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ABSTRACT 

Hull Vane (HV) is an energy-saving appendage introduced by Hull Vane BV company to 

reduce total ship resistance. Shapewise, HV is a hydrofoil wing transversely fixed at the transom 

bottom of the hull. 

In this paper, a data-driven shape optimization method is proposed for HV. To avoid the time-

consuming resistance evaluation of designs via a viscous flow solver, we develop a Machine-

Learning (ML) based model that predicts the hull's total resistance in the presence of an HV. 

For this purpose, Principal-Component Analysis (PCA) is first implemented to reduce the 

dimensionality of the problem, and then the prediction model is trained with the most influential 

of the Principal Components (PCs). Given that these PCs capture the maximum geometric 

variance of the original design space, higher accuracy can be achieved at the expense of a few 

training samples. After the training phase, the model is integrated with an optimizer, which 

searches in a dimensionally-reduced design space for the optimal design of the HV. The 

obtained results achieved a 70% dimensionality reduction with the aid PCA and an 

approximately 98% accuracy for predicting total resistance. Compared with the reference HV, 

the optimized one reduced the total resistance by 1.2%. 
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1. INTRODUCTION

The societal awareness of the need to reduce carbon emissions is constantly increasing. New 

restrictive regulations on carbon emissions will be implemented by the International Maritime 

Organization (IMO) in the coming years. Over the last decade, significant attention has been 

devoted to the reduction of fuel consumption by ships, which can be achieved by employing 

various approaches, such as using alternative energy resources, decreasing hull resistance and 

increasing the efficiency of the ships' main engine. In this work, we focus on reducing the hulls' 

total resistance by using energy-saving appendages. 

Such appendages have been widely used to decrease a ship's resistance by controlling the 

direction of streamlines and advantageously changing the pressure distribution on the ship hull. 

One of these appendages is Hull Vane (HV), which is a hydrofoil wing transversely fixed at the 

transom bottom of ships. Its working principle is based on the fact that the negative pressure 

zone on the suction side of the HV absorbs the high-pressure zone behind the ship, and as a 

result, it reduces the ship's hull resistance. The overall design of an HV takes into consideration 

several parameters, such as position, angle of attack, span- and chord lengths, which must be 

optimized to reduce the hull resistance further. The inventors of HV have conducted various 

experimental and computational studies (Uithof et al., 2017; Hou et al., 2020), but these 

studies are mostly kept confidential; therefore, no detailed research on the design of HV is 

available in the literature. 

A range of computational tools, including potential-flow solvers and viscous-flow solvers,is 

used to evaluate engineering models' physical properties, such as the total resistance of hull 

forms and the drag of cars and aeroplanes. Potential-flow codes cannot, however, interpret 

viscous effects. Therefore, viscous-flow solvers, based on Reynolds-averaged Navier–Stokes 

(RANS) equations, are adopted, but solving these nonlinear equations for complex free-form 

shapes, such as ship hulls, poses a challenge due to their computational complexity, especially 

when these solvers have to be used in a shape-optimization loop. Different approaches have 

been developed in this connection to overcome the computational burden caused by these 

solvers during an optimization process. Generally, the problem of computational cost is tackled 

in two different research directions. One approach aims to reduce the complexity by 

investigating the structure of the design space via sensitivity analysis or reduced-order 

representation. The other approach appeals to data-driven model-agnostic surrogate methods 

(Diez et al., 2019) or multi-fidelity metamodels (Serani et al., 2019) in conjunction with 
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models which couple physics with high-fidelity geometrical models, such as isogeometric 

analysis (IGA) (Kostas et al., 2015), in order to achieve accuracy at a reasonable cost. 

Recently, the expansion of Industry 4.0 has leveraged data-driven techniques, such as Machine 

Learning (ML), which have been proven capable to bypass the need for Computational Fluid 

Dynamics (CFD) solvers when evaluating, e.g., the resistance of a ship-hull (Margari et al., 

2018; Yu et al., 2019; Danışman, 2014), the drag coefficients of a car (Gunpinar et al., 2019) 

or an aerofoil design (Li et al., 2019), within a specified accuracy level. In engineering design, 

despite the proven efficiency of these techniques, the problem of high computational cost still 

exists, given that training precise ML-based prediction models requires large training datasets 

containing both the design's parametric representation and its physical results (Masood et al., 

2021). Therefore, some researchers (Hamdia et al., 2019) use IGA to evaluate and construct 

large datasets for ML. However, for free-form shapes, IGA provides a combination of low-

fidelity physics models with high-fidelity geometrical models, which may result in the 

construction of an ML model with a relatively poor prediction efficiency. 

In this work, we propose a data-driven shape optimization approach to optimize the cross-

sectional profile of the HV of a given motor yacht in order to reduce its overall resistance. First, 

the parametric profile of HV is constructed based on a reference shape, namely the NACA4412 

foil, which was parameterized using Kostas et al.'s (2017) technique using eight shape 

parameters. To start the optimization, we first constructed a design space using the upper and 

lower bound of the design parameters, which are set around the reference HV profile. A 

subspace representation of the original design space is  then created using Principal Component 

Analysis (PCA) (Wold et al., 1987), which not only facilitates the optimizer to avoid excessive 

exploration of design space for global optima but also cancels the need of constructing a large 

training dataset for relatively precise prediction models. 

Subsequently, designs from the subspace are sampled to generate a training dataset, and the 

total resistance for these designs is evaluated using a viscous flow solver after projecting them 

back onto the original design space. The design sampling in the original and the subspace is 

performed using the so-called Latin Hypercube Sampling (Stein, 1987), which ensures even 

distribution of Design of Experiments (DoE). The dataset used to train the ML-based prediction 

model contained Principal Components (PCs) as independent parameters and their resistance 

as a dependent parameter. Finally, the prediction model is integrated with an optimizer, which 

explores the subspace to find the optimal cross-sectional profile of the HV in order to reduce 
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the total hull resistance. Figure 1 shows the overall workflow of the proposed optimization 

framework.  

 

Figure 1: Overall workflow of the data-driven approach used for the HV optimization.  

The rest of the paper is structured as follows. Section 2 gives an overview in the area of HV 

design and data-driven techniques used in maritime and other engineering fields. The 

Numerical modelling and the CFD setting for the problem in question are presented in Section 

3. Section 4 then provides details on the construction of a data-driven prediction model and 

optimization. Results of CFD analysis, prediction model and optimization are presented in 

Section 5. Finally, concluding remarks and directions for future work are discussed in Section 

6. 

 

2. RELATED WORKS 

2.1 Hull Vane 

Uithof et al. (2014) described the advantages of HV as additional thrust force, trim correction, 

reduction of waves behind the vessel and motion damping in head seas. Once the horizontal 

component of the lift force of HV is greater than the horizontal component of the drag force, 

the resulting horizontal force then provides an additional thrust force, and the resulting vertical 

force changes the vessel's trim, thereby advantageously affecting the total resistance of the 

vessel. A negative pressure zone, which helps to reduce the stern wave, appears on the suction 

side of the HV due to the accelerated flow from the aft of the hull. Uithof et al. (2014) also 

examined the effect of HV located under the ship's hull, which created a negative pressure zone 

on its suction side, resulting in an additional pressure resistance on the hull HV was installed 

behind the transom of the ship. The position of HV has also optimized with a conclusion that a 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

A reduced order data-driven method for resistance prediction and shape optimization of hull vane



5 
 

sufficient vertical distance is essential in order to prevent the flow interaction between the HV 

and the ship's hull.  

A series of towing tank experiments were conducted by Hou et al. (2020) on DTMB 5415 hull 

to study the effect of the angle of attack and location of the HV in calm water and head sea 

conditions. This study showed that the angle of attack is more influential than the HV location 

in reducing the trim response by 26% at  Froude number (𝐹𝑟)=0.413. Celik et al. (2020) 

performed a numerical study on the impact of HV on a motor yacht hull and the influence of 

its chord length on the model scale. It was observed that HV had more effect on wave resistance 

among the resistance components, which was reduced by 31% compared to the bare hull. The 

chord length of the HV was varied from 1.75% to 3.5% of the waterline length, and it was noted 

that the total resistance of the motor yacht decreased as the chord length increased. However, 

the large chord length of HV had an adverse effect on its structural strength.  

Along with resistance, HV also affects the seakeeping characteristics of a ship. For example, 

Bouckaert et al. (2016) performed CFD based experiments on a 108m Holland Class OPV 

ship in order to investigate HV's effect on the seakeeping. Both HV installed, and bare hulls 

were tested at 2m and 4m wave heights with a wave period of 8 seconds. In the presence of HV, 

the vertical acceleration on the stern area was decreased by 13.1%, and 11.7% at 2m and 4m 

wave heights, respectively. Moreover, the pitch motion acceleration was reduced by 8.1% and 

6.8% and the added resistance, which is the difference between the average resistance in waves 

and the resistance in calm water, was also decreased by 5.7% and 4.9%, respectively, in 4m and 

2m wave height. In another study, Uithof et al. (2016a) also examined the effects of HV on the 

seakeeping behaviour of ferries and RoPax vessels. The results of this study showed that the 

HV reduced the roll motion by 0.7% and increased the natural period of pitch motion by 7.0%. 

