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Abstract: By using tailored disorder in the regime of diffusive light propagation, core-shell 
cloaking structures have previously been presented. These structures make the cloak and an 
arbitrary interior nearly indistinguishable from the diffusive surrounding. This statement 
holds true for all incident polarizations of light, a broad range of incident directions of light in 
three dimensions, and a broad range of visible wavelengths. Here, by performing 
interferometric transmission-matrix experiments, we investigate the statistical wave 
properties of miniaturized versions of such structures. By using singular-value decomposition, 
we derive the eigenchannels and eigenvalues to assess the degree of wave correlation among 
multiply scattered waves. We find small but significant differences in the eigenvalue 
distributions, suggesting that the degree of wave correlation is lower for the neutral inclusion 
than for a homogeneously disordered reference sample, which corresponds to the surrounding 
of the neutral inclusion. Likewise, we find similar differences between optically inspecting 
the core-shell neutral-inclusion and its spatial neighborhood. These differences allow us to 
reveal the neutral inclusion due to different statistics of the underlying random walks of light.   

© 2021 Optical Society of America 

1. Personal foreword

In his scientific oeuvre, Costas Soukoulis made significant contributions to the fields of 
disordered or complex optical systems  [1] and optical metamaterials  [2]. Here, we present a 
set of recent original experimental results on the transmission matrix of diffusive optical 
neutral inclusions on the occasion of Costas Soukoulis’ 70th birthday. On a small spatial scale, 
these structures are composed of randomly distributed nanoparticles, the density of which is 
arranged in a core-shell manner on a larger spatial scale. The cylindrical core-shell geometry 
can be seen as one wound-up unit cell of an anisotropic laminate metamaterial. Therefore, 
these experiments relate to both of the above fields to which Costas Soukoulis has made 
pioneering contributions. 

2. Introduction

The mathematics and physics of diffusive-optical core-shell cloaks  [3] are analogous to that 
of magneto-static cloaks  [4] and thermal cloaks under stationary conditions  [5] (see Fig. 
1(a)). It goes back to the 1956 work of Kerner  [6], has been described several times in the 
literature  [4–7] including a dedicated review article [8]. In brief, an inner strongly light-
scattering cylinder (the core) with outer radius ܴଵ isolates the core’s interior from its exterior. 
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Ideally, the light diffusivity of this inner cylinder is zero, ܦଵ = 0. A cylindrical shell with 
inner radius ܴଵ, outer radius ܴଶ, and light diffusivity ܦଶ = ଴(ܴଶଶܦ + ܴଵଶ)/(ܴଶଶ − ܴଵଶ) around 
this core molds the diffusive flow of light around the core such that the emerging light 
becomes indistinguishable from that of the homogeneous disordered surrounding of the cloak 
with diffusivity ܦ଴. Within the range of validity of the diffusion equation, this statement is 
strictly true for spatially homogeneous stationary illumination [3,8]. Under these conditions, 
for negligibly small optical absorption and identical scattering particles of concentrations ݊଴ 
in the surrounding and ݊ଶ in the shell, respectively, we further have the relation ܦଶ/ܦ଴ =(݊ଶ/݊଴)ିଵ.  This relation holds true because the optical diffusivity is proportional to the 
optical transport mean free path length [9], and the transport mean free path length is 
inversely proportional to the concentration of scattering particles.  

The core and the shell can be seen as one period of a laminate metamaterial [10]. For 
spatially inhomogeneous stationary illumination, such a diffusive cloak works only 
approximately but still quite well [8]. Improved cloaking can, in principle, be achieved by 
using multiple laminate periods instead of just a single period for the core-shell geometry. 
However, the price to be paid is very low overall optical transmission [11] compared to the 
core-shell arrangement. Therefore, we only consider diffusive core-shell structures in this 
paper. Precisely, due to fabrication restrictions, we do not drill an inner hole into the diffusive 
core (the core’s outer radius is already as small as ܴଵ = 0.8	mm), thus the absence of this 
hole conceptually turns the core-shell invisibility cloak into a core-shell invisible object or 
neutral inclusion. 

