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Abstract: By using tailored disorder in the regime of diffusive light propagation, core-shell
cloaking structures have previously been presented. These structures make the cloak and an
arbitrary interior nearly indistinguishable from the diffusive surrounding. This statement
holds true for all incident polarizations of light, a broad range of incident directions of light in
three dimensions, and a broad range of visible wavelengths. Here, by performing
interferometric transmission-matrix experiments, we investigate the statistical wave
properties of miniaturized versions of such structures. By using singular-value decomposition,
we derive the eigenchannels and eigenvalues to assess the degree of wave correlation among
multiply scattered waves. We find small but significant differences in the eigenvalue
distributions, suggesting that the degree of wave correlation is lower for the neutral inclusion
than for a homogeneously disordered reference sample, which corresponds to the surrounding
of the neutral inclusion. Likewise, we find similar differences between optically inspecting
the core-shell neutral-inclusion and its spatial neighborhood. These differences allow us to
reveal the neutral inclusion due to different statistics of the underlying random walks of light.

© 2021 Optical Society of America

1. Personal foreword

In his scientific oeuvre, Costas Soukoulis made significant contributions to the fields of
disordered or complex optical systems [1] and optical metamaterials [2]. Here, we present a
set of recent original experimental results on the transmission matrix of diffusive optical
neutral inclusions on the occasion of Costas Soukoulis’ 70" birthday. On a small spatial scale,
these structures are composed of randomly distributed nanoparticles, the density of which is
arranged in a core-shell manner on a larger spatial scale. The cylindrical core-shell geometry
can be seen as one wound-up unit cell of an anisotropic laminate metamaterial. Therefore,
these experiments relate to both of the above fields to which Costas Soukoulis has made
pioneering contributions.

2. Introduction

The mathematics and physics of diffusive-optical core-shell cloaks [3] are analogous to that
of magneto-static cloaks [4] and thermal cloaks under stationary conditions [5] (see Fig.
1(a)). It goes back to the 1956 work of Kerner [6], has been described several times in the
literature [4-7] including a dedicated review article [8]. In brief, an inner strongly light-
scattering cylinder (the core) with outer radius R, isolates the core’s interior from its exterior.
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Ideally, the light diffusivity of this inner cylinder is zero, D; = 0. A cylindrical shell with
inner radius R, outer radius R,, and light diffusivity D, = Dy(R% + R?)/(R3 — R?) around
this core molds the diffusive flow of light around the core such that the emerging light
becomes indistinguishable from that of the homogeneous disordered surrounding of the cloak
with diffusivity Dy. Within the range of validity of the diffusion equation, this statement is
strictly true for spatially homogeneous stationary illumination [3,8]. Under these conditions,
for negligibly small optical absorption and identical scattering particles of concentrations n,
in the surrounding and n, in the shell, respectively, we further have the relation D, /D, =
(ny/ng)~t. This relation holds true because the optical diffusivity is proportional to the
optical transport mean free path length [9], and the transport mean free path length is
inversely proportional to the concentration of scattering particles.

The core and the shell can be seen as one period of a laminate metamaterial [10]. For
spatially inhomogeneous stationary illumination, such a diffusive cloak works only
approximately but still quite well [8]. Improved cloaking can, in principle, be achieved by
using multiple laminate periods instead of just a single period for the core-shell geometry.
However, the price to be paid is very low overall optical transmission [11] compared to the
core-shell arrangement. Therefore, we only consider diffusive core-shell structures in this
paper. Precisely, due to fabrication restrictions, we do not drill an inner hole into the diffusive
core (the core’s outer radius is already as small as R; = 0.8 mm), thus the absence of this
hole conceptually turns the core-shell invisibility cloak into a core-shell invisible object or
neutral inclusion.

It would be interesting to further improve the above-mentioned diffusive architectures.
Here, we follow a different path and rather explore the underlying fundamental limitations.