Uithof et al. (2017) also studied the influence of HV, interceptors, trim wedges and ballasting 

systems on a 50m AMECRC Series #13 patrol vessel with CFD simulations, which were carried 

out without the struts of the HV as they increase the number of computational meshes and have 

little effect on the total resistance. It was observed that the change in the position of HV in the 

vertical direction had a slight effect on the total resistance. Hagemeister et al. (2017) compared 

the effects of the ship's overall length and HV on the annual fuel consumption. Results showed 

that the total annual fuel saving for a ship with an HV installed was 15.1%, while the gain for 

the extended ship hull was 6.4%. Bouckaert et al. (2016) performed a life-cycle cost analysis 

of an offshore patrol vessel. In this study, HV was tested at speed with the highest annual fuel 

consumption. CFD simulations were conducted with struts and actuator disks in order to model 
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both the real configuration of HV and the propellers, respectively. As a result of this study, the 

annual fuel cost was decreased by 12.5%.  

In addition to the effect of HV on the resistance and seakeeping, some of its unquantifiable 

contributions and benefits have been demonstrated by Uithof et al. (2016b). These can be listed 

as reducing the size of the engine room, the initial investment costs with lower engine power, 

the size and costs of auxiliary machines and the tank volumes, which helped to create more 

usable space. 

2.2 Data-Driven Methods 

In the last decade, data-driven methods have gained tremendous attention in various fields of 

science and engineering. Multiple techniques have been proposed, modified, and implemented 

on a different set of problems in these fields, which otherwise were difficult, if not impossible, 

to solve. In this section, we discuss some of the existing data-driven techniques, closely related 

to the present work, proposed and implemented to reduce the computational cost of shape 

optimization. In particular, we mainly focus on reviewing applications of parametric dimension 

reduction and surrogate modelling with ML in the maritime industry.   

2.2.1 Dimension reduction in shape optimization of ships 

In shape optimization design, parametrization plays an important role, which can be performed 

with various techniques (Samareh, 2001). The n number of the design parameters representing 

a shape defines the dimensionality of the design space, which provides a search domain in ℝn 

for optimizers to find an optimal design. The dimensionality of the design space plays a crucial 

role in optimization, as high-dimensional spaces possess a high potential for finding the most 

optimal design. However, the high-dimensional design space causes high computational cost, 

which increases exponentially with dimensionality. Therefore, parametric dimension reduction 

techniques have been widely utilized, which generally identify a lower-dimensional latent space 

that captures most of the design space's design variability. The most commonly used dimension-

reduction techniques are the Karhunen–Loève expansion (KLE) (Fukunaga and Koontz, 

1970) (whose discrete representation is PCA), the active-subspaces method (Constantine et 

al., 2015), and the autoencoder approach (Hinton and Salakhutdinov, 2006).   

In the area of naval architecture and marine engineering, Diez et al. (2015) proposed a 

dimension-reduction technique based on KLE/PCA to design a high-speed catamaran to reduce 

the wave component of calm-water resistance. D'Agostino et al. (2020) used KLE for the 

assessment of geometric variability retained by a different type of shape parameterization 
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methods such as Free-Form Deformation (FFD), Radial Basis Functions (RBF) and Global 

Modification Functions (GMF), used in shape optimization of the ship hull. It was observed 

that the highest design space dimensionality reduction was achieved by FFD, followed by the 

GMF and RBF, while retaining 95% of the geometric variability of the original design space. 

Design space dimension reduction-based shape optimization of marine propellers was 

performed by Gaggero et al. (2019). In this work, a 23-dimensional design space was created 

to include the INSEAN-E779A propeller, whose dimensionality was later reduced to 15 while 

retaining 98% of the geometric variance.  

Autoencoder is an ML-based nonlinear dimension reduction that extracts the latent lower-

dimensional manifolds of a high-dimensional design space. D'Agostino et al. (2018) 

implemented the autoencoder approach in the context of shape optimization of the USS Arleigh 

Burke-class destroyer for total resistance and compared autoencoder results with PCA. Results 

showed that a higher dimensionality reduction of 56% was achieved with autoencoders, where 

PCA was only able to provide 22% of dimensionality reduction. Serani et al. (2019) also 

compared the performance of nonlinear kernel-based PCA with typical PCA. They showed that 

even though high-dimension reduction can be achieved with a nonlinear version, it cannot 

provide the most optimal design.  

Compared to other approaches, the method of active subspaces is a comparatively new approach 

that has been proven promising for various applications. It builds a lower-dimensional 

representation based on the fact that the functional performance does not vary the same along 

each dimension of the design space. Therefore, it extracts the latent directions of the design 

space, which substantially varies the design's performance. Design directions are extracted 

using the gradients of the function representing the optimization criterion. Tezzele et al. (2018) 

used this technique to optimize the US Navy Combatant DTMB 5415 for wave resistance, 

which was parameterized via FFD with eight parameters. The results of the active-subspace 

approach showed that the latent direction was sufficient to model the wave resistance of the 

tested model with an error of only 4.5%. Recently, Khan et al. (2021) proposed a two-step 

feature-to-feature learning methodology to discover a lower-dimensional latent space based on 

the combination of geometry- and physics-informed principal component analysis and the 

active subspace method.  
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2.2.2 ML in ship performance prediction  

Recently, in the maritime industry, ML is being used to solve diverse problems, including 

energy-efficient route planning (Zhang et al., 2019), structural integrity (Mikulić & Parunov, 

2019), seakeeping (Cepowski, 2007), overall fuel consumption (Wang et al., 2018), and 

resistance reduction (Margari et al., 2018. Among these applications, hull resistance reduction 

prediction with Artificial Neural Networks (ANN) has received more attention during shape 

optimization. Margari et al. (2018) developed an ANN model to predict the residual resistance 

coefficient of MARAD Systematic Series. The training data was constructed with towing tank 

experiments, and the overall shape was represented with four design parameters taken as input 

to the model. An ANN and particle swarm optimization-based shape optimization was 

developed by Palmer et al. (2015) for the optimization of a TriSWACH, a novel trimaran hull 

with a small waterplane area centre, and two small side hulls, for residual resistance coefficient. 

Recently, Yu et al. (2019) used Deep Neural Networks (DNN) for optimal trimaran 

configuration for best calm-water transportation efficiency. In this work, the designs in the 

training dataset were evaluated using a potential-flow code called Multi-hull Simple-source 

Panel Method (MSPM). Finally, Danışman (2014) used ANN with Sequential Quadratic 

Programming (SQP) to optimize the catamaran hulls' wave resistance. Diez et al. (2019) 

presented a novel ML method for resistance reduction, which combined a dynamic Radial Basis 

Function (RBF) surrogate model with a sequential Multi-Criterion Adaptive Sampling (MCAS) 

technique and achieved 9% resistance reduction with few simulations. Serani et al. (2019) 

proposed a multi-fidelity metamodel with adaptive sampling based on stochastic RBF for global 

design optimization. Other examples of implementing Kriging based surrogate models for ship 

hull form optimization are (Liu et al., 2018), (Scholcz et al., 2015), and (Solak, 2020). 

A significant difficulty in developing such performance prediction models, especially for free-

form shapes, is the creation of training data. The computational cost of creating such data rises 

exponentially with input parameters, especially if the data has to be generated by running time 

expensive CFD simulations. Therefore, as explained previously, a common practice is to use 

low-fidelity physics simulation codes to evaluate designs in the training dataset. Recently, to 

overcome this computational difficulty, Sun et al. (2020) proposed a new type of DNN 

architecture, which does not mainly depend on the simulation data during training and was used 

for the prediction of incompressible flows around simple shapes. Although the model proposed 

by Sun et al. (2020) has proven to be efficient for simple problems; however, for complex 

problems, it still needs to be evolved. Therefore, the present work aims to handle this problem 
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by reducing the number of design variables used to represent the shape with dimension 

reduction. Moreover, to the best of the authors' knowledge, there is no existing data-driven 

technique of any kind used for hull resistance prediction in the presence of HV. 

