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1 Introduction

The growing availability of panel data with large T dimension (i.e. where the number of time series ob-

servations is large) has stimulated a growth in research, both empirical and theoretical, which discusses

time series issues in panel data models. Of particular interest are issues relating to nonstationarity

and cointegration. In this paper, we develop a Bayesian approach to the analysis of cointegration

in panels. We use a modelling framework which allows for great ßexibility in the way heterogeneity

across cross-sectional units is incorporated. In particular, we allow for both cointegrating vectors and

ranks to vary over N . Our use of Bayesian methods allows for the cointegrating ranks to be treated

as random variables. Thus, our methods can either be used to select a particular model with speciÞed

cointegrating ranks or to average across different cointegrating ranks. We also consider restricted

models of interest (e.g. where all cross-sectional units have the same cointegrating rank). The use

of Bayesian methods requires elicitation of a prior. We develop two priors, a noninformative and an

informative one. The latter allows for the incorporation of prior beliefs that the same cointegrating

relationship exists for all cross-sectional units. Furthermore, it allows for what we call "soft homo-

geneity" restrictions (i.e. that comparable parameters in different cross-sectional units are likely to

be similar to one another). We derive efficient methods of posterior analysis in our class of models

and illustrate our methods using artiÞcial data and an application involving a monetary exchange rate

model (see Groen, 2000 and Groen and Kleibergen, 2003).

The importance of this area of research is evidenced by the increasing tendency for researchers to

employ panels of nonstationary processes in empirical studies in macroeconomics and international

economics. For instance, the survey paper by Baltagi and Kai (2000) identiÞes many areas of applica-

tion, including purchasing power parity (PPP), growth convergence and international R&D spillovers.

To give one example which illustrates the issues which can be addressed through the use of panel

data consider Jacobson, Lyhagen, Larsson and Nessén (2002). These authors use a multivariate panel

cointegration model and demonstrate that, although strong purchasing power parity restrictions are

rejected, the location of the cointegrating space is similar for all countries considered. This provides

some evidence in support of PPP.

In terms of the frequentist econometric literature, there have been a range of methods proposed

to obtain inference relating to cointegration in panel data models. Among many others, we note that

residual-based, LM and likelihood based tests have been proposed by Kao (1999), McCoskey and Kao

(1998), Pedroni (2004), Larsson, Lyhagen and Löthgren (2001) and Groen and Kleibergen (2003). The

estimation methods used in these papers vary from OLS through maximum likelihood and generalized

method of moments. The extent of this literature prevents us giving even a reasonable coverage here

and so we refer the reader to the surveys by Phillips and Moon (2000) and Baltagi and Kao (2000).

While the bulk of the work to date has used frequentist methods, there have been a number of

Bayesian approaches to obtain inference in dynamic panels. Pesaran, Hsiao and Tahmiscioglu (1999)

present frequentist and Bayesian approaches to estimating the mean of the cross-sectional distribution

for the coefficients in a dynamic panel data model. They show that the Bayesian approach performs
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reasonably well in Þnite samples, and is even preferable to some consistent estimators when Þnite

sampling performance is considered. Although they impose a stability condition, thus precluding

discussion of issues relating to unit roots and cointegration, this assumption could be relaxed (see

also Hsiao and Pesaran, 2004). Li (1999) investigates PPP by considering support for symmetry and

proportionality restrictions in the PPP relationship. She allows for stationary AR(1) errors in the

relationship between log exchange rates and prices. Interestingly, while this paper does not explicitly

consider cointegration, with one small change the model of Li could - using a triangular setup as

proposed by Phillips (1991) - be easily extended to allow investigation of whether or not cointegration

between log exchange rates and prices occurs.

We are aware of only one paper explicitly proposing a Bayesian approach to estimation of a

cointegrating system in panel data models. Carmeci (2005) presents a state space model which implies

cointegration by directly modeling the common stochastic trends. Under the assumption that the

cointegrating rank is known and assumed equal in every cross-sectional unit, the author develops

Bayesian methods for estimation. We are not aware of any paper that presents a fully Bayesian

method of inference on cointegration in panels, when the cointegrating rank is unknown and may

differ across cross-sectional units. The present paper attempts to address this gap in the literature.

The remainder of the paper is organized as follows. Section 2 introduces the model and describes

the elements of Bayesian analysis: likelihood, priors and methods of posterior simulation. Section 3

illustrates our methods using artiÞcial data and Section 4 demonstrates the ßexibility of inference in

the application used in Groen and Kleibergen (2003), which involves an interesting set of restrictions

implied by economic theory. Section 5 concludes.

2 The Models

In a standard time series framework, cointegration is typically investigated using a vector error cor-

rection model (VECM). To establish notation, to investigate cointegrating relationships involving an

n-vector, yt, we write the VECM for t = 1, .., T as:

∆yt = Πyt−1 +
lX

h=1

Γh∆yt−h +Φdt + εt (1)

where the n×nmatrix Π = αβ0, where α and β are n×r full rank matrices and dt denotes deterministic

terms.1 The value of r determines the number of cointegrating relationships. εt is a Normal mean

zero error with positive deÞnite covariance matrix.

Before extending (1) to the panel data case, it is important to digress brießy to motivate an

important issue in Bayesian analysis of cointegrated models. The VECM suffers from both local

and global identiÞcation problems. The local identiÞcation problem occurs since, if α = 0, β does

not appear in the likelihood function. The global identiÞcation problem can be seen by noting that

1The exact form of the deterministic terms is not crucial to our derivations so we leave these unspeciÞed. See Johansen
(1995), pages 81-84 for a commonly-used set of choices.
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Π = αβ0 and Π = αGG−1β0 are identical for any nonsingular G. This indeterminacy is commonly

surmounted by imposing the so-called linear normalization where β = [Ir B0]0. However, there are

some serious drawbacks to this linear normalization (see Strachan and Inder, 2004 and Strachan and

van Dijk, 2004b). Researchers in this Þeld (see Strachan and Inder, 2004, Strachan and van Dijk, 2004b

and Villani, 2005a,b) point out that it is only the cointegration space that is identiÞed (not particular

cointegrating vectors) and that, for most purposes (including prior elicitation), it is preferable to think

in terms of the cointegration space. Accordingly, we introduce notation for the space spanned by β,

p = sp (β).

