabolites. Slight change (single
arrow) and medium change (double arrows).
(PDF)

S4 Fig. Validated PC-DFA models of (A) P. putidaDOT-T1E, (B) P. putidaDOT--
T1E-PS28, (C) P. putidaDOT-T1E-18 upon 0.2, 0.4 and 0.6 mg mL-1 Propranolol shock.
Symbols coding: control with no propranolol (circles), cells exposed to 0.2 mg mL-1 proprano-
lol (squares), 0.4 mg mL-1 propranolol (triangles), and 0.6 mg mL-1 propranolol (upside down
triangles). Opened symbols represent the test set while closed symbols represent the training
set.
(PDF)

S5 Fig. MB-PCA score plot of GC-MS data showing the effect of different concentrations
on P. putida strains. Colours represent different dosage of propranolol. (D0) exposed to 0 mg/
mL propranolol (blue), (D1) exposed to 0.2 mg mL-1 propranolol (green), and (D2) exposed to
0.4 mg mL-1 propranolol (pink). (D3) exposed to 0.6 mg mL-1 propranolol (red).
(PDF)

S6 Fig. MB-PCA loading plot of GC-MS data showing the most significant metabolites in
the presence of different concentrations of propranolol. Significant loadings were observed
in the positive and negative sides of the plot.
(PDF)

level of metabolite at 60 min. Traffic light system represents different concentration of propranolol. Red, yellow
and green represent exposed cells to 0.2, 0.4 and 0.6 mg/mL of propranolol respectively. Up-arrow, down-
arrow and steady arrow indicate an increase, a decrease and no change in the level of metabolite respectively.
The number of arrows represents the level of metabolites. Slight change (single arrow), medium change
(double arrows) and high change (triple arrows).

doi:10.1371/journal.pone.0156509.g006
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S7 Fig. Schematic metabolic diagram of central carbon metabolism in P. putidaDOT--
T1E-PS28 adapted to propranolol showing the level of metabolites for cells exposed to pro-
pranolol compared to the control.Metabolites were detected and identified by GC-MS.
Metabolites indicated in black were observed, while metabolites indicated in grey were not
detected. The medianm/z intensity (red line) in the box- whisker plots was used to compare
the level of metabolites. (A) Represent the level of metabolites at 10 min, while (B) the level of
metabolite at 60 min. Traffic light system represents different concentration of propranolol.
Red, yellow and green represent exposed cells to 0.2, 0.4 and 0.6 mg mL-1 of propranolol
respectively. Up-arrow, down-arrow and steady arrow indicate an increase, a decrease and no
change in the level of metabolite respectively. The number of arrows represents the level of
metabolites. Slight change (single arrow), medium change (double arrows) and high change
(triple arrows).
(PDF)

S8 Fig. Box-whisker plots of the detected metabolites of central carbon metabolism in P.
putidaDOT-T1E, DOT-T1E-PS28 and DOT-T1E-18. Dashed lines separate different con-
centration levels of propranolol and solid line separates different strains. The label is con-
structed in a format of “Aac”, “A” represents strains, varies from A to C: A = P. putida
DOT-T1E; B = P. putida DOT-T1E-PS28 and C = P. putida DOT-T1E-18. “a” represents 4 dif-
ferent concentration levels, varies from 0 to 3: 0 = control; 1 = 0.2 mg mL-1; 2 = 0.4 mg mL-1

and 3 = 0.6 mg mL-1 propranolol. “c” represents time points, 1 = T0 (0 min); 2 = T1 (10 min)
and 3 = T2 (1 h). Such plots give a comprehensive view of how the concentration levels of the
metabolite changing under each unique combination of the factors (strains, dosage of propran-
olol and time). Variables 14 (alanine), Variables 20 (valine), Variables 29 (leucine), and Vari-
ables 34 (isoleucine).
(PDF)

S9 Fig. Box-whisker plots of the detected metabolites of central carbon metabolism in P.
putidaDOT-T1E, DOT-T1E-PS28 and DOT-T1E-18. Dashed lines separate different con-
centration levels of propranolol and solid line separates different strains. The label is con-
structed in a format of “Aac”, “A” represents strains, varies from A to C: A = P. putida
DOT-T1E; B = P. putida DOT-T1E-PS28 and C = P. putida DOT-T1E-18. “a” represents 4 dif-
ferent concentration levels, varies from 0 to 3: 0 = control; 1 = 0.2 mg mL-1; 2 = 0.4 mg mL-1

and 3 = 0.6 mg mL-1 propranolol. “c” represents time points, 1 = T0 (0 min); 2 = T1 (10 min)
and 3 = T2 (1 h). Such plots give a comprehensive view of how the concentration levels of the
metabolite changing under each unique combination of the factors (strains, dosage of propran-
olol and time). Variables 40 (glycine), Variables 53 (threonine), Variables 54 (serine), and Vari-
ables 78 (aspartic acid).
(PDF)

S10 Fig. Box-whisker plots of the detected metabolites of central carbon metabolism in P.
putidaDOT-T1E, DOT-T1E-PS28 and DOT-T1E-18. Dashed lines separate different con-
centration levels of propranolol and solid line separates different strains. The label is con-
structed in a format of “Aac”, “A” represents strains, varies from A to C: A = P. putida DOT-
T1E; B = P. putida DOT-T1E-PS28 and C = P. putida DOT-T1E-18. “a” represents 4 different
concentration levels, varies from 0 to 3: 0 = control; 1 = 0.2 mg mL-1; 2 = 0.4 mg mL-1 and
3 = 0.6 mg mL-1 propranolol. “c” represents time points, 1 = T0 (0 min); 2 = T1 (10 min)
and 3 = T2 (1 h). Such plots give a comprehensive view of how the concentration levels of
the metabolite changing under each unique combination of the factors (strains, dosage of
propranolol and time). Variables 81 (methionine), Variables 88 (glutamine), Variables 95
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(phenylalanine), and Variables 103 (fumarate).
(PDF)

S11 Fig. Box-whisker plots of the detected metabolites of central carbon metabolism in P.
putidaDOT-T1E, DOT-T1E-PS28 and DOT-T1E-18. Dashed lines separate different con-
centration levels of propranolol and solid line separates different strains. The label is con-
structed in a format of “Aac”, “A” represents strains, varies from A to C: A = P. putida
DOT-T1E; B = P. putida DOT-T1E-PS28 and C = P. putida DOT-T1E-18. “a” represents 4 dif-
ferent concentration levels, varies from 0 to 3: 0 = control; 1 = 0.2 mg mL-1; 2 = 0.4 mg mL-1

and 3 = 0.6 mg mL-1 propranolol. “c” represents time points, 1 = T0 (0 min); 2 = T1 (10 min)
and 3 = T2 (1 h). Such plots give a comprehensive view of how the concentration levels of the
metabolite changing under each unique combination of the factors (strains, dosage of propran-
olol and time). Variables 109 (citrate), Variables 119 (lysine), Variables 135 (tyrosine), and
Variables 177 (tryptophan).
(PDF)

S1 Table. The level of metabolites for both mutants compared to the wild type in the central
carbon metabolism in P. putidaDOT-T1E.Metabolites were detected and identified by
GC-MS.
(PDF)

S2 Table. Results from the propranolol MIC experiments using P. putidaDOT-T1E, DOT--
T1E-PS28 and DOT-T1E-18. Culture growth was observed after overnight incubation.
(PDF)

S3 Table. Viability of P. putida cells 1 h later after exposure to propranolol.
(PDF)
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