 

3. NUMERICAL MODELLING FOR CFD 

In this work, the open-source software, OpenFOAM®,1, is utilized as the flow solver, which 

offers the extensive capacity to solve different kinds of laminar, turbulent, and multi-phase fluid 

dynamics problems. Three-dimensional, incompressible, unsteady RANS equations are solved 

by implementing the finite volume discretization in order to calculate the ship resistance 

components on the model scale. Using Einstein's summation convention, the continuity and 

momentum equations can be written as below: 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0,               (1) 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
=

−1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜗

𝜕2𝑢𝑖

𝜕𝑥𝑗
2 +

𝜕

𝜕𝑥𝑗
(−𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ̅̅ ),                               (2) 

where i,j=1,2,3, and the symbols:    𝑡,    𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑢, 𝑝, 𝜌, 𝜗 =
𝜇

𝜌
, and 𝜇, represent time, 

spatial coordinates, velocity, pressure, fluid density, kinematic viscosity and dynamic viscosity, 

respectively. The last term in the right-hand side of the momentum equation depicts the so-

called Reynolds-stress term, which emerges from the Reynolds averaging procedure indicated 

by the overline symbol. The Reynolds term based on the turbulent viscosity hypothesis is 

modelled as: 

〈−𝑢𝑖𝑢𝑗〉 =
1

2
𝛿𝑖𝑗𝑘 − 𝜗𝑡 (

𝜕〈𝑈𝑖〉

𝜕𝑥𝑗
+

𝜕〈𝑈𝑗〉

𝜕𝑥𝑖
)                      (3) 

Here, 𝜗𝑡 and 𝑘 indicate the turbulent viscosity and the turbulent kinetic energy (Pope, 2002), 

respectively, while 𝛿𝑖𝑗 is the Kronecker delta symbol. Finally, the Shear Stress Transport (SST) 

𝑘 − 𝜔 turbulence model is employed in order to solve the turbulence equations, where 𝜔 

represents the specific dissipation rate.  

The first-order implicit (Euler) scheme is applied to discretize the unsteady term in Navier-

Stokes equations. PIMPLE algorithm, a combination of PISO (Pressure Implicit Split Operator) 

and SIMPLE (Semi Implicit Methods Pressure Linked Equations) algorithms, is used to solve 

                                                           
1 https://www.openfoam.com/ 
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the pressure-velocity coupling. Although the pseudo-transient PIMPLE method has a higher 

computational cost, it is more stable than the SIMPLE method. CFD simulations are carried out 

in two phases, air and water. Here, the pitch and heave motions of the ship hull are released to 

model real experimental conditions (Delen et al., 2020). Therefore, "interDyMFoam" (Hu et 

al., 2016) is implemented in OpenFOAM®,1 version 5 library, which is a solver for two 

incompressible isothermal immiscible fluids using the Volume of Fluid (VOF) phase fraction-

based interface capturing approach with optimal mesh motion and adaptive re-meshing. 

The time step, explained in detail in Section 5.3,  is chosen equal to 10−2 seconds in accordance 

with the ITTC (International Towing Tank Conference) (2011) guidelines. To accurately 

capture the flow features, the recommended time interval is set equal to [5 ∙ 10−3]
𝐿

𝑈
 seconds, 

where 𝐿 and 𝑈 are the reference length and design speed, respectively.  

3.1 Ship Model and Hull Vane Configuration 

A motor yacht model is utilized for the simulations in the current study. The waterline (𝐿𝑊𝐿) of 

the model is 3.5m and the 𝐹𝑟 at service speed is 0.37. Table 1 and Figure 2 depict the main 

dimensions and the body plan of the yacht model, respectively. 

The NACA4412 foil, which is broadly used in pertinent literature, is selected as the initial cross-

section for the HV's shape optimization. The chord length of HV is 2.9% of the waterline length 

(𝐿𝑊𝐿) and the angle of attack is 0 deg with respect to the calm waterline. Moreover, HV's span 

length is taken equal to the model's breadth. The leading edge of HV is positioned from the 

transom corner at a horizontal/vertical distance equal to 2.29% and 1.66% of the 𝐿𝑊𝐿, 

respectively (see Figure 3 (a)). These features are kept constant throughout the optimization 

process. CFD simulations have been conducted without struts connecting HV to the hull. 

Table 1: Main particulars of the motor yacht in model scale 

Length on waterline  LWL (m) 3.5 
Length between perpendiculars       LBP (m) 3.5 
Breadth  B (m) 0.727 
Draught (midship) T (m) 0.212 
Displacement volume ∇ (m3) 0.268 
Displacement Δ (ton) 0.268 
Wetted surface area SM (m2) 2.769 
Block coefficient CB 0.533 
Longitudinal centre of buoyancy LCB (m) (+ fwd) -0.16 
Longitudinal centre of floatation LCF  (m) (+ fwd) -0.348 
Service speed  VM           2.15 m/s 
Froude number Fr 0.37 
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Figure 2: Body plan of the model yacht. 

 

Figure 3: (a) HV configuration and (b) computational domain dimensions. 

3.2 Computational Domain and Boundary Conditions 

Inlet, bottom, and side boundaries are located 2𝐿𝐵𝑃 away from the ship model and the outlet 

boundary is placed 4.1𝐿𝐵𝑃 downstream direction (see Figure 3(b)). These boundary distances 

are within the range specified in the ITTC procedure and guidelines (ITTC, 2011) to avoid the 

wave reflection from the boundaries.  

Boundary conditions are also determined according to the ITTC guidelines. The model hull is 

specified as the wall function. The sides and bottom boundaries are constrained with a 

symmetry condition. The inlet, outlet, and atmosphere boundary conditions are defined 

separately by considering the turbulence parameters and the flow characteristics. Details on the 

boundary conditions are presented in Table 2. 

Here, the Dirichlet boundary condition is represented by a fixed value, whereas zero gradients 

express the homogenous Neumann boundary condition. The outlet phase means velocity, and 

pressure inlet-outlet velocity applies zero gradients for outflow. The fixed flux pressure sets the 

pressure gradient on the boundary by the velocity boundary condition. The total pressure is 

calculated by adding static pressure to dynamic pressure. The inlet-outlet condition provides a 

zero gradient outflow condition. The frequency, turbulence eddy viscosity, and turbulence 

kinetic energy wall functions are represented by omegaWallFunction, nutkWallFunction, 

kqRWallFunction, respectively. Islam and Soares (2018) have implemented the same 
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boundary conditions to estimate the hydrodynamic derivatives of a container ship using 

OpenFOAM® flow solver. 

The table below provides the type of boundary conditions imposed on the different parts of the 

boundary of the control volume (computational domain) with regard to fluid properties and 

turbulence parameters depicted in the first column of Table 2. These include velocity (U), 

pressure (p_rgh), phase fraction (alpha.water), turbulent kinetic energy (k), wall function model 

(nut), turbulence specific dissipation rate (omega). As for the various acronyms used in the 

remaining columns of the table, their explanation goes as follows: FV: Fixed Value, ZG: Zero 

Gradient, PIOV: Pressure Inlet Outlet Velocity, MWV: Moving Wall Velocity, FFP: Fixed Flux 

Pressure, TP: Total Pressure and IO: Inlet-Outlet conditions. 

Table 2: Boundary conditions according to the fluid properties and the turbulence parameters. 

  Inlet Outlet Atmosphere Hull 
U FV ZG PIOV MWV 
p_rgh FFP ZG TP FFP 
αlpha.water FV ZG IO ZG 
k FV ZG FV kqRWF 
nut FV ZG ZG nutkWF 
omega FV ZG FV omegaWF 

3.3 Mesh Generation 

A domain mesh within the control volume is created with the blockMesh utility in 

OpenFOAM®. TopoSet utility, which is the imaginary rectangular prism in the domain mesh, 

is applied five times to increase the mesh density up to the ship hull. Two nested control 

volumes are applied to refine the mesh around the free surface, bow, and aft of the hull to 

capture the flow characteristics adequately. One further control volume is used to refine the 

mesh around the HV (see Figure 4). Finally, the snappyHexMesh utility is executed to create 

a three-dimensional mesh. After a simulation, the computed y+ distribution along the hull and 

HV surfaces is around 30.  
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Figure 4: Detailed mesh views of the ship model from (a) profile, (b) section, (c) top, and (d) 
stern. 

 

4. DATA-DRIVEN HULL VANE SHAPE OPTIMIZATION 

In this section, along with the parametric model of the reference HV's cross-section, the overall 

workflow data-driven process is described, including sampling design of experiments (DoE) 

for the training dataset, background and implementation of PCA and training of ML model for 

resistance prediction.  