In the case of diffusive core-shell cloaks, it is instructive to think about the propagating
light waves in terms of light rays or, loosely speaking, as point-like photons. Photons
impinging onto the core are guided around the core within the surrounding shell. The shell
exhibits a larger light diffusivity D, > D, than the surrounding medium, D,. The larger light
diffusivity corresponds to a larger mean free path length. Therefore, photons traveling
through the shell and emerging from the sample have accumulated a shorter overall average
path length than photons travelling through the homogeneous surrounding. Furthermore, the
path length distributions and their widths are different, too. However, the relative thickness of
the shell, R,/R;, is designed such that the transmission probabilities are the same. This design
ensures that the transmittance is the same and that the core and its interior become invisible.

Due to the different path length distributions, time-of-flight measurements could
differentiate between the cloak and the homogeneously disordered reference sample [12].
These experiments showed that photons arrive earlier and the time-of-flight distribution is
narrower for the cloak case than for the reference. This finding suggests that the core-shell
cloak is effectively a less-scattering medium than the diffusive surrounding. Calculations of
the photon statistics analyzed by Monte-Carlo simulations indeed showed that the number of
photon scattering events is smaller for the cloak than for the reference.

Another possibility to reveal or uncloak the cloak is to measure the degree of multiple
light scattering by speckle experiments [13]. In these experiments using a variable finite
coherence length of light, it was found that the cloak exhibited a larger speckle interference
contrast than the reference sample. This difference was most pronounced if the coherence
length of light roughly matched the width of the path length distribution. These experimental
findings were well reproduced by theory.

A third approach for distinguishing between the invisible object and a homogeneous
diffusive surrounding is based on measuring the associated transmission matrices. In the ideal
case, the transmission matrix contains all information on light waves transmitting through the
complex disordered scattering medium [14]. This includes the information on the average
path length as well as on the width of the path length distribution. Transmission-matrix
experiments have been performed for homogeneously disordered specimen [15-18].
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Furthermore, random-matrix theory can be applied for the case of homogeneously disordered
systems [19]. However, much less is known about inhomogeneously disordered media in
three dimensions, with one notable exception [20]. There, the eigenvalue distribution of the
transmission matrix, which is a good measure of the correlation between different partial
waves [21], was determined. Long-range correlations among multiply scattered waves can
lead to constructive interference. As a result, the maximum eigenvalue of the transmission
matrix with respect to the mean eigenvalues increases [20]. In addition, larger long-range
correlations increase the variance of the normalized eigenvalues of the transmission
matrix [22].

In this paper, we measure the transmission matrices of a neutral inclusion sample and a
homogeneously disordered reference sample. In these interferometric experiments, we find
small but significant differences in the eigenvalue distributions of the transmission matrices.
In order to perform these experiments, a new generation of samples has been designed and
realized.

3. Optical samples

The samples used in our previous experiments [3,23] had two issues that prevented us from
performing optical transmission-matrix experiments. First, the thickness of the samples was
L, =6 cm[3] and L, = 3 cm [23], respectively. In the setup to be used below, L, needs to
be smaller than the free working distance of the high-numerical-aperture microscope
objective lenses (4 mm). Second, our previous samples were based on water [3] or a
mechanically soft PDMS matrix [23]. For the water-based samples, we could not even
observe speckle patterns due to the rapid Brownian motion of the nanoparticles. The PDMS-
based samples exhibited speckle patterns that gradually changed over a timescale of about
one minute. Therefore, a stationary optical transmission matrix did not exist for either case.
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Fig. 1. (a) Illustration of a cylindrical diffusive-optical core-shell neutral-inclusion with radii R; and R, in an
otherwise homogeneously disordered surrounding. The piece-wise constant light diffusivities Dy, D,, and D, are
indicated. (b) Comparison of the (large) invisibility-cloak sample used in our previous work [13,23] (using a hollow
core rather than a solid core) and the (small) neutral-inclusion sample used in the present work (see white arrow). (c)
Photographs of the samples discussed in the present work: Reference sample (left), obstacle sample (middle), and
core-shell neutral-inclusion sample (right). The width of these cuboid samples is L, = 15 mm, their height is
L, = 8 mm, and their thickness is L, = 3 mm. Furthermore, we have R; = 0.8 mm and R, = 1.2 mm.