It would be interesting to further improve the above-mentioned diffusive architectures. 
Here, we follow a different path and rather explore the underlying fundamental limitations.  

In the case of diffusive core-shell cloaks, it is instructive to think about the propagating 
light waves in terms of light rays or, loosely speaking, as point-like photons. Photons 
impinging onto the core are guided around the core within the surrounding shell. The shell 
exhibits a larger light diffusivity ܦଶ >  ଴. The larger lightܦ ,଴ than the surrounding mediumܦ
diffusivity corresponds to a larger mean free path length. Therefore, photons traveling 
through the shell and emerging from the sample have accumulated a shorter overall average 
path length than photons travelling through the homogeneous surrounding. Furthermore, the 
path length distributions and their widths are different, too. However, the relative thickness of 
the shell, ܴଶ/ܴଵ, is designed such that the transmission probabilities are the same. This design 
ensures that the transmittance is the same and that the core and its interior become invisible. 

Due to the different path length distributions, time-of-flight measurements could 
differentiate between the cloak and the homogeneously disordered reference sample [12]. 
These experiments showed that photons arrive earlier and the time-of-flight distribution is 
narrower for the cloak case than for the reference. This finding suggests that the core-shell 
cloak is effectively a less-scattering medium than the diffusive surrounding. Calculations of 
the photon statistics analyzed by Monte-Carlo simulations indeed showed that the number of 
photon scattering events is smaller for the cloak than for the reference. 

Another possibility to reveal or uncloak the cloak is to measure the degree of multiple 
light scattering by speckle experiments  [13]. In these experiments using a variable finite 
coherence length of light, it was found that the cloak exhibited a larger speckle interference 
contrast than the reference sample. This difference was most pronounced if the coherence 
length of light roughly matched the width of the path length distribution. These experimental 
findings were well reproduced by theory. 

A third approach for distinguishing between the invisible object and a homogeneous 
diffusive surrounding is based on measuring the associated transmission matrices. In the ideal 
case, the transmission matrix contains all information on light waves transmitting through the 
complex disordered scattering medium [14]. This includes the information on the average 
path length as well as on the width of the path length distribution. Transmission-matrix 
experiments have been performed for homogeneously disordered specimen [15–18]. 
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4. Transmission-matrix experiments 

The general approach of transmission-matrix experiments to be presented in this Section and 
the analysis based on singular-value decomposition in Section 5 are well known from the 
literature, but tend to be somewhat uneasy to digest at first sight. Therefore, we start with a 
basic introduction.  

Let us consider a given and fixed frequency of light. The transmission matrix relates the 
transmitted light through a sample to the incident light. It is a subset of a scattering matrix 
which covers all the outgoing waves including reflected light. The input and output can, for 
example, be represented by the electric-vector field of the electromagnetic light wave. This 
complex-valued vector field contains information on the polarization, the amplitude, and the 
phase of light. Therefore, the elements of the transmission matrix are complex-valued as well. 
For both, input and output, the problem can be formulated in either real (r) space or wave-
vector (k) space. This leaves one with four different possibilities for representing the 
transmission matrix: r-r, r-k, k-r, and k-k for input-output. Below, we will choose one 
possibility that is particularly well suited for our conditions. In principle, one should consider 
all, that is, infinitely many possible inputs and infinitely many possible outputs. In an 
experiment, only a finite number of inputs and outputs can be considered. Generally, the 
number of input possibilities and the number of output possibilities need not be identical, in 
which case the transmission matrix relating input and output is not a square matrix. For 
example, one may consider 100 different input wave vectors of light and characterize the 
output in real space by an image containing 30 × 30 = 900  pixels. The resulting 
transmission matrix is a 900 × 100  matrix, for which, mathematically, eigenvalues and 
eigenvectors do not exist. It may be desirable though to determine something like eigenvalues 
and eigenvectors. The corresponding mathematical procedure is known as singular-value 
decomposition  [14,18,24] and will be summarized in Section 5 for our conditions using our 
nomenclature. In essence, this mathematical procedure is the generalization of a unitary 
transformation applied to a square matrix that leads to a diagonal matrix, the diagonal 
elements of which are the eigenvalues. The singular values are the mathematical 
generalization of eigenvalues. For our above example, one would have 100 singular values 
(rank of the matrix). The physical meaning of a singular value is the amplitude transmittance 
of an associated input eigenvector to the detection channels. The square modulus of the 
singular value is called an eigenvalue, and it corresponds to the intensity transmittance of the 
associated eigenvector. For example, if one considers the transmission matrix of a volume 
element of vacuum, all square moduli of the singular values are identical to unity. For a 
medium absorbing all the light, all square moduli would be zero. In our below analysis, we 
will additionally normalize the square moduli of the singular values to their mean value. 