We can generalize (1) to the panel data case by including i subscripts to denote the cross-sectional

unit which we refer to as the �individual� hereafter (where i = 1, .., N). That is, yi,t is an n vector of

observations on the dependent variables for individual i at time t2 and the panel VECM is written as:

∆yi,t = Πiyi,t−1 +
liX

h=1

Γi,h∆yi,t−h +Φidi,t + εi,t (2)

where now Πi = αiβ
0

i where αi and βi are n× ri full rank matrices. Our model allows for the number

of cointegrating relationships to vary across individuals and thus, we extend our previous notation

such that the cointegration spaces are now pi = sp (βi). The covariance matrices for vectors εi,t are

assumed to be

E
¡
εi,tε

0

j,s

¢
=

½
Σij

0
for t = s
for t 6= s

. (3)

In other words, we are assuming the errors to be uncorrelated over time, but correlated across equa-

tions for a given individual and correlated across individuals. Note that the last assumption differs

from much of the previous literature. For instance, Larsson, Lyhagen and Löthgren (2001) use a more

restrictive model assuming E
³
εi,tε

0

j,s

´
= 0 if i 6= j for all t and s. Although allowing for a correlation

between errors for different individuals is not usually done with microeconomic survey data, with

macroeconomic panels where the �individuals� are countries such a correlation is potentially impor-

tant.We are therefore following the more general model of Groen and Kleibergen (2003) which does

allow for such a correlation. Note also that our model is more ßexible than the one of Groen and

Kleibergen (2003) in that we relax the assumption of a common cointegrating rank.

There are many features of (2) that the researcher might be interested in. For each individual, we

would naturally be interested in the dimension of the cointegrating space, ri, and whether ri = r for

all i. Other questions of interest relate to the cointegrating spaces, pi = sp (βi). A restricted version of

(2) would have the same cointegrating relationships (i.e. the same ri and βi) for every individual and,

thus, pi = p. Alternatively, if different individuals have different numbers of cointegrating vectors,

then we might be interested in whether all of the cointegrating spaces lie within some more general

one. That is, if ri ≤ r for i = 1, ..,N and p is a cointegration space with dimension r, then we might

be interested in investigating whether pi ⊆ p for i = 1, .., N .
2 It is not complicated to allow for yi,t to be of dimension ni, but we will assume ni = n, for simplicity. Similarly it is

straightforward to extend our results to the unbalanced panel case.
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As a simple illustration of how these questions might arise, consider the balanced growth hypothesis

in the real business cycle model presented by King, Plosser, Stock and Watson (1991). Assume

yi,t = (ci,t, ai,t, gi,t)
0 where ci,t is log consumption for country i, ai,t is log investment for that country

and gi,t is log income. If the elements of the vector yi,t are I (1) and are cointegrated then 0 < ri < 3.

If there are two cointegrating relationships (ri = 2) and the logs of the great ratios of consumption

to income and investment to income are stable such that ci,t − gi,t and ai,t − gi,t are I (0) in every

country, then the cointegrating space, pi, is

pi = p = sp

⎛
⎝

1 0
0 1
−1 −1

⎞
⎠ .

In an empirical analysis using panel data, it would be of interest to investigate this restriction (i.e.

whether two cointegrating vectors exist for each country and whether their values are consistent with

the great ratios). However, it is possible that some countries might only have one cointegrating

relationship, so that ri = 2 for some countries and ri = 1 for others. In this case, investigating

whether pi = p for all i = 1, .., N is not reasonable. Instead, the researcher may be interested in

investigating whether the cointegrating relationships either involve the great ratios individually (for

ri = 2) or involve a linear combination of the (logs of) the great ratios. In terms of our notation, this

involves investigating whether pi ⊆ p for i = 1, .., N .
In most empirical applications, the cointegrating spaces will be of most interest and, hence, the

researcher will be most interested in a set of models deÞned by restrictions on these. However, it is

also common for the set of models to be broadened by considering different forms of the deterministic

processes, di,t, and the number of lags li and it might be desirable to allow these to vary across

individuals. Thus, in empirical work, the researcher might want to consider a very wide range of

models indeed. However, in order to focus on the central issues relating to cointegration, we will

assume a common lag length for all individuals (i.e. li = l for all i) and common deterministic process

(i.e. di,t = dt for all i) and develop methods of inference for ri and p .

2.1 The Likelihood Function

In this section we show two representations of the likelihood, involving different parameterizations,

which we draw on in our discussion of posterior simulation. Note that the matrix of long run multipliers

can be written as:

βiα
0

i = [βiκi]
£
αiκ

−1
i

¤0 ≡ β∗iA
0

i (4)

where βi is restricted to be semi-orthogonal (for reasons described in the next section) and κi is positive

deÞnite and deÞned so that Ai is semi-orthogonal. Here we have used β∗i = βiκi and αi = Aiκ
0

i. There

are many choices for κi which satisfy these properties, but a convenient one we will use here is:

κi =
¡
α0iαi

¢ 1
2 =

¡
β∗0i β∗i

¢ 1
2 . (5)
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For reasons explained below, our posterior simulator will involve switching between the parameteriza-

tions in (4).

To establish notation, we collect the n × n blocks Σij into the Nn × Nn matrix Σ = {Σij} .

Collecting the (n× 1) vectors εi,t into (T × n) matrices εi = (εi,1, . . . , εi,T )
0, then collecting these

matrices into the (T ×Nn) matrix ε = (ε1, . . . , εN) , we obtain e = vec (ε) being the vector of errors.