Here, we solve both issues by implementing two measures. First, we scale down all
sample dimensions by an order of magnitude. To obtain the same optical properties, we need
to scale down all mean free paths of light by an order of magnitude as well. This means that
we need to increase the concentrations of scattering nanoparticles in all regions of the
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structure by an order of magnitude. Second, we use mechanically stiff epoxy as a matrix
(SKresin 2420 (TS) - S u. K Hock GmbH). The samples are fabricated by doping the epoxy
with titania nanoparticles (DuPont R700 TiO2 particles, diameter = 340 nm) at different
densities. This composite is filled into mechanically machined aluminum molds, followed by
thermal polymerization. Experimentally, we find the best performance for the concentration
ratio ng/n, = 4.1. In the surrounding, the absolute concentration, ny, of nanoparticles in the
epoxy corresponds to 3.9 mg/ml. For the core, in order to achieve as low as possible light
diffusivity D;, one would ideally want to use titania nanoparticles without any epoxy.
However, this choice would not be stable mechanically. Therefore, we use a weight ratio of
titania nanoparticles to epoxy of three to one, corresponding to 1,700 mg/ml.

In Fig. 1, the design of the core-shell neutral-inclusion sample (a), a size comparison
between the larger old cloak [23] and the smaller new neutral inclusion (b), and a photograph
of the three new samples (c¢) are shown.

White-light sample characterization experiments on these three samples along the lines of
our previous work [3,23] are depicted in Fig. 2.

In agreement with earlier sample generations [3,23], the pronounced diffusive-optical
shadow for the “obstacle” sample nearly disappears for the “neutral-inclusion” sample,
making its behavior closely similar to that of the “reference” sample — both, for homogeneous
illumination and point-like illumination of the sample front side (see Fig. 2). However, the
invisibility performance of the miniaturized samples depicted in Fig. 2 is somewhat
deteriorated with respect to our previous cloak samples [23]. These correspondingly
contained an about ten times lower concentrations of titania nanoparticles.

In what follows, we only consider the core-shell neutral-inclusion and the reference
sample because the obstacle sample can immediately be distinguished from the reference
sample by the naked eye (cf. Fig.1(c)), making sophisticated experiments and an analysis of
the obstacle sample in terms of transmission eigenvalues pointless.
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Fig. 2. Photographs of the transmitted light of the reference, obstacle, and neutral-inclusion samples used in this work
(cf. Fig. 1(c)) under illumination with white light from the other side of the sample. The top row corresponds to
homogeneous illumination of the sample front surface and the bottom row to point-like illumination. The yellow
curves superimposed onto these photographs exhibit intensity cuts through these photographs, averaged over the
range indicated by the dashed gray horizontal lines. For clarity, these cuts are normalized to the peak brightness value
of the reference sample (a) for (a)-(c) and to that of (d) for (d)-(f), respectively.
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4. Transmission-matrix experiments

The general approach of transmission-matrix experiments to be presented in this Section and
the analysis based on singular-value decomposition in Section 5 are well known from the
literature, but tend to be somewhat uneasy to digest at first sight. Therefore, we start with a
basic introduction.

Let us consider a given and fixed frequency of light. The transmission matrix relates the
transmitted light through a sample to the incident light. It is a subset of a scattering matrix
which covers all the outgoing waves including reflected light. The input and output can, for
example, be represented by the electric-vector field of the electromagnetic light wave. This
complex-valued vector field contains information on the polarization, the amplitude, and the
phase of light. Therefore, the elements of the transmission matrix are complex-valued as well.
For both, input and output, the problem can be formulated in either real (r) space or wave-
vector (k) space. This leaves one with four different possibilities for representing the
transmission matrix: r-r, r-k, k-r, and k-k for input-output. Below, we will choose one
possibility that is particularly well suited for our conditions. In principle, one should consider
all, that is, infinitely many possible inputs and infinitely many possible outputs. In an
experiment, only a finite number of inputs and outputs can be considered. Generally, the
number of input possibilities and the number of output possibilities need not be identical, in
which case the transmission matrix relating input and output is not a square matrix. For
example, one may consider 100 different input wave vectors of light and characterize the
output in real space by an image containing 30 X 30 = 900 pixels. The resulting
transmission matrix is a 900 X 100 matrix, for which, mathematically, eigenvalues and
eigenvectors do not exist. It may be desirable though to determine something like eigenvalues
and eigenvectors. The corresponding mathematical procedure is known as singular-value
decomposition [14,18,24] and will be summarized in Section 5 for our conditions using our
nomenclature. In essence, this mathematical procedure is the generalization of a unitary
transformation applied to a square matrix that leads to a diagonal matrix, the diagonal
elements of which are the eigenvalues. The singular values are the mathematical
generalization of eigenvalues. For our above example, one would have 100 singular values
(rank of the matrix). The physical meaning of a singular value is the amplitude transmittance
of an associated input eigenvector to the detection channels. The square modulus of the
singular value is called an eigenvalue, and it corresponds to the intensity transmittance of the
associated eigenvector. For example, if one considers the transmission matrix of a volume
element of vacuum, all square moduli of the singular values are identical to unity. For a
medium absorbing all the light, all square moduli would be zero. In our below analysis, we
will additionally normalize the square moduli of the singular values to their mean value.