4.1 Hull Vane Parametric Model 

The parametric model of the hydrofoil is constructed using a technique described in Kostas et 

al. (2017). For a given realization of the parameter vector 𝐱 = (𝑥1, 𝑥2, . . . , 𝑥7 ), the 

corresponding hydrofoil is constructed through an automatic geometric construction process, 

referred to as 𝐺(𝐱), described in section 4.1. This construction is based on the determination of 

the control vertices of four simple Bézier curves, a quadratic and a cubic one for the suction 

side, and a pair of quadratic simple Bézier curves for the representation of the camber line. The 

Bézier representation of the pressure side is then obtained by mirroring the suction profile along 
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the camber line. Conclusively, the geometry of the hydrofoil is represented as a 𝐺1-continuous 

Bézier curve defined as below  

𝐻𝑖(𝑢) = ∑ 𝑑𝑖𝑘
3
𝑘=0 (𝐺; 𝐱)𝐵𝑘

3(𝑡), 𝑡 =
𝑢−𝑢𝑖

ℎ𝑖
𝜖[0,1], ℎ𝑖 = 𝑢𝑖+1 − 𝑢𝑖,     𝑢𝜖[𝑢𝑖, 𝑢𝑖+1], 𝑖 = 0, … 3,              (4) 

where 𝑑𝑖𝑘 represents the 𝑘𝑡ℎ control point of the 𝑖𝑡ℎ simple Bézier curve. 𝐵𝑘
3(𝑢), 𝑘 = 0, … ,3, is 

the corresponding cubic Bernstein basis and 𝑈 = {𝑢𝑖,𝑖 = 0, … 4: 𝑢𝑖 < 𝑢𝑖+1, 𝑖 = 0, … ,3} is a 

fixed user-specified knot vector. In view of (4), we deduce that, if we change the realization of 

the parameter vector from 𝐱 to �́�, the geometric construction 𝐺 will deliver a new set of control 

points, 𝑑𝑖𝑘(𝐺; �́�), 𝑘, 𝑖 = 0, … ,3, which will produce a deformed hydrofoil geometry. 

Initially, the profile is defined via eight parameters, namely the length 𝐿 of the hydrofoil, the 

maximum width of the suction side with respect to chord (z_max), the maximum camber width 

with respect to chord (c_max), the longitudinal position of suction side's maximum width 

(x_z_max), the longitudinal position of camber side's maximum width (x_c_max), the suction 

side's angle at trailing edge with respect to chord (a_b), the camber angle trailing edge 

concerning chord (a_b_p) and, finally, the leading-edge form factor (tip). 

Table 3 provides the description of the parameters, while Figure 5 gives their graphical 

illustration. Without loss of generality 𝐿 = 1 in this work. In view of this choice and the 

formulae in the fifth column of Table 3, we first conclude that all remaining length parameters 

will take values in (0,1). However, it should be stressed that the seven parameters 𝑥1:=z_max, 

𝑥2:=c_max, 𝑥3:=x_z_max, 𝑥4:=x_c_max, 𝑥5:= a_b  𝑥6:= a_b_p and 𝑥7:= tip do not lie in the 

hyper-cube [0,1]7, equivalently they are not linearly independent. A more careful look into the 

formulae in the fifth column of Table 3 reveals that the lower (𝑥𝑘
𝑙 ) and upper (𝑥𝑘

𝑢) limits of a 

parameter 𝑥𝑘 is, in general, depend on the previous parameters 𝑥1, … , 𝑥𝑘−1, which is accurately 

expressed as: 

𝑥𝑘
𝑙 ≤ 𝑥𝑘 ≤ 𝑥𝑘

𝑢, where 𝑥𝑘
𝑙 = 𝑓𝑙𝑘(𝐱𝑘), 𝑥𝑘

𝑢 = 𝑓𝑢𝑘(𝐱𝑘) and 𝐱𝑘 = (𝑥1, … , 𝑥𝑘−1),                         (5) 

 

For example, 

𝑓𝑢2(𝐱1) = 0.9𝑥1, 𝑓𝑙4(𝐱3) =
7𝑥3

10
, 𝑓𝑢4(x3) =

3

10
+

7𝑥3

10
, 𝑓𝑙5(𝐱4) = arctan (

𝑥1

𝐿−𝑥3
).                             (6) 
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Table 3: Parameters' definition. 
Parameter Name Description Symbol Actual range 

 Length    

𝑥1 Max width Maximum width of 
suction side w.r.t. chord z_max [

𝐿

500
,
𝐿

5
] 

𝑥2 Camber width Camber maximum width 
w.r.t. chord 

c_max 
 

[0,0.91𝑥1] 

𝑥3 Max-width 
position 

Longitudinal position of 
suction side’s max width 

x_z_max 
 [

𝐿

5
,
7𝐿

10
] 

𝑥4 Max-camber-
width position 

Longitudinal position of 
camber’s max width 

x_c_max 
 [0,

3𝐿

10
] +

7𝑥3

10
 

𝑥5 Suction-side 
angle 

Suction side's angle at 
trailing edge w.r.t. chord 

a_b 
 [arctan (

𝑥1

𝐿 − 𝑥3

),89] 

𝑥6 Camber angle Camber angle at trailing 
edge w.r.t. chord 

a_b_p 
 

[0, 𝑥5] 

𝑥7 Tip Leading edge form factor tip [0.1,0.9] 

 

 

Figure 5: Hydrofoil's parametric representation. 

The whole sectional profile consists of four simple Bézier curves for suction and pressure sides. 

The suction side consists of cubic and quadratic Bézier curves; the first and last control points 

of the cubic Bezier curve lay at (𝑥 − 𝑎𝑥𝑖𝑠, 𝑦 − 𝑎𝑥𝑖𝑠) = (0,0) and at (𝑥_𝑧_𝑚𝑎𝑥,

𝑧_𝑚𝑎𝑥), respectively, and the internal control points of this curve lie on a line between 

(0, 𝑥_𝑚𝑎𝑥). The first control point of the quadratic Bézier curve coincides with the last control 

point of the cubic curve, and its last control point lies at (𝐿, 0). The internal control point of the 

quadratic curve has the coordinates ((𝐿 −
𝑧_𝑚𝑎𝑥

𝑡𝑎𝑛(𝑎,𝑏)
), 𝑧_𝑚𝑎𝑥). The camber curve is generated 

with two quadratic Bézier curves. To obtain the pressure side curve, suction side curves are 

mirrored along the camber curve. Finally, all four Bézier curves are approximated by a single 

cubic B-spline curve. For further detail on the construction of parametric representation, readers 

should refer to Kostas et al. (2017). The sectional profile is extruded to generate a three-

dimensional surface model of HV and is transversely integrated behind the hull. 
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Once the parametric modeller is set up, then PCA is implemented in two different settings. In 

the first setting, PCA is applied to the design parameters, 𝐱, of the HV designs sampled from a 

design space, whose construction with be discussed in the subsequent sections. In the second 

setting, PCA is implemented on the discretizations of the HV designs. As explained earlier in 

this section, the design parameters do not lie in the unit-hypercube, so the PCA applicability 

prerequisite, regarding non-orthogonality and existence of correlation between the design 

parameters, is fulfilled.  It should be stressed that the parameters in 𝐱 are intrinsically involved 

in the geometry construction through 𝐺, so the principal components in the first setting capture 

the variance associated with designs via x. In the second setting, principal components capture 

the variance of points representing the discrete version of the HV designs. 

4.2 Sampling Design of Experiment 

In this study, first, two datasets containing only DoE are constructed for the implementation of 

PCA to generate a lower-dimensional subspace of the original design space. Afterwards, 

another dataset is created from the subspace, whose design instances are evaluated with the help 

of the viscous flow solver as described in Section 3. This dataset is then used for training the 

ML model. The total number of samples required for the ML model depends on the number of 

input variables and the number of hidden layers. The study carried out by Alwosheel et al. 

(2018) suggests that the minimum number of samples should be fifty times the number of 

weights that corresponds to connection points between the input variables and the nodes in the 

hidden layers. The evaluation of a large set of HV designs using CFD is a computationally 

expensive process; therefore, the main objective of dimensional reduction is to reduce the 

number of samples needed to train the ML model by reducing the input dimensionality of the 

dataset.  

As described in the previous section, seven parameters represent the HV sectional profile, 

which creates a seven-dimensional design space to be explored during optimization. The 

bounding limits of the design space are defined by setting upper and lower limits of the design 

parameters centred around the reference design values. Implementation of PCA or ML requires 

a uniformly distributed and diverse set of samples, which covers all the design possibilities of 

given design space with only a few samples. One of the aims is also to train a reliable model 

while keeping the computational cost associated with the construction of the training dataset 

low. It is well known that the convergence of Monte Carlo sampling is slow, as it requires a 

large number of samples to cover the entire design space (Khan and Gunpinar, 2018). If a 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

A reduced order data-driven method for resistance prediction and shape optimization of hull vane



17 
 

small number of samples are taken with Monte Carlo, then there is a high possibility that these 

samples will be unevenly distributed or will be clustered at some region of the design space. 

Therefore, if sampling is performed entirely based on Monte Carlo, then training a surrogate 

model with a small number of samples may not generalize the whole problem. Therefore, in the 

present work, we use this simple strategy, which expands the design space variably in three 

steps and samples some proportion of the total number of designs during each step. This method 

prevents the clustering of samples in some regions of the design space. 