This vector has covariance matrix

E
¡
ee0
¢
= Ve = (Σ⊗ IT ) . (6)

The density of the errors, a key building block in forming the likelihood for this model, is then

|Σ|−T/2 exp

½
−1
2
e0
¡
Σ−1 ⊗ IT

¢
e

¾
= |Σ|−T/2 exp

½
−1
2
trΣ−1ε0ε

¾
.

We next give two representations for e that will prove useful in developing a sampling scheme for the

parameters.

We rewrite (2) by deÞning zi,t = β0iyi,t−1, the 1×(k + ri) vectorXi,t =
³
z0i,t,∆y0i,t−1, . . . ,∆y0i,t−l, d

0

t

´
,

where k is the number of deterministic terms plus n times the number of lags (assumed to be com-

mon to all individuals and, hence, we have not included an i subscript), and the (k + ri) × n matrix

Bi = (αi,Γi,1, . . . ,Γi,l,Φi)
0 and, thus,

∆y0i,t = Xi,tBi + ε0i,t. (7)

If we stack the vectors in (7) over t as ∆yi = (∆yi,1, ...,∆yi,T )
0 and Xi =

³
X

0

i.1, ...,X
0

i.T

´
0

then, we can

write ∆yi = XiBi + εi. Vectorizing this equation gives us the form

vec (∆yi) = (In ⊗Xi) vec (Bi) + ei

or yi = xibi + ei

where yi = vec (∆yi) , xi = (In ⊗Xi) , bi = vec (Bi) and ei = vec (εi) such that E
³
eie

0

j

´
= Σij ⊗ IT .

We collect the vectors yi and bi into the vectors y = (y01, . . . , y
0

N )
0 , and b = (b01, . . . , b

0

N )
0, and deÞne

the matrix x as the TNn×Nn (k + r) (where r =
rN

i=1 ri
N ) block diagonal matrix with diagonal equal

to (x1, ..., xN ). Using these deÞnitions, we can express the full system of equations as y−xb = e. The

likelihood can now be expressed as

L (b,Σ, β) = |Σ|−T/2 exp

½
−1
2
(y − xb)0 V −1

e (y − xb)

¾
(8)

= |Σ|−T/2 exp

½
−1
2

∙
s2 +

³
b−bb

´
0

V −1
³
b−bb

´¸¾

where s2 = y0MV y, MV = V −1
e − V −1

e xV x0V −1
e , bb = V x0V −1

e y, Ve = (Σ⊗ IT ) and V =
¡
x0V −1

e x
¢−1
.

Thus from our Þrst representation of the likelihood, we can see that the form of the posterior for b

conditional upon the βi and Σ is Normal if the (conditional) prior for b is ßat or Normal.
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Our next representation of the likelihood demonstrates that we can obtain a Normal form for the

cointegrating vectors (conditional on the other parameters of the model). That is, the conditional pos-

terior density of the vector bβ∗ =
³
b0β∗,1, . . . , b

0

β∗,N

´
0

, where bβ∗,i = vec (β∗i ), can be shown to be Normal.

To do this let us again rewrite (2) but this time deÞne the 1×k vector wi,t =
³
∆y0i,t−1, . . . ,∆y0i,t−l, d

0

t

´
,

and the k × n matrix Ci = (Γi,1, . . . ,Γi,l,Φi)
0 and, thus,

∆y0i,t = y0i,t−1β
∗
iA

0

i +wi,tCi + ε0i,t. (9)

If we stack the vectors over t as∆yi = (∆yi,1, ...,∆yi.T )
0, yi,−1 = (yi,0, ..., yi,T−1)0 and wi =

³
w
0

i,1, ..., w
0

i,T

´
0

,

then we can write ∆yi = yi,−1β∗iA
0

i + wiCi + εi. Vectorizing this equation we obtain

vec (∆yi − wiCi) = (Ai ⊗ yi,−1) vec (β∗i ) + vec (εi)

or byi = bxibβ∗,i + ei

where byi = vec (∆yi − wiCi) , and bxi = (Ai ⊗ yi,−1). Now stack the vectors byi into by = (by01, . . . , by0N )
0

and deÞne bx as the TNn ×Nnr block diagonal matrix with diagonal equal to (bx1, ..., bxN) so we can

express the system of equations as by − bxbβ∗ = e. The likelihood can now be expressed as

L (b,Σ, β) = |Σ|−T/2 exp

½
−1
2

¡
by − bxbβ∗

¢
0
V −1
e

¡
by − bxbβ∗

¢¾
(10)

= |Σ|−T/2 exp

½
−1
2

∙
s2β∗ +

³
bβ∗ −bbβ∗

´
0

V −1
β∗

³
bβ∗ −bbβ∗

´¸¾

where s2β∗ = by0MVβ∗ by, MVβ∗ = V −1
e − V −1

e bxVβ∗bx0V −1
e , bbβ∗ = Vβ∗bx0V −1

e by, and Vβ∗ =
¡
bx0V −1

e bx
¢−1
. This

representation of the likelihood shows that the form of the posterior for bβ∗ (conditional upon the Ci

and Σ) is Normal if the (conditional) prior for bβ∗ is Normal.

2.2 Priors

In this section, we describe two classes of priors which may be useful for empirical research. The Þrst

of these is a noninformative prior, suitable for reference or benchmark purposes. The second is an

informative prior which contains what we call "soft homogeneity" restrictions. That is, in many cases

economic theory suggests that the cointegration space should be the same for different individuals and

of a particular form. In an empirical analysis, the researcher might not want to impose this sort of

homogeneity in a strong sense, but, through the use of priors, we can do so in a soft sense. That

is, rather than setting parameters to have the same values for all individuals, we specify common

informative priors that favour parameter values which are similar for different individuals. This is

likely to be of particular beneÞt since our model contains many parameters and, thus, issues relating

to possible over-parameterization and efficiency of estimation are likely to be important.