Let us now turn to our specific experiments. As discussed previously [8], point-like
illumination of the cloak or neutral-inclusion region on the front side of the sample is a more
demanding test for the invisibility performance than homogeneous illumination or non-
centered spot illumination. Therefore, aiming at revealing the invisible object, we use a fixed
position of a narrowly collimated beam waist on the sample front side, while varying the
directions of the incident light. This means that the input to the transmission matrix is in
wave-vector space. We emphasize that the choice of fixing the illuminated spot position may
not be ideal when aiming at characterizing homogeneously disordered samples. This choice
is, however, well suited for the spatially inhomogeneous cylindrical core-shell structures of
interest here.
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Fig. 3. Scheme of the optical transmission-matrix experiment. (a) Overview over the entire interferometer containing
a sample arm (red) and a reference arm (blue). The focal lengths of the lenses are L1: 75 mm, L2: 50 mm, L3:
—9mm, L4: 200 mm, L5: 75 mm, L6: 100 mm. The distance between lenses of a pair is adjusted such that a
collimated beam results. Al is a 50 pm pinhole, M1-M7 are fixed Mirrors, M8 is a tunable micro-mirror. BS1 and
BS2 are 50%/50% beam splitters and GF1 is a variable gray filter. MO1 and MO2 are microscope objective lenses
and LP is a linear polarizer. (b) Magnified view onto the sample arm and the combination of sample and reference
arm on the CCD camera. The reference beam and the optical axis intentionally include an angle y = 2.5°, which is
exaggerated in the drawing for clarity. This angle leads to a tilt in both the horizontal and vertical direction on the
CCD camera chip (cf. dashed white circle in Fig. 4(b)). The MEMS mirror allows to vary the direction of the incident
light while keeping the position of the illuminated spot on the front side of the sample fixed. We vary the angle by
+23°in both directions with a spacing between adjacent directions of 0.47° in both directions. This combination
leads to 7,845 different and independent illumination configurations. This number defines the number of columns of
the transmission matrix. The number of rows of the transmission matrix results from the choices discussed in Fig. 4
and is (361)% = 130,321.

Our setup for measuring the transmission matrix is illustrated in Fig. 3. We use a laser

(Toptica, DL 100) operating at A = 780 nm wavelength with a coherence length of > 1 m.
A telescope formed by lens L5 and the microscope objective MO1 (Leitz Wetzlar, o0/0,
50 X, NA = 0.6) de-magnifies the laser beam diameter to about 2r; = 200 um at the sample
position. This size is smaller than the diameter, 2R; = 1.6 mm, of the core of the core-shell
structure. MO1 and LS5 together form a 4f imaging system. When tilting the laser beam by
using the tunable micro-mirror device M8, the laser focus is displaced in the back-focal plane
BFP1. MO translates this displacement into a variation of the angle of incidence of the beam
in the sample plane SP — while the position of the beam on the sample front side is fixed. We
emphasize again that this aspect is not important for homogeneously disordered samples, but
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it is crucial for intentionally spatially inhomogeneous samples, such as the core-shell
structure. Here, unless explicitly stated otherwise, we position the laser spot on the center of
the core-shell structure (cf. Fig. 1) as we expect that this configuration is the most sensitive
test. This expectation is indeed fulfilled (see below). We estimate that the maximum number
of independent gaussian plane waves that can be delivered through the area mr? via the
objective lens with a numerical aperture of 0.6 is close to 300,000. Here, we acquire data for
7,845 different incident directions of light, which are arranged in a square array in angular
space, truncated by a circle, corresponding to 75% of the numerical aperture. Conceptually,
the sequence of measuring the different incident directions is not relevant. For convenience,
we start from normal incidence of light and proceed towards increasingly oblique angles in a
2D spiral shape.