Let us now turn to our specific experiments. As discussed previously [8], point-like 
illumination of the cloak or neutral-inclusion region on the front side of the sample is a more 
demanding test for the invisibility performance than homogeneous illumination or non-
centered spot illumination. Therefore, aiming at revealing the invisible object, we use a fixed 
position of a narrowly collimated beam waist on the sample front side, while varying the 
directions of the incident light. This means that the input to the transmission matrix is in 
wave-vector space. We emphasize that the choice of fixing the illuminated spot position may 
not be ideal when aiming at characterizing homogeneously disordered samples. This choice 
is, however, well suited for the spatially inhomogeneous cylindrical core-shell structures of 
interest here.   
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it is crucial for intentionally spatially inhomogeneous samples, such as the core-shell 
structure. Here, unless explicitly stated otherwise, we position the laser spot on the center of 
the core-shell structure (cf. Fig. 1) as we expect that this configuration is the most sensitive 
test. This expectation is indeed fulfilled (see below). We estimate that the maximum number 
of independent gaussian plane waves that can be delivered through the area ݎߨଵଶ	via the 
objective lens with a numerical aperture of 0.6 is close to 300,000. Here, we acquire data for 7,845 different incident directions of light, which are arranged in a square array in angular 
space, truncated by a circle, corresponding to 75% of the numerical aperture. Conceptually, 
the sequence of measuring the different incident directions is not relevant. For convenience, 
we start from normal incidence of light and proceed towards increasingly oblique angles in a 
2D spiral shape. 

We have chosen the angular spread of the individual illumination configurations and the 
total number of illumination configurations such that we obtain a sufficiently large number of 
independent (i.e., non-overlapping) illumination configurations. This aspect is crucial. In an 
early stage of our experiments, we had chosen smaller numbers of independent illumination 
configurations. This choice did not allow us to distinguish between the core-shell structure 
and the reference sample (see below). 

The light emerging from the sample is collected by a second microscope lens MO2, which 
is identical to the first one (MO1). MO2 together with lens L6 form another 4݂ imaging 
system. The light emerging from the sample is sent onto a silicon-based optical camera (Point 
Grey, BFLY-PGE-50H5M-C). Precisely, in the case of no sample, the setup images the 
sample plane (SP) onto the camera chip. This means that the output of the transmission matrix 
is in real space, while its input is in wave-vector space (see above). In case of measuring the 
reference or core-shell sample, we position the front surface of the sample in the sample plane 
(SP). Therefore, the input plane of the transmission matrix lies in SP. In order to avoid 
ambiguous realignments of the setup when switching between no sample and any of the 
samples, we leave the alignment of all optical components untouched and the same as in the 
case of no sample. As a result, the imaging path is somewhat distorted due to the additional 
optical path length introduced by the samples, which have a refractive index of about 1.5 and 
a physical thickness ܮ୸ = 3	mm. This means that we only approximately image the rear side 
of the samples onto the camera. The output of the transmission matrix therefore only 
approximately corresponds to real space.  