Before describing the priors, we should highlight some important issues that have arisen in Bayesian

analyses of cointegration in non-panel data contexts. As discussed previously, the VECM suffers from

a lack of identiÞcation (both locally and globally). A large literature has grown which develops priors
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which attempt to surmount the problems this causes (see the survey paper by Koop, Strachan, van Dijk

and Villani, 2005). We will not recreate the arguments of this literature in detail here. Suffice it to note

that it is unsatisfactory to use some apparently sensible approaches. For instance, at Þrst sight it seems

sensible just to use a standard prior (e.g. a ßat prior or a Normal one) on B after imposing the linear

normalization β = [Ir B0]0. As discussed in Kleibergen and van Dijk (1994), the local non-identiÞcation

of the model causes problems for this sort of Bayesian approach. The issue here is that when α has

reduced rank (e.g., α = 0) the conditional posterior distribution for B|α is equal to its prior (i.e. since

B does not enter the likelihood function at the point α = 0 there is no data-based learning about B

and, thus, its posterior equals its prior at this point). If the prior for B|α = 0 is improper (as it is in the

common �noninformative� case), then the posterior will also be improper. Formally, Kleibergen and

van Dijk (1994) associate the local non-identiÞcation problem with nonexistence of posterior moments

and non-integrability of the posterior (under a common noninformative prior). Kleibergen and van

Dijk (1998) additionally point out that local non-identiÞcation implies an absorbing state in a Gibbs

sampler, thereby violating the convergence conditions for the sampler.

With regards to global identiÞcation, Strachan and Inder (2004) show how the use of linear iden-

tifying restrictions places a restriction on the estimable region of the cointegrating space. This paper

also provides an extensive discussion of further problems associated with the use of linear identifying

restrictions. Strachan and van Dijk (2004b) show that a ßat and apparently �noninformative� prior

on B in the linear normalization favors regions of the cointegration space near where the linear nor-

malization is invalid. Hence, the linear normalization is used under the assumption that it is valid

while at the same time the prior says that the normalization is likely to be invalid.

Coming out of this literature is the strong message that prior elicitation should be made directly

off the cointegration space itself (which is all that is identiÞed). Several papers, including Strachan

(2003), Strachan and Inder (2004) and Villani (2005a,b) propose various approaches which involve such

a focus. In this paper, we extend the general framework outlined in Strachan (2003) and Strachan and

Inder (2004) to our panel cointegration model. The advantages of this approach are that they allow us

to avoid identiÞcation restrictions that may restrict the estimable cointegration space, allow for priors

which are, in a sense, noninformative (but are proper and, hence, allow for calculation of posterior

odds ratios) and offer a convenient framework for incorporating prior information (if the researcher

wishes to incorporate it).

To brießy motivate this approach (in the non-panel case), note that a cointegrating space p is

an r-dimensional hyperplane in a n-dimensional space and its relation to the cointegrating vectors

β is that these vectors lie in and thereby identify that plane. Consider the case where n = 2 and

a single cointegration vector exists which is parameterized in polar coordinates β = (cos θ sin θ)0 ,

where θ ∈ [−π/2, π/2). It is only θ which determines the cointegration space and, thus, as shown in

Strachan and Inder (2004), the length of β can be restricted to be unity for identiÞcation. Crucially,

and in contrast to the linear normalization, this identifying restriction does not restrict the estimable

cointegration space or distort the weight on the space of the parameter of interest, p. A natural

candidate for a noninformative distribution on p is the Uniform distribution on θ, the parameter
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governing the direction of β and therefore p.

To extend these intuitive concepts to general n and r, some additional deÞnitions are required.

Our aim is to provide a rigorous deÞnition of the intuitive idea of assigning equal prior probability to

every possible cointegration space of dimension r. As described in Strachan and Inder (2004), having

β being semi-orthogonal such that β0β = Ir identiÞes the cointegrating vectors without placing any

restrictions on the cointegrating space. The set of all n × r semi-orthogonal matrices is called the

Stiefel manifold Vn,r. The Stiefel manifold is a compact space and admits a Uniform distribution.

In the case where r = 1, one might conceptualize the collection of directions of all n-dimensional

unit vectors, β ∈ Vn,1, as describing an n-dimensional unit sphere centered at the origin. Thus, we

may visualize a Uniform distribution on the n-dimensional unit sphere as characterizing a Uniform

distribution on Vn,1. For r > 1, we can think of each vector in β as describing a unit sphere with the

additional restriction that the vectors are all orthogonal to each other.

The Grassman manifold Gn,r is the abstract space of all possible r-dimensional planes of Rn.

The cointegration space is an element of the Grassman manifold, that is p ∈ Gn,r. In the VECM

only the space spanned by the columns of β is identiÞed, such that we only have information on

p = sp (β) ∈ Gn,r. A Uniform prior for the cointegration space is therefore given by the Uniform

distribution on Gn,r.

For calculating posterior odds ratios, proper priors are required to avoid Bartlett�s paradox (see

Bartlett, 1957). But, since β now has a compact support, the prior over the cointegration space is

proper. Formally, this approach uses the natural relationship between the Grassman manifold and

the Stiefel manifold and the development of measures on these spaces presented in James (1954). In

particular, a key result is that the Uniform distribution on Vn,r induces a Uniform distribution on Gn,r

(see James, 1954, and Strachan and Inder, 2004). Thus, it is possible to work with the semi-orthogonal

matrices, i.e. β ∈ Vn,r, and adjust all integrals to account for the fact that Vn,r is a larger space than

Gn,r.

In this paper, we have only sketched out the basic ideas relating to prior elicitation in the cointe-

gration models, and refer the reader to the literature we cite above for further details. Suffice it to

note here that, in this paper, we extend these ideas to work with the panel cointegration model.