We have chosen the angular spread of the individual illumination configurations and the
total number of illumination configurations such that we obtain a sufficiently large number of
independent (i.e., non-overlapping) illumination configurations. This aspect is crucial. In an
early stage of our experiments, we had chosen smaller numbers of independent illumination
configurations. This choice did not allow us to distinguish between the core-shell structure
and the reference sample (see below).

The light emerging from the sample is collected by a second microscope lens MO2, which
is identical to the first one (MO1). MO2 together with lens L6 form another 4f imaging
system. The light emerging from the sample is sent onto a silicon-based optical camera (Point
Grey, BFLY-PGE-50H5M-C). Precisely, in the case of no sample, the setup images the
sample plane (SP) onto the camera chip. This means that the output of the transmission matrix
is in real space, while its input is in wave-vector space (see above). In case of measuring the
reference or core-shell sample, we position the front surface of the sample in the sample plane
(SP). Therefore, the input plane of the transmission matrix lies in SP. In order to avoid
ambiguous realignments of the setup when switching between no sample and any of the
samples, we leave the alignment of all optical components untouched and the same as in the
case of no sample. As a result, the imaging path is somewhat distorted due to the additional
optical path length introduced by the samples, which have a refractive index of about 1.5 and
a physical thickness L, = 3 mm. This means that we only approximately image the rear side
of the samples onto the camera. The output of the transmission matrix therefore only
approximately corresponds to real space.

On the camera chip, the light from the sample arm interferes pixel-wise with the expanded
and collimated beam from the reference arm of the setup (cf. Fig. 4(a)). The reference arm is
intentionally aligned such that it includes an angle of about 2.5 degrees with the light
transmitted from the sample arm. This arrangement can be seen as off-axis holography
between the sample and the reference beam. Thereby, after Fourier-transforming the 2D
camera image, the interference term between the sample and the reference arm is well
separated from the autocorrelations of the sample and the reference beams in Fourier space
(see Fig. 4(b)). Due to the finite numerical aperture of the collecting microscope lens, the
useful data lie within a circle. All pixels outside of that circle bounded by a circle with a
diameter of 361 pixels are set to zero. Using an inverse fast Fourier transform, a 361 X 361
square array is transformed back to 361 X 361 pixels in 2D real space on the camera chip
(see Fig. 4(c) and 4(d)). These data are complex-valued and contain the phase information of
the light transmitted by the sample. For the mathematical treatment, these 2D images are
arranged into a single vector with 361 X 361 = 130,321 elements.

To summarize this section, our transmission matrix, (7_"), connects 130,321 output points in
real space to 7,845 input wave vectors or incident directions of light. This statement is strictly
true for the case of no sample. With a sample in the sample arm, this statement is only true
approximately. The numbers of input directions and real-space output points, respectively,
are chosen as large as possible while appreciating memory, aperture, and pixilation
constrains. Mathematically, the transmission matrix is composed of the complex-valued
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elements T; ;- The index i runs over its 130,321 rows and the index j runs over its 7,845
columns, leading to 130,321 X 7,845 = 1,022,368,245 elements of the transmission matrix.
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Fig. 4. (a) Example camera raw image, a speckle pattern, for one selected incident direction of light (cf. Fig. 3). Light
from the sample arm and the reference arm (cf. Fig. 3) interfere on the camera pixels. The inset highlights the
resulting interference stripes due to the angle y # 0 and the fact that the speckle pattern is spatially resolved. The
side length of one pixel on the camera chip corresponds to 0.1 pm in the sample plane (cf. SP in Fig. 3(b)).
(b) Modulus of the Fourier transform of (a) on a logarithmic false-color scale. The contribution arising from the
interference of the sample and reference arm is highlighted by the dashed white circle. All pixels outside of this white
circle are set to zero, and the center of the white circle is chosen as the new coordinate origin (0,0) in momentum
space. Inverse Fourier transformation of these data leads to panels (c) and (d). (c) Modulus and (d) phase. These two
panels each contain (361)% = 130,321 pixels, which defines the numbers of rows of the transmission matrix (cf.
caption of Fig. 3).