In this approach, we first evaluate the centroid of the given design space and then we create a 

temporary design space (𝑋′) whose upper and lower limits are evaluated as 20% percentage of 

increment and decrement of the centroid, respectively. From this space, we sample 50% of the 

total number of designs. Afterwards, we create another design space (𝑋′′) whose limits are 

composed as 30% of increment and decrement of the centroid. From this space, we sample 30% 

of the total designs; however, at this stage, these designs are constrained to be different from 

those present in 𝑋′. In the final step, the third design space (𝑋′′′) is created as 40% of increment 

and decrement of the centroid, and the remaining 20% of designs are sampled from this space. 

These designs are constrained to be different from those in both 𝑋′′ and 𝑋′′′. In this way, we 

try to distribute the samples over the design space evenly. A detailed algorithmic formulation 

of sampling is given in Algorithm 1.    

Algorithm 1 

1: A parametric design parametrized with 𝑛 design parameters 𝑥 = {𝑥𝑘, 𝑘 = 1,2, … , 𝑛}. 

2: Define the design space 𝑋 with lower 𝑥𝑙 and upper 𝑥𝑢 bounds of n  parameters, 𝑋 ≔

{𝑥𝑘
𝑙  ≤ 𝑥𝑘 ≤ 𝑥𝑘

𝑢, ∀𝑘 = {1,2, … , 𝑛}}. 

3: Initialize the total number of designs (𝐿) to be sampled from 𝑋. 

4: Evaluate the centroid of the design space 𝑐 = {𝑐𝑘, 𝑘 = 1,2, … , 𝑛}. 

5: Create a temporary design space 𝑋′ as 𝑋′ ≔ {𝑐𝑘 − 0.2𝑐𝑘  ≤ 𝑐𝑘 ≤ 𝑐𝑘 + 0.2𝑐, ∀𝑘 =

{1,2, … , 𝑛}}.  

6: Sample 0.5𝑁  designs from 𝑋′ and create dataset 𝐷′ = {𝑥𝑖 , 𝑖 = 1,2, … ,0.5𝑁} 

7: Create 𝑋′′ as 𝑋′′ ≔ {𝑐𝑘 − 0.3𝑐𝑘  ≤ 𝑐𝑘 ≤ 𝑐𝑘 + 0.3𝑐, ∀𝑘 = {1,2, … , 𝑛}}.  

8: Sample 0.3𝑁  designs from 𝑋′′ and create dataset 𝐷′′ = {𝑥𝑖, 𝑖 = 1,2, … ,0.3𝑁|𝑥𝑖 ∉  𝑋′}. 

9: Create 𝑋′′′ as 𝑋′′′ ≔ {𝑐𝑘 − 0.4𝑐𝑘  ≤ 𝑐𝑘 ≤ 𝑐𝑘 + 0.4𝑐, ∀𝑘 = {1,2, … , 𝑛}}.  

10: Sample 0.2𝑁  designs from 𝑋′′′ and create dataset 𝐷′′′ = {, 𝑖 = 1,2, … ,0.2𝑁|𝑥𝑖 ∉  𝑋′′}. 
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11: Create a final training dataset = 𝐷′ ∪ 𝐷′′ ∪ 𝐷′′′. 

 

4.3 Dimension Reduction 

4.3.1 Principal Component Analysis (PCA) 

PCA reduces the dimensionality of a given design space by performing a projection of the data 

points, sampled from the design space, in a new linear subspace, which is defined by the 

eigenvectors (called the PCs) of the [𝐿 × 𝐿] covariance matrix (D’ Agostino et al., 2020) 

represented as; 

𝐶 =
1

𝐿
𝐷𝑇𝐷              (7) 

     Here, 𝐷 is a dataset consist of 𝐿 samples from X, and each sample is of 𝑛 dimensions, so 

𝐷 ∈ 𝑅𝐿 × 𝑛. 𝑑𝑘 is the 𝑘𝑡ℎ design (row) of 𝐷. This matrix is used to compute the covariance 

matrix, 𝐶. The eigenvectors have the properties of maximizing the (geometric) variance of 

points projected on them and minimizing the mean squared distance between the original points 

and the relative projections. The PCs are defined by the solution of the eigen problem as; 

𝐶𝑧𝑖 = 𝜆𝑖𝑧𝑖, 𝑖 = 1,2, … , 𝐿.               (8) 

Moreover, the eigenvalues {𝜆𝑖}𝑖=1
𝐿  with 𝜆𝑖 > 𝜆𝑖+1 represent the variance resolved along the 

relative eigenvectors {𝑧𝑖=1
𝐿 , (𝑧𝑖

𝑇𝑧𝑖 = 1)}. From this property, a subset of  𝑁 eigenvectors is used 

to compute a reduced dimensionality representation 𝑥𝑘 of the original vector 𝑑𝑘 as; 

𝑥𝑘 = 𝑍𝑇𝑑𝑘, 𝑑𝑖𝑚(𝑍) = 𝑁 × 𝐿,               (9) 

where the matrix 𝑍 has dimensions 𝑑𝑖𝑚(𝑍) = 𝑁 × 𝐿 and is composed of the first 𝑁 largest 

variance PCs. The projection on the orthonormal basis given by the columns of 𝑍 is 

𝑑�̂� = 𝑍𝑥𝑘 = 𝑍𝑍𝑇𝑑𝑘               (10) 

Here the above equation estimates the design in reduced dimensional subspace to the original 

𝑛-dimensional space. 𝑍𝑍𝑇  is the projection matrix which defines the linear transformation of 

𝑑𝑘 in the subspace defined by the column space of 𝑍 and the projection 𝑑�̂� represents the 

minimum squared error approximation of the relative 𝑑𝑘.  

4.3.2 Hull Vane Reconstruction with PCA 

As explained earlier, we first implement PCA on the 8 design parameters used for the geometry 

construction through 𝐺, for which a dataset 𝐷 consisting of 𝐿 = 1000 samples is created. The 
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variance and cumulative distribution of the resulting PCs carrying geometric information are 

shown in Figure 6. 

 
Figure 6: Variance of principal components (a) and their cumulative sum (b) when PCA is 
implemented on the dataset composed of design parameters defining the hydrofoil shape. 

It can be seen that 85.5% geometric variation in the original design space is captured with the 

first two PCs. Therefore, a two-dimensional subspace based on these components can be 

generated, whose bounding limits are calculated by the scalar multiplication of the bounding 

limits of the original design space with the first two eigenvectors. The choice of this variance 

for the decision on the final number of eigenvectors depends on the problem. Although, for 

some applications, a variance of 90% or 95% is typically favoured; however, it will be shown 

with optimization results in Section 5.5 that, in our case, 85.5% gives us enough geometric 

variability to find an optimal design with good reconstruction accuracy. Table 4 shows some 

of the PC-based design instances along with their full space projection. Figure 7 shows some 

of HV's cross-sectional sample geometries with their corresponding full space values. 

Table 4: Samples obtained from subspace and their corresponding full-scale representation in 
the original design space. 

𝑃𝐶𝑠 
Design parameters 

No 
𝑃𝐶1 𝑃𝐶2 

max_z max_c x_z_max x_c_max a_b a_b_p tip 
1 1.2655 -0.0008 0.518 0.483 0.343 0.643 0.148 0.480 0.562 
2 1.1051 -0.0849 0.454 0.409 0.258 0.603 0.075 0.403 0.507 
3 1.0932 -0.0589 0.449 0.408 0.268 0.584 0.091 0.403 0.497 
4 1.3954 -0.0636 0.573 0.523 0.347 0.740 0.123 0.517 0.632 
5 1.0603 -0.0015 0.434 0.405 0.287 0.539 0.124 0.402 0.471 
6 1.0634 -0.0271 0.436 0.402 0.275 0.553 0.108 0.398 0.477 
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7 1.2080 -0.0530 0.496 0.453 0.302 0.639 0.108 0.448 0.546 
8 1.2171 -0.0813 0.500 0.452 0.290 0.658 0.091 0.446 0.556 
9 1.3896 -0.0732 0.571 0.519 0.341 0.742 0.116 0.513 0.631 

10 1.2401 -0.0226 0.508 0.470 0.325 0.641 0.131 0.466 0.555 
 

 

 

Figure 7: Cross-sectional geometries of HV samples of the training dataset. 