2.2.1 A Noninformative Prior

Let bβ =
³
b0β,1, . . . , b

0

β,N

´
0

, where bβ,i = vec (βi) , contain all the parameters which determine the

cointegration spaces. The remaining parameters of the model are Σ and b, where b is deÞned between

(7) and (8). Noting that, conditional upon bβ, the model reduces to a linear one (see equation 7), a

plausible candidate is the standard noninformative prior for multivariate linear models:

p (b,Σ, bβ) ∝ |Σ|−(Nn+1)/2 , (11)

where we add the additional restriction, arising from our wish to be noninformative about the coin-

tegrating space and have an identifying restriction which does not limit that space, that βi is semi-

orthogonal such that β0iβi = Iri .
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Note, however, that although the marginal prior for bβ is proper, the joint prior for all the para-

meters is improper. The impropriety relating to the prior for Σ is not a problem, since it is common

to all models.3 However, a proper prior would be required for the remaining parameters should we

wish to calculate posterior odds ratios comparing different cointegrating ranks. That is, if we wish to

estimate a single model for speciÞed values for ri (and speciÞed values for l and dt) the prior given

in (11) will be appropriate. However, if we are wishing to compare this single model to another with

different values for ri (and/or different values for l and dt), then an informative prior for b would be

required. It is to such an informative prior to which we turn. However, it is worth noting in passing

that a researcher who is interested in model comparison, but would prefer to avoid informative priors,

could use information criteria to approximate marginal likelihoods or could adopt a training sample

approach. That is, (11) could be used as a noninformative prior which is then combined with a training

sample (e.g. the initial 10% of the data) to yield a "posterior". This "posterior" can then be used as

an informative prior in a posterior analysis involving the rest of the data. See O�Hagan (1995) for a

discussion of such an approach.

2.2.2 An Informative Prior (including soft homogeneity restrictions)

In many cases the researcher may wish to specify an informative prior on the cointegrating space.

For instance, in our previous example arising from King, Plosser, Stock and Watson (1991), the

researcher may wish to elicit a prior which implies that the cointegrating space lies in the region

implied by the great ratios. Alternatively, the researcher may wish to elicit a prior which implies that

the cointegration spaces (or other parameters) for different individuals are similar. We refer to the

latter as soft homogeneity restrictions. In addition, in order to avoid the issues relating to Bartlett�s

paradox discussed in the previous section, the researcher may wish to elicit an informative prior for b.

Here we describe an approach to prior elicitation which incorporates these aspects.

Some aspects of our prior are best motivated in the context of our posterior simulation algorithm.

Hence, we digress brießy to informally discuss computation. Posterior computation is greatly compli-

cated by the fact that βi is semi-orthogonal which precludes use of the simple Gibbs sampling methods

described, e.g., in Geweke (1996). For the non-panel cointegration model, Koop, Leon-Gonzalez and

Strachan (2005) develop an efficient method of posterior simulation based on the idea of a collapsed

Gibbs sampler developed in Liu (1994) and Liu, Wong and Kong (1994). To give some preliminary

intuition for this, consider the relationships deÞned in (4). For prior elicitation or posterior computa-

tion, we may consider either (βi, αi) or (β
∗
i , Ai) . Crucially, in the Þrst of these parameterizations, βi is

semi-orthogonal while αi is unrestricted, whereas in the second it is β
∗
i which is unrestricted whereas

Ai is semi-orthogonal. In the next section we develop a collapsed Gibbs sampler which alternates

between these two parameterizations. Arguments made in Liu (1994) and Liu, Wong and Kong (1994)

3When calculating posterior odds ratios, it is common to make use of improper, noninformative priors over parameters
which are common to all models (see, e.g., Kass and Raftery, 1995). Fernández, Ley and Steel (2001) employ such a
prior for an error variance in a model averaging exercise. As they point out, the prior in (11) is invariant to scale
transformations and, although it is not strictly Jeffreys� prior, it is that part of Jeffreys� prior related to Σ and widely
accepted as a noninformative prior for Σ.
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prove that this will be more efficient than a Gibbs sampler which works only with (βi, αi) or (β
∗
i , Ai) .

Even more crucially, with the priors developed in this section, the collapsed Gibbs sampler will only

involve draws from the Normal distribution (and inverted Wishart4 for Σ), enormously simplifying the

computational burden.

We now turn to our informative prior and begin by discussing b and Σ. Typically, these parameters

will be of less importance in an empirical exercise than the prior on the cointegrating space. For Σ we

maintain the noninformative prior given in (11), although an inverted-Wishart form could also easily

be handled. For b we assume:5

b ∼ N

µ
0, V

1

ν

¶
(12)

where ν is a scalar which controls the degrees of informativeness or precision of the prior. Note that

ν can be interpreted as a shrinkage parameter and, thus, (12) shares some similarities with shrinkage

priors commonly used in the VAR literature (see, e.g., Litterman, 1986). Note, however, that we treat

ν as a parameter (rather than a hyperparameter selected subjectively by the researcher).

Now consider the prior covariance matrix (up to the scalar shrinkage parameter) V in (12). Of

course, any choice for V can be made. Here we motivate a particular form for the elements of V which

relate to αi or, equivalently, Ai. Considering the relationships in (4) and surrounding discussion, it

makes sense, analogous to our noninformative prior for the semi-orthogonal βi, to assume that the

n× ri semi-orthogonal matrices (Ai, ..., AN ) are a priori independent and that:

p
¡
Ai, ..., AN |τ , v, bβ∗

¢
∝ 1 (13)

as this implies a Uniform but proper density for each of subspaces deÞned by the Ai for i = 1, .., N .

Given the relationships in (4) we can derive a prior for (β∗i , Ai) from a prior for (βi, αi) or vice versa.

The prior (13), along with the prior for βi (to be deÞned shortly), implies that

vec (αi) |τ , βi, ν ∼ N

µ
0,
1

ν

¡
β0iP

−1
τ βi

¢−1 ⊗ In

¶
, (14)

and, thus, that the diagonal blocks of V that correspond to αi are equal to
¡
β0iP

−1
τ βi

¢−1⊗In (where Pτ

will be deÞned shortly). The remaining elements of V , corresponding to the parameters (C1, ..., CN ),

can be speciÞed using either informative or noninformative choices and will be further discussed below.