5. Singular value decomposition

To extract useful information from the measured optical transmission matrices T, we perform
a singular value decomposition [14,18,24] according to

T=U&V".
Here, Uisamxm= 130,321 x 130,321 unitary matrix, & is a m X n = 130,321 X
7,845 matrix, V'is anxn= 7,845 x 7,845 unitary matrix, and V" is the conjugate
transpose of V. The upper 7,845 x 7,845 block of the matrix & (i.e., the elements g;; with

row index i = 1...7,845) is a diagonal matrix. Its diagonal elements o;; withi = 1...7,845
lead to the transmission eigenvalues |a;;|? of the sample. These obey the relation
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The eigenvalues are ordered according to their square modulus, such that |g1]% > |05,]% ... >
|opnl? . The lower part of the matrix & (i.e., the elements o;j with row index

i =7,846...130,321) contains zeroes only. Any j-th column of U (with j = 1...130,321)
obeys the normalization condition
m
2
Z|UU| =1,
i=1

and the j-th row of v (with j = 1...7,845) obeys the normalization
n

v
=1

The columns of the unitary matrix U form an orthonormal basis. Hence, the columns can
be interpreted as eigenmodes or eigenchannels, which refer to the output of the transmission
matrix. For visualization, each of the 130,321 columns can be arranged backwards (see

above) into a 2D image with 361X 361 pixels. The rows of the unitary matrix V* form an
orthonormal basis, which refers to the input of the transmission matrix. For visualization,
each of the 7,845 rows can likewise be arranged backwards (see above) into a 2D image.

We emphasize that the resulting distributions of the transmission eigenvalues versus index
i are immune against the absolute average transmission of the samples, which strictly drops
out in the described analysis due to the used normalization Y./ ,|0;;|> = n. Therefore,
different distributions of the transmission eigenvalues of different samples reflect different
statistics of the underlying random walks of light in these samples.

-1,

6. Results and discussion

It is instructive to start our discussion with the case of no sample between the two microscope
objective lenses. The experimental result is shown by the black curve in Fig. 5. It is clear that
the transmission matrix of no sample is the same as the transmission matrix of free space.
This means that, for all incident directions, the transmission should ideally be strictly equal to
unity. From Fig. 5, we see that this is not the case. We rather find a monotonic decrease
versus index i. The decrease itself results from the ordering described above. The fact that the
eigenvalues are not all the same is due to experimental imperfections. It originates from the
following factors. First, when approaching the maximum accessible angles imposed by the
finite numerical aperture of the used microscope lenses MO1 and MO2, the beams are
slightly clipped, leading to an apparent decrease in transmission. This effect could obviously
be reduced by staying away from these maximum angles. On the other hand, we want to
investigate an as-large-as-possible number of independent illumination configurations (see
above). Our choice of parameters is a trade-off between these two opposing conditions.
Second, dirt and other imperfections on the involved optics also contribute to deviations from
the expected unity transmission for all incident angles of light. These deviations are different
for each incident direction of light. Third, fluctuations in laser power and the laser coherence
length or vibrations of the setup during one experiment, which takes about 2 hours, also
manifest as apparent transmission variations. While all of these three sources of deviations
from unity transmission may appear as small effects in the experimental raw data at first
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sight, the singular-value decomposition increases these unwanted variations in the resulting
eigenvalue distributions.
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Fig. 5. (a) Modulus of the i-th singular value, o; = |oy;|, versus index i = 1...7,845 for the case of no sample
(black), the reference sample (red), and the core-shell neutral-inclusion sample (blue). (b) Same, but normalized to
the singular value distribution of the homogeneously disordered reference sample.