On the camera chip, the light from the sample arm interferes pixel-wise with the expanded 
and collimated beam from the reference arm of the setup (cf. Fig. 4(a)). The reference arm is 
intentionally aligned such that it includes an angle of about 2.5  degrees with the light 
transmitted from the sample arm. This arrangement can be seen as off-axis holography 
between the sample and the reference beam. Thereby, after Fourier-transforming the 2D 
camera image, the interference term between the sample and the reference arm is well 
separated from the autocorrelations of the sample and the reference beams in Fourier space 
(see Fig. 4(b)). Due to the finite numerical aperture of the collecting microscope lens, the 
useful data lie within a circle. All pixels outside of that circle bounded by a circle with a 
diameter of 361 pixels are set to zero. Using an inverse fast Fourier transform, a 361 × 361 
square array is transformed back to 361 × 361 pixels in 2D real space on the camera chip 
(see Fig. 4(c) and 4(d)). These data are complex-valued and contain the phase information of 
the light transmitted by the sample. For the mathematical treatment, these 2D images are 
arranged into a single vector with 361 × 361 = 130,321 elements.  

To summarize this section, our transmission matrix, ിܶ, connects 130,321 output points in 
real space to 7,845 input wave vectors or incident directions of light. This statement is strictly 
true for the case of no sample. With a sample in the sample arm, this statement is only true 
approximately.  The numbers of input directions and real-space output points, respectively, 
are chosen as large as possible while appreciating memory, aperture, and pixilation 
constrains. Mathematically, the transmission matrix is composed of the complex-valued 
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෍|ߪ௜௜|ଶ௡
௜ୀଵ =෍		෍ห ௜ܶ௝หଶ௡

௝ୀଵ .௠
௜ୀଵ  

We use the normalization ෍|ߪ௜௜|ଶ௡
௜ୀଵ = ݊. 

The eigenvalues are ordered according to their square modulus, such that |ߪଵଵ|ଶ > ଶଶ|ଶߪ| … ௡௡|ଶߪ|< . The lower part of the matrix ߪി  (i.e., the elements ߪ௜௝  with row index ݅ = 7,846…130,321) contains zeroes only. Any ݆-th column of ിܷ (with ݆ = 1…130,321) 
obeys the normalization condition ෍ห ௜ܷ௝หଶ௠

௜ୀଵ = 1	,	 
and the ݆-th row of ിܸ∗ (with ݆ = 1…7,845) obeys the normalization ෍ห ௜ܸ௝∗ หଶ௡

௝ୀଵ = 1	. 
The columns of the unitary matrix ിܷ form an orthonormal basis. Hence, the columns can 

be interpreted as eigenmodes or eigenchannels, which refer to the output of the transmission 
matrix. For visualization, each of the 130,321  columns can be arranged backwards (see 
above) into a 2D image with 361× 361 pixels. The rows of the unitary matrix ിܸ∗ form an 
orthonormal basis, which refers to the input of the transmission matrix. For visualization, 
each of the 7,845 rows can likewise be arranged backwards (see above) into a 2D image. 

We emphasize that the resulting distributions of the transmission eigenvalues versus index ݅ are immune against the absolute average transmission of the samples, which strictly drops 
out in the described analysis due to the used normalization ∑ ௜௜|ଶ௡௜ୀଵߪ| = ݊ . Therefore, 
different distributions of the transmission eigenvalues of different samples reflect different 
statistics of the underlying random walks of light in these samples. 

 