For the cointegration spaces, pi (and therefore for βi) it is often desirable to have a prior which

allows for a common location across individuals. If an economist believes a parameter is likely to

have a particular value, she will often place more prior mass around this likely point. To extend this

idea from parameters to spaces, some new ideas are required. To provide some intuition, consider the

case where we have a prior belief that the space of βi should be approximately the space of H where

H is semi-orthogonal and is of the same dimension as βi (we will extend this to allow H to have a

different number of columns from βi below). To obtain the semi-orthogonal matrix H the researcher

4See, e.g., Bauwens, Lubrano and Richard (1999), page 305 for a deÞnition of the inverted Wishart distribution.
5 In the following material, we use notation where lower bars (e.g. as in V ) denote prior hyperparameters which must

be selected by the researcher.
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can Þrst specify the matrix Hg containing desired coefficient values and then use the transformation

H = Hg (Hg0Hg)−1/2 . The matrix H constructed in this way will span the same space as Hg but will

be semi-orthogonal.

For instance, if, motivated by King, Plosser, Stock and Watson (1991), we wanted a prior reßecting

the fact that the great ratios are probably cointegrating relationships, we would set:

Hg =

⎛
⎝

1 0
0 1
−1 −1

⎞
⎠ .

Hg is not semi-orthogonal but H = Hg (Hg0Hg)−1/2 will be (and will span the same space).

A dogmatic prior would be obtained by setting βi = H which places all of the prior mass for pi

at pH = sp (H). Strachan and Inder (2004) develop an informative, but non-dogmatic prior, for the

cointegration space and we adopt a similar approach here. Intuitively, we want a prior which says the

cointegration spaces, pi, are likely to be close to p
H = sp (H) and, thus, farthest from pH⊥ = sp (H⊥)

where H⊥ is the orthogonal complement of H. The pis are weighted averages of p
H and pH⊥ and we

can elicit a prior about these weights.

One way to motivate our informative prior is through its implications for β∗i . To this end, suppose

we have an n× ri matrix Zi with all elements being i.i.d. N
¡
0, ν−1

¢
. A standard result tells us that

the space of Zi will be Uniformly distributed over the Grassman manifold. If we simply set β∗i = Zi

and used this as a prior for β∗i then it would be noninformative over the cointegrating space. To

get a dogmatic informative prior for β∗i (and, thus, the cointegrating space), we can project Zi into

pH . Another standard result in matrix algebra says this projection is given by β∗i = HH 0Zi. At the

opposite extreme, we could project Zi into p
H⊥ as β∗i = H⊥H 0

⊥Zi if we wanted a cointegration space

as far away from pH as possible. A non-dogmatic informative prior can be introduced by introducing

the random variable η (with distribution centered at 0) which centers the prior over pH , but attaches

weight to other spaces as:

β∗i = HH 0Zi + ηH⊥H
0

⊥Zi

= PηZi

where Pη = HH 0 + ηH⊥H 0

⊥.

Using the properties of the Normal distribution, it follows that

vec (β∗i ) |η, ν ∼ N

µ
0, Iri ⊗

1

ν
PηP

0

η

¶
.

But, given the structure of Pη, it follows that PηP
0

η = HH 0+η2H⊥H 0

⊥ = Pη2 . Thus, η enters the prior

only through η2 and, accordingly, we introduce the notation τ = η2 and use the following conditional

Normal prior for β∗i :

vec (β∗i ) |τ , ν ∼ N

µ
0, Iri ⊗

1

ν
Pτ

¶
(15)
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or, equivalently,

bβ∗ |τ , ν ∼ N

µ
0,
1

ν
V β∗

¶
(16)

where V β∗ = diag (Iri ⊗ Pτ ).
6

This prior will more strongly weight the cointegrating space towards H the closer τ is to zero. At

τ = 1, this prior is Uniform over the Grassman manifold (since Pτ=1 = In) and τ > 1 implies more

weight towards the space of H⊥. Therefore, it is sensible to either truncate the distribution of τ to the

region (0, 1] or to choose the hyperparameters in the prior for τ so that τ > 1 is a very unlikely event.

Note that our informal motivation implicitly assumedH to be of the same dimension as β. However,

if we deÞne H ∈ Vs,n to be a known n×s (s ≥ ri) matrix and H⊥ ∈ Vn−s,n its orthogonal complement,

then our prior expresses the belief that the cointegration space pi is likely to be included in the higher

dimensional space pH .7

For any p (τ) and p (ν), we can write the joint prior for β∗i and (ν, τ) as

p (ν) p (τ)

µ
2π

ν

¶−Nnr/2

τ−N(nr−r2)/2 exp
n
−ν

2
ΣN

i=1trβ
∗0
i Pτ−1β

∗
i

o

= p (ν) p (τ)

µ
2π

ν

¶−Nnr/2

τ−N(nr−r2)/2 exp
n
−ν

2
ΣN

i=1trβ
∗0
i HH 0β∗i

o

× exp
n
− ν

2τ
ΣN

i=1trβ
∗0
i H⊥H

0

⊥β
∗
i

o
, (17)

where r2 =
rN

i=1 r
2
i

N . In our empirical work, we select for p (ν) the form:

ν ∼ G
³
µ
ν
, νν − nNr

´
(18)

where G
³
µ
ν
, νν − nNr

´
denotes the Gamma distribution with mean µ

ν
and degrees of freedom νν −

nNr. Note that the degrees of freedom depends on nNr. This arises out of our wish to have the prior

p (ν|β∗i = 0) the same for every model we consider in our model comparison exercise. Such a condition

is necessary for using the Savage-Dickey density ratio as we do below. For brevity, we will not provide

details, but it turns out that if p (ν) has the form given in (18) then the resulting prior for ν satisÞes

the (reasonable and commonly-used) conditions for the Savage-Dickey density ratio to be used.