Let us now come to considering samples in the setup. The decrease of the transmission
eigenvalues versus index i in the no-sample case (black curve) is significantly less steep than
the decrease for the core-shell neutral-inclusion sample (blue curve) or the reference sample
(red curve) in Fig. 5(a). However, in this representation, one cannot see significant
differences between the neutral-inclusion and the reference sample within the linewidth of the
curves. Therefore, we normalize the data point-by-point with respect to one data set of the
reference sample in Fig. 5(a). In this representation of the experimental data, the eigenvalue
distributions of the neutral-inclusion and the reference sample are well separated.

To investigate whether this difference is reproducible and statistically significant, we have
performed a number of additional experiments. In Fig. 6, we repeat each measurement on the
reference sample and those on the core-shell neutral-inclusion sample several times each.
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These measurements have intentionally been performed on different days and hence with
individual alignments of the setup. Clearly, the difference in the eigenvalue distributions of
reference and core-shell neutral-inclusion is reproducible.
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Fig. 6. (a) Same as Fig. 5(b), but for seven different positions on the core-shell neutral-inclusion sample (see inset).
(b) Same as Fig. 5(b) but for three different positions (see inset) on the same reference sample. For each case, we
show the average of five individual measurements by the full curve and the error bar (plus/minus one standard
deviation) by the gray area. Note that the differences between the curves in (a) are much larger than those in (b). This
observation means that the transmission-matrix experiments can reveal the invisible core-shell neutral-inclusion
sample.

Next, we repeat the measurements on the core-shell neutral-inclusion sample, but move
the illumination region on the front side of the sample (as well as the light-collection region
on the rear side of the sample) by the indicated distances (see inset in Fig. 6(a)). Clearly, with
increasing separation from the middle of the structure, the difference in the transmission
eigenvalue distributions between the neutral-inclusion and the reference sample disappears —
as one might have expected intuitively. More precisely, the magnitude of the transmission
eigenvalues at small eigenchannel numbers i towards i = 1 gradually increase upon moving
the illumination spot from the center (blue) of the structure towards the diffusive surrounding
(orange). Far away from the center (orange), the behavior approaches that of the
homogeneously disordered reference sample. In Fig. 6(b), different positions of the
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illumination spot on the reference are depicted. As expected, no significant differences are
observed. The observed difference in the maximum normalized transmission eigenvalue
between the blue and orange curves agrees well with our previous time-of-flight
experiments [12] discussed in the introduction: When illuminating the center (blue), the
number of light scattering events is smaller due to the tendency of photons traveling through
the shell, which has a larger diffusivity D, > Dythan the surrounding, D,. Therefore, long-
range correlations of multiply scattered waves, which determine the maximum normalized
transmission eigenvalue, are weaker compared to illuminating the periphery of the neutral
inclusion (orange). Going back to Fig. 5(a), the maximum normalized transmission
eigenvalue is connected to the range or variance of the singular values spanned by the indices
i=1..7845. A reduced variance is again consistent with a reduction in wave
correlation [22]. Therefore, we interpret the measured differences in the eigenvalue
distributions of the neutral inclusion and the reference sample (or the surrounding of the
neutral inclusion) as being due to differences in the wave correlation between these samples.

7. Conclusions

In conclusion, we have determined the optical transmission matrix of an invisible diffusive-
optical core-shell neutral-inclusion and a homogeneously disordered reference sample by
using interferometric experiments. From these transmission-matrix experiments, by using
singular-value decomposition, we have extracted the transmission eigenvalues and
eigenmodes. Due to the used normalization, the individual transmission eigenvalue
distributions are independent of the mean transmissions of the sample. We find that the
invisible diffusive neutral inclusion can be distinguished significantly from the diffusive
reference sample along these lines.

However, while being statistically significant, these differences are rather small. In fact, it
would have been much easier to distinguish the neutral-inclusion sample from the reference
sample by inspection of the photographs of the samples shown in Fig. 1. Therefore, the
notable message of our work is really that the neutral inclusion (or more generally the cloak),
the design of which is solely based on the diffusion equation of light — which completely
ignores the wave properties of light —, works surprisingly well on the level of light waves,
t00.

We hope that our experimental study will stimulate future theoretical work on wave
propagation in three-dimensional piecewise homogeneously disordered media — which is
presently elusive. Corresponding numerical calculations are presently demanding, but might
become possible due to rapid advances in computation power.
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