Furthermore, along with implementing PCA on design parameter set, 𝐱, we also implement 

PCA on the output of 𝐺(𝐱), which define an automatic geometric construction process for the 

hydrofoil for any given 𝐱. In this case, each row of matrix 𝐷 is composed of �̂� points on the 

profile of the hydrofoil. As each point is two dimensional, so each instance (row) of 𝐷 

constitutes 2�̂� elements for all 𝐿 samples, which forms 𝐷 ∈ 𝑅𝐿×2�̂�, where �̂� = 400. Figure 8 

shows the results of the geometric variance resolved by the first ten eigenvectors. From these 

results, it can be seen that the first two components resolved 92% of the variance, which is 

higher than that obtained when dimensionality reduction is performed on the original design 

space. It is noteworthy that with this lower-dimensional design space, one can perform shape 

modification using only the eigenmodes, without the need of going back to the original design 

space as PCA is implemented on the discretization of the design sampled from the original 

parametric space. Therefore, it only provides the discretized version of the geometry, which in 

our case are points on the hydrofoils' profile. Consequently, an accurate and smooth 

reconstruction of the hydrofoil profile cannot be guaranteed, which is essential for our study 

due to the sensitivity of our high-fidelity hydrodynamic calculations to shape changes. In this 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

A reduced order data-driven method for resistance prediction and shape optimization of hull vane



21 
 

setting, PCA results are also sensitive to the resolution of this discretization. Even though shape 

deformation can be achieved at a low resolution, designs obtained via interpolation may miss 

essential shape features or introduce unwanted shape oscillations, resulting in uncertainty and 

false estimation of total resistance. This is prominent especially for surface and volume models, 

which are two- and three-dimensional objects, respectively, laying in a three-dimensional 

ambient space. With this increment in the object’s dimensionality, the need for finer 

discretization increases exponentially to achieve stable results. Therefore, with such 

discretization, the matrix 𝐷 can be high-dimensional, which implies that the computational cost 

to perform eigendecomposition is analogously high (Sharma et al., 2013). For instance, for 

5000 hydrofoil samples it takes 0.0485 seconds  to implement PCA on 𝐷 composed of eight 

design parameters and 27.6277 seconds to implement PCA on the same number of samples 

with each sample discretised via 200 points. Thus, in this work, the lower-dimensional design 

space constructed with the design parameters is used for prediction model training and running 

the shape optimization of HV.  

 

Figure 8: Variance of principal components (a) and their cumulative sum (b) when PCA is 
implemented on the dataset composed of points on the profile of the hydrofoil. 

4.4 Resistance Prediction 

As mentioned before, an ML-based prediction model is developed to evaluate the total 

resistance of the hull form in the presence of HV. In subsequent subsections, we discuss the 

training dataset and ML method used for total resistance (𝑅𝑇𝑀) prediction on model scale.  
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4.4.1 Dataset Construction 

A training dataset consisting of  𝐿′ = 100 hydrofoil designs are created. The hydrofoil designs 

are sampled from the subspace composed of the first two PCs by using the sampling method 

explained in Section 4.2. After that, designs in the training dataset are projected back to the 

original design space, and 3D geometries of HV are generated by utilizing the parametric 

modeller written in the Rhinoceros®,2 script. Each HV design is integrated behind the vessel 

within the same parametric modeller, and the ship geometry with HV is exported from 

Rhinoceros® as the triangulated surface geometry in .stl file format. 𝑅𝑇𝑀 values of these 

designs are evaluated using the viscous solver, as explained in Section 3. Afterwards, a training 

dataset is constructed, which contained PCs as independent parameters and 𝑅𝑇𝑀 as dependent 

parameters. The 𝑅𝑇𝑀 values for the first ten samples of the training dataset are shown in Table 

5.  

Table 5: First ten samples of the training dataset. 

No 
𝑃𝐶1 𝑃𝐶2 𝑅𝑇𝑀[𝑁] 

1 1.2655 -0.0008 52.1590 
2 1.1051 -0.0849 52.4288 
3 1.0932 -0.0589 52.5504 
4 1.3954 -0.0636 51.4698 
5 1.0603 -0.0015 52.5742 
6 1.0634 -0.0271 52.0222 
7 1.2080 -0.0530 51.9176 
8 1.2171 -0.0813 51.4288 
9 1.3896 -0.0732 51.4324 
10 1.2401 -0.0226 51.5902 

 

4.4.2 Training the ML Model 

Artificial neural networks (ANN) are inspired by biological neural networks in the nervous 
system and are used to tackle problems with highly complex relationships between covariates 
and response variables (Rojas, 2013). Based on the working principle of a nervous system, 
there are interconnected neurons, and they receive numerical data from other neurons. An 
architecture of a simple ANN is shown in Figure 9. The terms 𝑥1 and 𝑥2 indicate the inputs 
while 𝑤1 and 𝑤2 represent the respective weights of the input values. The summation, including 
the bias term (𝑏), is transformed by an activation function, which gives an output value (Arnold, 
2016). In this study, Matlab®,3 Neural Network Toolbox is utilized.  

                                                           
2 https://www.rhino3d.com/ 
3 https://www.mathworks.com/ 
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Figure 9: A typical neuron structure (Arnold, 2016). 

ANN is employed as an ML model, which is trained with a dataset explained in Section 4.4.1 

in order to predict the total resistance. The trained ANN is capable of imitating the flow solver 

by establishing a relationship between an adequate number of HV instances and the 

corresponding CFD results. The function obtained from the ANN is implemented as a cost 

function in the optimization process. The ANN architecture used in this study is shown in 

Figure 10 (a), which consists of two inputs, one output and a single hidden layer with 20 

neurons with sigmoid activation function. As we will show in subsequent sections of the paper, 

even with such a simple architecture, we are able to obtain significant prediction accuracy.  

The training of ANN is carried out with the Levenberg-Marquardt (Hagan and Menhaj, 1994) 

network training function, and as depicted in Figure 10 (b), the weights are adjusted by 

comparing the ANN's outputs with the targets, which are the total resistance values obtained 

from the solvers. The development of the prediction model with ANN comprises three 

fundamental phases: training, validation, and testing. 

 
Figure 10: (a) ANN architecture and (b) workflow of the training process. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

A reduced order data-driven method for resistance prediction and shape optimization of hull vane



24 
 

In the training process, the error between the ANN output and actual 𝑅𝑇𝑀 values of designs are 

evaluated to feedback the neural network for weight adjustment. After the training process is 

completed, a linear regression analysis is performed between the target and ANN outputs. The 

ideal case of this regression is that the slope of the regression curve is equal to 1, which means 

that the outputs and the targets overlap. The regression curve obtained from the training is 

compared with the ideal regression curve to interpret the system's success. In this study, 75% 

of the dataset is used for the training process.  

While training, overfitting happens if the error gradually increases with the addition of a new 

dataset to the network, which results in inaccurate predictions. The validation process prevents 

the trained model from overfitting. In this process, the trained model is evaluated in order to 

keep the error at a minimum level by tuning the hyperparameters such as dropout (regularization 

technique), network weight initialization, activation function, and so on. Similar to the training 

phase, in the validation phase, the ideal regression curve is also compared with a linear 

regression between ANN outputs and actual values of 𝑅𝑇𝑀. 15% of the overall dataset is 

reserved for the validation phase. 

The testing phase is completely independent of the training and validation processes and 10% 

of the dataset is used at this phase. After a reliable training and validation process, the ANN is 

ready to replace the flow solver. 

4.5 Optimization Method 

The two-dimensional subspace is explored to find an optimal design for HV. During subspace 

exploration, the design's total resistance is evaluated with the trained prediction model. During 

this optimization, one can also assess designs with a CFD solver; however, this will 

significantly increase the computational cost because for high-dimensional problems, like one 

studied in this work, the commonly used stochastic optimization techniques require a large 

number of simulation runs (Gunpinar and Khan, 2020) and when each run is extensively 

computationally demanding then, it can be difficult, if not impossible, to exhaustively explore 

the design space for a global optimum. Although to overcome this, one could opt for more 

traditional approaches, such as gradient descent; however, they have their associated 

computational cost as they require the evaluation of gradients, which can be challenging to 

evaluate if the baseline simulation code cannot provide these gradients. Therefore, in our 

approach, we choose to perform shape optimization in connection with the surrogate model. 

Furthermore, as the subspace has lower dimensionality  the original design space, it does not 
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require a large number of designs to be evaluated. This lower dimensionality also reduces the 

possibility for an optimizer to give local optima and reduces the computational cost of the whole 

optimization process significantly.   

Moreover, as after dimensionality reduction, the problem becomes two-dimensional; therefore, 

one may estimate minima by analyzing the two-dimensional contour plot. However, such 

analysis may not help to evaluate the precise parametric values for the solution close to the 

global optima, especially if the problem is non-convex. Therefore, to ensure that we obtain the 

most optimal hydrofoil design, we run an optimization even in this two-dimensional subspace. 

An interior-point algorithm, available in Matlab® library, is chosen as the optimizer for 

subspace exploration. This algorithm satisfies the linear constraints for design space bounding 

limits at each iteration. Its success, especially in large-scale linear and nonlinear programming, 

has been proven compared to the other algorithms. Furthermore, different literature has that the 

interior point algorithm operates faster in  problems than the other algorithms. For information 

on the detailed formulation of the interior-point algorithm, interested readers should appeal to 

Chapter 19 of Nocedal and Wright (2006). 

 

5. DISCUSSION OF RESULTS 

5.1 Verification and Validation of the CFD 

The spatial uncertainty estimation procedure for CFD applications proposed in Celik et al. 