6. Results and discussion 

It is instructive to start our discussion with the case of no sample between the two microscope 
objective lenses. The experimental result is shown by the black curve in Fig. 5. It is clear that 
the transmission matrix of no sample is the same as the transmission matrix of free space. 
This means that, for all incident directions, the transmission should ideally be strictly equal to 
unity. From Fig. 5, we see that this is not the case. We rather find a monotonic decrease 
versus index ݅. The decrease itself results from the ordering described above. The fact that the 
eigenvalues are not all the same is due to experimental imperfections. It originates from the 
following factors. First, when approaching the maximum accessible angles imposed by the 
finite numerical aperture of the used microscope lenses MO1 and MO2, the beams are 
slightly clipped, leading to an apparent decrease in transmission. This effect could obviously 
be reduced by staying away from these maximum angles. On the other hand, we want to 
investigate an as-large-as-possible number of independent illumination configurations (see 
above). Our choice of parameters is a trade-off between these two opposing conditions. 
Second, dirt and other imperfections on the involved optics also contribute to deviations from 
the expected unity transmission for all incident angles of light. These deviations are different 
for each incident direction of light. Third, fluctuations in laser power and the laser coherence 
length or vibrations of the setup during one experiment, which takes about 2 hours, also 
manifest as apparent transmission variations. While all of these three sources of deviations 
from unity transmission may appear as small effects in the experimental raw data at first 
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illumination spot on the reference are depicted. As expected, no significant differences are 
observed. The observed difference in the maximum normalized transmission eigenvalue 
between the blue and orange curves agrees well with our previous time-of-flight 
experiments  [12] discussed in the introduction: When illuminating the center (blue), the 
number of light scattering events is smaller due to the tendency of photons traveling through 
the shell, which has a larger diffusivity ܦଶ > -଴. Therefore, longܦ ,଴than the surroundingܦ
range correlations of multiply scattered waves, which determine the maximum normalized 
transmission eigenvalue, are weaker compared to illuminating the periphery of the neutral 
inclusion (orange). Going back to Fig. 5(a), the maximum normalized transmission 
eigenvalue is connected to the range or variance of the singular values spanned by the indices ݅ = 1…7,845 .  A reduced variance is again consistent with a reduction in wave 
correlation [22]. Therefore, we interpret the measured differences in the eigenvalue 
distributions of the neutral inclusion and the reference sample (or the surrounding of the 
neutral inclusion) as being due to differences in the wave correlation between these samples.  

 

7. Conclusions 

In conclusion, we have determined the optical transmission matrix of an invisible diffusive-
optical core-shell neutral-inclusion and a homogeneously disordered reference sample by 
using interferometric experiments. From these transmission-matrix experiments, by using 
singular-value decomposition, we have extracted the transmission eigenvalues and 
eigenmodes. Due to the used normalization, the individual transmission eigenvalue 
distributions are independent of the mean transmissions of the sample. We find that the 
invisible diffusive neutral inclusion can be distinguished significantly from the diffusive 
reference sample along these lines.  

However, while being statistically significant, these differences are rather small. In fact, it 
would have been much easier to distinguish the neutral-inclusion sample from the reference 
sample by inspection of the photographs of the samples shown in Fig. 1. Therefore, the 
notable message of our work is really that the neutral inclusion (or more generally the cloak), 
the design of which is solely based on the diffusion equation of light – which completely 
ignores the wave properties of light –, works surprisingly well on the level of light waves, 
too.  

We hope that our experimental study will stimulate future theoretical work on wave 
propagation in three-dimensional piecewise homogeneously disordered media – which is 
presently elusive. Corresponding numerical calculations are presently demanding, but might 
become possible due to rapid advances in computation power.  

 

Funding. This research has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research 
Foundation) through the priority program DFG-SPP 1839 “Tailored Disorder” and by the Karlsruhe School of Optics 
& Photonics (KSOP) and the Institute for Basic Science (IBS-R023-D1). 

Acknowledgments. We thank Johann Westhauser (KIT) for technical support, and Ye-Ryoung Lee and Mooseok 
Jang for helpful discussion. 

Disclosures. The authors declare no conflicts of interest. 

Data availability. Data underlying the results presented in this paper are not publicly available at this time but 
may be obtained from the authors upon reasonable request. 
 

References 

1.  C. M. Soukoulis, Photonic Crystals and Light Localization in the 21st Century, 1st ed. (Springer Science & 
Business Media, 2001). 

2.  C. M. Soukoulis and M. Wegener, "Past achievements and future challenges in the development of three-
dimensional photonic metamaterials," Nat. Photonics 5, 523–530 (2011). 

Interferometric experiments on the transmission matrix of diffusive neutral inclusions

12



3.  R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, "Invisibility cloaking in a diffusive light scattering 
medium," Science 345, 427–429 (2014). 

4.  F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A. Sanchez, "Experimental Realization of a 
Magnetic Cloak," Science 335, 1466–1468 (2012). 