Using the transformations β∗i = βiκi and κiκ
0

i = F with change of measure (dβ∗i ) = 2−ri

|F|(n−ri−1)/2 (dF) (dβi) , and using (18) to integrate out ν, we can obtain

p (τ , bβ) = p (τ) τ−N(nr−r2)/2ΠN
i

¯̄
β0iPτ−1βi

¯̄−n/2
cr. (19)

6Note that b and bβ∗ share elements in common (i.e. κi) and therefore, the prior speciÞcation on b has implications
on the prior of bβ∗ . This is the reason why the shrinkage parameter, ν, appears in 16. Note that ν does not affect the
marginal prior for cointegrating spaces.

7 If we have the case that s < n − 1, then we will have models with r > s and the above prior distribution is not
applicable. In this case, in the absence of economic theory to guide us, we would assume a Uniform prior distribution
for pi.
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where cr = 2
−NrπN(r2−r)/4−Nnr/2ΠN

i Π
ri
j Γ [(n+ 1− j) /2] . Since the cointegrating space pi is identi-

Þed given a value for β∗i , the expression in (17) or (19) can be regarded as the joint prior for (pi, τ)

conditional upon ri.

From the form in (17), a convenient form of prior for τ−1 that suggests itself is Gamma

τ−1 ∼ G
³
µ
τ
, ντ

´

possibly truncated to [1,∞) to ensure τ < 1. Alternatively, we could choose values, as we do in our

application, such as µ
τ
= 5 and ντ = 15 which will ensure P (τ < 1) ≈ 1. In the truncated case the

normalizing constant cr in (19) is adjusted by dividing by P
¡
τ−1 > 1

¢
.

Note that, if we use appropriate common values for µ
τ
and ντ for every individual, we will ensure

that each pi has its prior mass near to p
H = sp (H). This is an example of what we refer to as a soft

homogeneity restriction. That is, we are not restricting, a priori, each individual to have the same

cointegration space, but we are expressing the view that different individuals are likely to have similar

cointegration spaces. In general, such soft homogeneity restrictions can be imposed in two ways with

this prior. First, priors (such as the prior for τ) can be the same or can share common locations.

Second, we can choose V deÞned in (12) to have a structure which implies correlation between the

same parameters for different individuals. Here we brießy describe one strategy for specifying V . The

Nn (k + r)×Nn (k + r) matrix V can be partitioned into n (k + ri)×n (k + ri) blocks on the diagonal

V ii, which can be chosen to have various forms (see equation 14 for the form relating to the α0is). On

the off-diagonals, it would often make sense for the n (k + ri)× n (k + rj) matrices V ij to have zeros

in the rows and columns relating to the α0is. Thus, no a priori correlation
8 is assumed between the

α0is. However, it will usually be sensible to assume that vec (Ci) and vec (Cj) are positively correlated

with one another, a priori. This can be done by specifying the nk × nk matrix of prior covariances

between the elements of vec (Ci) and vec (Cj) to be equal to ρ
b
Ink, where 0 < ρ

b
< 1.

This completes our speciÞcation of an informative prior which has three key properties: i) It allows

for prior information about the likely location of the cointegration space to be incorporated; ii) It

allows for prior information about the degree of similarity in coefficients across individuals (which we

refer to as soft homogeneity restrictions); iii) It contains a parameter ν which allows for shrinkage of

coefficients on short run dynamics and deterministic terms.

2.3 Posterior Computation

Using the priors speciÞed above and the likelihood in (8) and (10), we can derive various posterior con-

ditional densities of use in our posterior simulation algorithm. Using standard results (e.g., Bauwens,

Lubrano and Richard, 1999, Chapter 9), the conditional posterior of Σ can be conÞrmed to be inverted

Wishart with degrees of freedom parameter T and scale matrix ε0ε, where ε is deÞned just after 6.

8 If the cointegrating relations are exactly identiÞed, all individuals share the same cointegrating rank and the same
cointegrating relationship holds for all equations, then it would make sense to assume the adjustment coefficients (αi)
are a priori correlated. However, without these restrictions, it does not make sense to assume the columns of αiand αj

will be correlated.
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Similar standard results can be used to obtain the posterior distribution for b conditional upon (Σ, bβ)

which is Normal with mean bb = V V −1bb and covariance V b =
£
V −1 + νV −1¤−1.

The Þnal block in a standard Gibbs sampler would involve the cointegrating vectors, bβ = (b
0

β,1, . . . ,

b0β,N )
0, where bβ,i = vec (βi). Because of the semi-orthogonality of βi, this posterior conditional is

difficult to draw from directly. However, the conditional posterior distribution of bβ∗ turns out to

be Normal (we remind the reader that bβ∗ =
³
b0β∗,1, . . . , b

0

β∗,N

´
0

, where bβ∗,i = vec (β∗i )). To be

precise, recalling the deÞnition of Ci before equation (9), and deÞning ci =
¡
vec (Ai)

0 , vec (Ci)
0
¢
0

and c = (c01, . . . , c
0

N )
0, the posterior distribution for bβ∗ conditional upon (Σ, c) is Normal with mean

bβ∗ = V β∗V
−1
β∗
bbβ∗ and covariance V β∗ =

h
V −1
β∗ + νV −1

β∗

i−1
.

In the process of drawing the parameters
¡
Σ, b, bβ∗

¢
, we need to draw ν and τ−1. The conditional

posterior distribution for ν is Gamma with mean

µν = νν

h
(νν − nNr) /µ

ν
+ b0V −1b

i−1

and degrees of freedom νν = Nnk + νν . The conditional distribution for τ
−1 is Gamma with degrees

of freedom ντ = ντ +N
¡
nr − r2

¢
and mean µτ = ντ

h
ντ/µτ

+ νΣN
i=1trβ

∗0
i H⊥H 0

⊥β
∗
i

i−1
.