(2008) has been implemented to the bare hull. The total number of mesh elements in the fine, 

medium, and coarse domains are 2.5, 1, and 0.41 million, respectively. Total resistance 

coefficients (𝐶𝑇) obtained from CFD simulations are taken into consideration as uncertainty 

variables. The spatial uncertainty calculation steps are shown in Table 6. The fine Grid 

Convergence Index (GCI) is estimated to be 0.01%. The CFD simulations for each case are 

performed with the number of mesh elements used in the fine domain.  

Table 6: Spatial discretization uncertainty. 

Number of mesh 
elements 

Fine 2503279 
Medium 1022266 
Coarse 413198 

Refinement factor r21 1.348 
r32 1.352 

Total resistance  
coefficients 

CTM1 0.00981 
CTM2 0.00982 
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CTM3 0.01003 
Apparent order Plast 9.2304 
Extrapolated 

value f21 ext 0.0098 

Approximate  
relative error (%) e21a 0.1306 

Extrapolated 
 relative error (%) e21ext 0.0089 

Fine grid  
convergence 

index 
(%) GCI21fine 0.01 

For the bare hull, the towing tank experiments have been performed at Ata Nutku Ship Model 

Test Laboratory4 of Istanbul Technical University. The results have been compared with the 

CFD simulation, which is carried out with the fine domain mesh features at a design speed of 

2.15 m/s. CFD simulation results show good agreement with the experiment, showing the 

difference of 1.54% in 𝑅𝑇𝑀. 

5.2 Effect of the Hull Vane on the Resistance Components  

In multi-phase CFD simulations, the frictional resistance (𝑅𝐹𝑀) and the residuary (𝑅𝑅𝑀) are 

computed separately to obtain the 𝑅𝑇𝑀. Since 𝑅𝐹𝑀 and the viscous pressure resistance (𝑅𝑉𝑃𝑀) 

do not depend on the wavy part of the phenomenon, their sum ((1 + 𝑘)𝑅𝐹𝑀) is evaluated by 

simulating the flow in a single-phase domain (double-body approach). It should be noted that 

in the single-phase simulation, the force resulting from the negative pressure gradient on the 

transom of the ship model is not taken into consideration. Since, in the multi-phase CFD 

simulation, the transom area is completely dry at service speed, which means that there is no 

force on it. Finally, the wave-making resistance (𝑅𝑊𝑀) is obtained by subtracting 𝑅𝐹𝑀 + 𝑅𝑉𝑃𝑀 

from 𝑅𝑇𝑀. 

Table 7: HV impact on the resistance components. 

  
𝑅𝐹𝑀[𝑁] 𝑅𝑉𝑃𝑀[𝑁] 𝑅𝑊𝑀[𝑁] 𝑅𝑇𝑀[𝑁] 

Bare Hull 20.49 5.84 36.45 62.78 
Bare Hull w/HV (NACA 4412) 22.12 4.93 24.56 51.60 
Difference (%)  +8.0 -15.7 -32.6 -17.8 

                                                           

4 https://www.researchgate.net/lab/Ata-Nutku-Ship-Model-Basin-A-G-Avci  
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In Table 7, the total-resistance along with its components are compared, in model scale, with 

and without HV. Firstly, 𝑅𝐹𝑀 is expected to increase as a result of the fact that the total wetted 

surface area has increased with the installation of the HV. The CFD simulation results show 

good agreement with the expectations, showing an increment of 8% in 𝑅𝐹𝑀. On the other hand, 

it is observed that 𝑅𝑉𝑃𝑀 and 𝑅𝑊𝑀 have been decreased due to the presence of the HV. More 

specifically, a significant portion of the reduction in the wave-making resistance, 𝑅𝑊𝑀, is 

contributed by the reduction in the 𝑅𝑇𝑀.  

 
Figure 11: Wave elevation and dynamic pressure distribution around the stern area with and 

without the HV. 

A negative pressure zone, which helps to reduce the stern wave, appears on the top side of the 

HV due to accelerated flow from the aft of the hull. The change in stern waves due to the 

influence of the HV is clearly depicted in Figure 11 (a) and (b). Moreover, the pressure 

distribution of the stern profile section can be seen in Figure 11 (c) and (d). As a result, 𝑅𝑇𝑀 

and its component, 𝑅𝑊, have been decreased by 17.8% and 32.6%, respectively, on the model 

scale. 

5.3 Computational Time  

The technical specifications of the hardware server used for the code implementation and the 

materialization of the experiments scheduled in the context of the proposed approach are as 

follows; Intel Xeon Gold 6148 v5 type processor, 56 cores and Centos 7 operating system.  
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CFD simulations have been performed based on the unsteady RANS equations. Firstly, a 

simulation is started with the 0.005 seconds time step in accordance with the ITTC (2011) 

procedure, which continued until 5 computational seconds while the recorded Courant number 

set to around 0.02. The real computational time corresponding to 5 seconds is approximately 

40 minutes. In the second stage, the time step is doubled, and the simulation continued for up 

to 23 computational seconds. The Courant number is around 0.04 between 5 and 23 seconds 

and the actual corresponding computational time is nearly 120 minutes. In the final stage, the 

time step is set back to 0.005 seconds in order to better capture the flow characteristics with a 

low time step. The simulation continued from 23 to 30 seconds, which corresponds to an actual 

computational time of about 60 minutes. The time step adjustments are prepared in a single 

script file that is inputted to the terminal of the server. In summary, the total computational time 

of a simulation is approximately 220 minutes. 

5.4 Validation of the ML Model  

The dataset used for the training, validation and testing of ANN consisted of 100 designs with 

their first two PCs as independent parameters and 𝑅𝑇𝑀 values as the dependent parameter, 

which are evaluated with a viscous flow solver. Figure 12 shows the linear regression plot of 

the output (𝑌), namely the values of 𝑅𝑇𝑀 predicted by the trained ANN, versus the target values 

(𝑇), which is the actual 𝑅𝑇𝑀 obtained from the viscous solver. The correlation between outputs 

and targets is represented by the correlation coefficient (𝑅) for which the ideal case corresponds 

to 1. As depicted in Figure 12, the 𝑅 values of the neural network model in the training, 

validation, and testing phases are very close to 1, which indicates a successful training of the 

prediction model. 
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Figure 12: Comparison of the linear regression between predicted and target resistance values 

with respect to the ideal regression. 

Furthermore, Figure 13 depicts the distribution of the absolute errors between the simulation 

results of the HV designs and the predictions obtained from the ANN. It is seen that the errors 

in training, validation, and testing phases are distributed around zero in accordance with the 

Gaussian distribution, and the majority of the errors are smaller than ∓0.25 absolute errors. 
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Figure 13: Error histogram of the trained model. 

Finally, Figure 14 depicts MSE (mean-squared error) values on the logarithmic scale versus 

Epochs that present the set of training vectors to a network one at a time. When the graph is 

interpreted in detail, the MSE values in the testing phase show good agreement with the MSE 

values in the validation phase. If there is an increase in MSE values during the testing phase, 

the trained model has an overfitting problem. The validation MSE is monitored during the 

training, and training is terminated when validation MSE starts to increase. The training is 

performed with 10 Epochs and the best validation performance is achieved with an MSE value 

of 0.01759 at 4th Epoch.  

 
Figure 14: MSE values during the training, validation, and testing processes.  
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5.5 Optimization Results 

In the present study, the shape optimization of the HV has been performed in order to reduce 

the total ship resistance. The objective function in the optimization process is an explicit 

function obtained after the trained ANN model. The interior-point algorithm, described in 

Section 4.5, has been used as the optimization algorithm. A series of initial values within the 

boundaries of the design space is defined, and local minimum values are searched to control 

the robustness of the optimization problem. It is observed that the local minimum values 

corresponding to the initial values always converge towards the same point with a 𝑅𝑇𝑀 of 50.72 

N. Figure 15 show the contour plot of the function obtained from ANN and the position of the 

optimal point.  

 

Figure 15: Two-dimensional contour plot of the objective function obtained from ANN. 

The PCs of the optimized design are projected back to the original seven-dimensional design 

space to generate the three-dimensional shape of optimized HV. The initial and the optimized 

sectional profile of HV are shown in Figure 16. 
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Figure 16: Shape of NACA4412 and optimized HV profile. 

The optimum HV design is installed behind the vessel to compute the 𝑅𝑇𝑀 via a viscous flow 

solver. The 𝑅𝑇𝑀 estimation obtained from the simulation is 50.84 N. The absolute percentage 

error between the total resistance predicted from the ANN model and the resistance computed 

by the flow solver is 0.2361% (see Table 8). This shows that the ANN model trained with PCs 

can predict 𝑅𝑇𝑀 values for a hull with HV with satisfactory accuracy, even with a small dataset.  

Table 8: ANN and CFD results of the optimized shape of HV. 