5.  R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, "Experiments on Transformation Thermodynamics: 
Molding the Flow of Heat," Phys. Rev. Lett. 110, 195901 (2013). 

6.  E. H. Kerner, "The Electrical Conductivity of Composite Media," Proc. Phys. Soc. B 69, 802 (1956). 
7.  G. W. Milton, The Theory of Composites, 1st ed. (Cambridge University Press, 2002). 
8.  R. Schittny, A. Niemeyer, F. Mayer, A. Naber, M. Kadic, and M. Wegener, "Invisibility cloaking in light�

scattering media," Laser Photonics Rev. 10, 382–408 (2016). 
9.  F. Martelli, S. D. Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and 

Other Diffusive Media: Theory, Solutions, and Software, 1st ed. (SPIE Press, 2010). 
10.  M. Kadic, T. Bückmann, R. Schittny, and M. Wegener, "Metamaterials beyond electromagnetism," Rep. Prog. 

Phys. 76, 126501 (2013). 
11.  S. Mannherz, A. Niemeyer, F. Mayer, C. Kern, and M. Wegener, "On the limits of laminates in diffusive 

optics," Opt. Express 26, 34274–34287 (2018). 
12.  R. Schittny, A. Niemeyer, M. Kadic, T. Bückmann, A. Naber, and M. Wegener, "Transient behavior of 

invisibility cloaks for diffusive light propagation," Optica 2, 84–87 (2015). 
13.  A. Niemeyer, F. Mayer, A. Naber, M. Koirala, A. Yamilov, and M. Wegener, "Uncloaking diffusive-light 

invisibility cloaks by speckle analysis," Opt. Lett. 42, 1998–2001 (2017). 
14.  S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, "Measuring the Transmission 

Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media," Phys. 
Rev. Lett. 104, 100601 (2010). 

15.  S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, "Controlling light through optical disordered 
media: transmission matrix approach," New J. Phys. 13, 123021 (2011). 

16.  W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, "Transmission eigenchannels in a disordered medium," Phys. 
Rev. B 83, 134207 (2011). 

17.  M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, "Transmission matrix of a scattering medium and its 
applications in biophotonics," Opt. Express 23, 12648–12668 (2015). 

18.  H. Yu, T. R. Hillman, W. Choi, J. O. Lee, M. S. Feld, R. R. Dasari, and Y. Park, "Measuring Large Optical 
Transmission Matrices of Disordered Media," Phys. Rev. Lett. 111, 153902 (2013). 

19.  A. Goetschy and A. D. Stone, "Filtering Random Matrices: The Effect of Incomplete Channel Control in 
Multiple Scattering," Phys. Rev. Lett. 111, 063901 (2013). 

20.  Y. Xu, H. Zhang, Y. Lin, and H. Zhu, "Light transmission properties in inhomogeneously-disordered random 
media," Ann. Phys. 529, 1600225 (2017). 

21.  E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons, 1st ed. (Cambridge 
University Press, 2007). 

22.  C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. Douglas Stone, "Correlation-enhanced control of wave 
focusing in disordered media," Nature Physics 13, 497–502 (2017). 

23.  R. Schittny, A. Niemeyer, M. Kadic, T. Bückmann, A. Naber, and M. Wegener, "Diffuse-light all-solid-state 
invisibility cloak," Opt. Lett. 40, 4202–4205 (2015). 

24.  L. Devaud, B. Rauer, J. Melchard, M. Kühmayer, S. Rotter, and S. Gigan, "Speckle engineering through 
singular value decomposition of the transmission matrix," arXiv:2010.06868 (2020). 

  
 

Interferometric experiments on the transmission matrix of diffusive neutral inclusions

13


	Interferometric experiments on thetransmission matrix of diffusive neutralinclusions
	Abstract:
	1. Personal foreword
	2. Introduction
	3. Optical Samples
	4. Transmission-matrix experiments
	5. Singular value decomposition
	6. Results and discussion
	7. Conclusions
	Funding.
	References