𝑃𝐶1 𝑃𝐶2 𝑅𝑇𝑀−𝐴𝑁𝑁[𝑁] 𝑅𝑇𝑀−𝐶𝐹𝐷[𝑁] Absolute percentage 
error (%) 

1.4896 0.1412 50.72 50.84 0.2361 

Table 9 shows the effect of optimized HV on the resistance components. The camber-curve 

width of the optimized HV has slightly increased compared to that of the initial shape. This has 

a slightly negative effect on the frictional resistance. The stern wave elevation and dynamic 

pressure distribution of the vessel without HV, with the initial and the optimized HV, are shown 

in Figure 18 and 19. The stern zone pressure distribution is further reduced (see Figure 19 (b2) 

and (c2)) due to the increased pressure difference between the suction and pressure side of the 

optimized HV (see Figure 17). As a result of this study, 𝑅𝑇𝑀 is further decreased by 1.2% with 

the optimized shape of HV; see Table 9. 

Table 9: Resistance comparison of optimized and initial HV. 

  
𝑅𝐹𝑀[𝑁] 𝑅𝑅𝑀[𝑁] 𝑅𝑇𝑀[𝑁] 

Difference (%) 
Bare Hull  20.49 42.30 62.78  
Bare Hull w/initial HV 22.12 29.49 51.60 -17.81 
Bare Hull w/optimized HV 22.28 28.56 50.84 -19.02 
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Figure 17: Dynamic pressure distribution along the (a) initial HV and (b) optimized HV. 

 
Figure 18: Comparison of wave elevations behind the transom taken from the vessel's 

centreline. 

 
Figure 19: Wave elevation and dynamic pressure distribution of the vessel (a) without HV, 

(b) with initial HV and (c) with optimized HV. 
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Table 10 gives the trim and sinkage values of the vessel without HV (bare hull) and with the 

initial and optimized HV designs. The bare hull has 0.112 deg of bow down trim at 𝐹𝑟 = 0.37. 

Due to the presence of the HV, the lift force occurs in the stern area of the vessel, which slightly 

increases the bow down trim of the vessel. In the presence of the optimized HV, the trim angle 

is 1.212 deg. The sinkage of the bare hull at the design speed is 0.0161m. The impact of the 

generated lift force at the stern is not only on the vessel's trim but also on the sinkage, which is 

further reduced with the optimized HV from 0. 0161m to 0.0098m on model scale. 

Table 10: Comparison of the vessel's trim and sinkage. 

  Trim (deg) Sinkage (m) 
Bare Hull +0.112 -0.0161 
Bare Hull w/initial HV +0.915 -0.0117 
Bare Hull w/optimized HV +1.212 -0.0098 

 +: bow down  
   

The impact of the initial and the optimized HV on the full-scale model has also been 

investigated. The scale ratio (𝜆) is 16.5, and the corresponding design speed (𝑉𝑆) is 8.73 m/s 

from Froude similarity. Recently, Hou et al. (2020) carried out extrapolation from model scale 

to full scale and observed that HV directly impacts the hull form, hence on the change of the 

form factor. Therefore, in this study, the bare hull and the hull equipped with the initial and the 

optimized HV have been simulated on the model scale according to the double-body approach 

described in Section 5.2 in order to find the (1 + 𝑘) and 𝐶𝑊 , which are shown in Table 11. 

These values are the same for model and full scale due to Froude similarity. The 𝐶𝐹𝑆 values 

have been calculated in accordance with ITTC-1957 model-ship correlation. 

𝐶𝐹𝑆 =
0.075

(𝑙𝑜𝑔10𝑅𝑒−2)2              (11) 

The difference between 𝐶𝐹𝑆 values on the model and full scale are shown in Table 11. This 

difference is due to the fact that the chord length of the HV is also included when calculating 

the 𝑅𝑒 of the hull with HVs. Then, extrapolations are performed by implementing the standard 

ITTC procedure to estimate 𝐶𝑇𝑆 values. The corresponding 𝑅𝑇𝑆 values are calculated by the 

following formula, 

𝑅𝑇𝑆 =
1

2
𝜌𝑆𝑆𝑉𝑆

2𝐶𝑇𝑆,              (12) 

where 𝜌 is the density of the salt water and 𝑆𝑆 is the wetted surface area of the ship hull.  

It is observed that the effective power (𝑃𝐸) decreases by 23.56% in the presence of initial HV 

and is further reduced by 3.42% with the optimized HV (see Table 11). 
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Table 11: Extrapolated results from model scale to full scale 

  Model Scale Full Scale 

  
103𝐶𝐹𝑀 103𝐶𝑉𝑃 1 + 𝑘 103𝐶𝑊 103𝐶𝐹𝑆 1 + 𝑘 103𝐶𝑊 103𝐶𝑇𝑆 𝑅𝑇𝑆[𝑘𝑁] 𝑃𝐸[𝑘𝑊] 

Diff. (%) 
Bare Hull 3.201 0.913 1.285 5.696 1.709 1.285 5.696 7.893 232.81 2033.21 - 
Bare Hull w/initial HV  3.277 0.730 1.223 3.639 1.703 1.223 3.639 5.721 177.97 1554.25 23.56 
Bare Hull w/optimized HV 3.299 0.973 1.295 3.256 1.703 1.295 3.256 5.461 169.99 1484.62 26.98 

 

To calculate the brake power (𝑃𝐵) and fuel consumption, one requires the propulsive efficiency 

(𝜂𝐷) which will be different without HV and the initial-optimized HV. This is due to the fact 

that thrust deduction will be changed in the presence of the HV. Besides, the variables, such as 

engine load and specific fuel oil consumption (SFOC), contribute to fuel consumption and 

depend on the operating conditions at different engine loadings. Instead of calculating the fuel 

consumption directly, the percentage decrement in fuel consumption in terms of 𝑃𝐸 has been 

evaluated with equation 13 (Tezdogan et al., 2015), which can be considered the indication of 

fuel consumption assuming the efficiencies and SFOC remain constant. 

% decrement in fuel consumption in terms of 𝑃𝐸 =
∆𝑃𝐸

𝑃𝐸,𝑤𝑜𝐻𝑉
=

𝑃𝐸,𝑤𝑜𝐻𝑉−𝑃𝐸,𝑤𝐻𝑉

𝑃𝐸,𝑤𝑜𝐻𝑉
× 100.                (13) 

Table 12: Estimation of fuel consumption in percentage. 

  
𝑃𝐸[𝑘𝑊] 

Fuel Consumption (%) 
Bare Hull 2033.21 100.00 
Initial (NACA4412) 1554.25 76.44 
Optimized 1484.62 73.02 

 

6. CONCLUSIONS and FUTURE WORK 

The present paper proposes a data-driven design technique for shape optimization of an energy-

saving appendage, namely HV (Hull Vane), for resistance reduction of a motor yacht hull. At 

the heart of this technique are PCA (Principal-Component Analysis), a dimension-reduction 

method, and an ML- (Machine Learning) based model, ANN (Artificial Neural Network), for 

hull resistance prediction in the presence of HV. PCA overcomes the hurdle of dimensionality 

and expedites the design space exploration during optimization, while ANN helps to bypass the 

need for time-consuming CFD simulations for design evaluation.  The proposed method 

commences with an initial design of HV, whose cross-sectional profile is defined with a 

NACA4412 hydrofoil parameterized with seven design parameters. Next, a design space is 

formed around the baseline design, which was then sampled to create a dataset. PCA was 

implemented on this dataset, which created a two-dimensional latent subspace representation 

of the original design space while preserving 85.5% of the geometric variability. This 
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dimension reduction reduces the need for extensive simulation data for training ANN and helps 

to simplify its architecture. The two-dimensional design space was sampled again. The samples' 

total resistance was evaluated with our high-fidelity CFD (viscous) solver after projecting 

design to the original design space. The new dataset contained two PCs as independent variables 

and total resistance as a dependent variable and was used to train a feedforward ANN. The total 

resistance for the optimized design obtained from the prediction model are in strong agreement 

with the results obtained from the CFD solver, which validates that even when trained with few 

samples, the developed model can provide reliable results. This model was later integrated with 

an interior point optimization technique, exploring the two-dimensional subspace for an optimal 

design. The optimized design obtained from this process reduces the total resistance of the hull 

by 1.2% on the model scale compared to that of the baseline HV design, which is based on 

NACA4412 hydrofoil. The effective power is further decreased by 3.72% with the optimized 

HV on a full scale. 

Although the uncertainty analysis and experimental benchmarks verified the robustness and 

accuracy of the flow solver, this study can be further strengthened via an empirical study, which 

will explore the HV influence on the various hydrodynamic characteristics of the ship, such as 

motions manoeuvring and propulsive efficiencies. Furthermore, in the presence of an optimized 

HV, the hull's shape can also be optimized in conjunction with parametric (Khan et al., 2017) 

and generative (Khan et al., 2019) tools. 
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