From these conditional distributions we summarize the following sampling scheme using a collapsed

Gibbs sampling method:

1. Initialize (b,Σ, bβ, ν, τ) =
³
b(0),Σ(0), β(0), ν(0), τ (0)

´
.

2. Draw Σ|b, bβ, ν, τ from IW
³PN

i=1 ε
0

iεi, T
´

3. Draw b|Σ, bβ, v, τ from N
¡
bb, V b

¢

4. Calculate Ai = (α
0

iαi)
−1
2 αi and create c.

5. Draw bβ∗ |c,Σ, v, τ from N
¡
bβ∗ , V β∗

¢
.

6. Decompose each β∗i as β
∗
i = βiκi using κi =

¡
β∗0i β∗i

¢ 1
2 and βi = β∗iκ

−1. Construct αi = Aiκi.

7. Draw ν|b, bβ,Σ, τ from G (µν , νν).

8. Draw τ−1|b, bβ,Σ, v from G (µτ , ντ ).

9. Repeat steps 2 to 8 for a suitable number of replications.

Note that, in this sampler, the transformations involving the long run multipliers are based on

(5). To see why these steps suffice to set up a posterior simulator, we Þrst show that, conditional on

(v, τ ,Σ), steps 3 to 6 deÞne a collapsed Gibbs sampler (Liu, 1994). To show this, note from (4) that αi

can be decomposed into (Ai, κi), and that therefore the draw of b in step 3 is a draw of (c, κ1, ..., κN ).

Similarly, β∗i can be decomposed into (βi, κi) and a draw of bβ∗ in step 5 is a draw of (bβ, κ1, ..., κN ).
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Therefore, dropping for simplicity the conditioning arguments (v, τ ,Σ), the value of c obtained in step

3 is a draw from c|bβ, that is obtained marginally on (κ1, ..., κN). Similarly, the value of bβ obtained

in step 5 is a draw from bβ|c, (i.e. obtained again marginally on (κ1, ..., κN)). Therefore, steps 3 to

6 deÞne the collapsed Gibbs sampler suggested by Liu (1994) and Liu, Wong and Kong (1994), who

show that this algorithm is more efficient than a standard Gibbs sampling algorithm (i.e. one which

simply draws from the conditional posteriors of b and bβ).

Finally, we extend the collapsed Gibbs sampler with steps that generate (κ1, ..., κN), Σ, v, and

τ from their corresponding conditional posterior densities and it is trivial to show that the posterior

density continues to be the invariant distribution of the sampler. For a more detailed explanation of

this algorithm in the context of a standard (non-panel) cointegration model see Koop, Leon-Gonzalez

and Strachan (2005).

We will usually be interested in comparing different models nested within the general model deÞned

above. For instance, we might wish to compare the unrestricted model with one where the same

cointegrating rank holds for all individuals. We also might wish to calculate the posterior for ri for

i = 1, ..N . The Savage-Dickey density ratio (see, e.g., Verdinelli and Wasserman, 1995) proves to be a

simple and efficient way of doing so. That is, it allows us to compute the Bayes factor comparing every

model to a base model (e.g. the model where cointegration does not occur for any individual). This

information can then be used to compare any two models, build up the posterior for ri for i = 1, ..N ,

do Bayesian model averaging or select a single model. To compute the Bayes factor for the model Mr

with a particular set of cointegrating ranks: r = (r1, r2, . . . , rN ) against modelM0 with r = (0, . . . , 0) ,

we note that the restricted case occurs when αi = 0. As αi and Πi have the same singular values

(which determine the rank of a matrix, e.g. Golub and van Loan, 1996), Πi = 0 occurs if and only

if αi = 0. If we deÞne α = (vec(α1)
0, ..., vec(αN )

0)0, we can use the conditional posterior distribution

and (marginal) prior for α to compute the Savage-Dickey density ratio (SDDR):

B0,r =
p (α|Mr, y)|α=0
p (α|Mr)|α=0

(20)

Thus we can use output from our Gibbs sampler and the prior to estimate the required ratio:

bB0,r =
1
MΣ

M
m=1 p

³
α|Mr,Σ

(m), C
(m)
1 , ..., C

(m)
N , τ (m), ν(m), bβ, y

´¯̄
¯
α=0

p (α|Mr)|α=0
, (21)

where m = 1, ..,M denote the (post burn-in) Gibbs sampler replications and (m) superscripts denote

the replications themselves (or, as below, functions of these replications).

We begin by deriving the analytical expression for p (α|Mr)|α=0. Using the properties of the

Gamma distribution and the MACG distribution (Chikuse, 1990), it can be shown that the marginal

prior for α evaluated at α = 0 is

p (α|Mr)|α=0 =

Ã
2ντ

µ
τ

!N(nr−r2)/2 Γ

µ
N(nr−r2)+ντ

2

¶

Γ (ντ/2)

Γ (νν/2)

Γ ((νν −Nnr)/2)

Ã
νν −Nnr

µ
ν
π

!Nnr/2
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This expression gives us the denominator of the SDDR. The numerator of the SDDR is the marginal

posterior for α evaluated at zero. Using the fact that the posterior for b conditional upon (Σ, bβ) is

N(bb, V b), it follows that α is N(bα, V α), where bα and V α are given by the elements of bb and V b that

correspond to α. Therefore, the Gibbs sampler can be used to estimate the numerator of the SDDR

as:

(2π)−Nnr/2

M

MX

m=1

¯̄
¯V (m)

α

¯̄
¯
−1/2

exp

½
−1
2
b
(m)0
α V

(m)−1
α b

(m)
α

¾
.

There are other restricted versions of our general model in which the researcher may be interested.

The Appendix describes how variants on the methods described above can be used to calculate Bayes

factors relating to these models. Here we just list the restrictions of interest. Firstly, in practice it

is often the case that there is interest in testing overidentifying restrictions of the form pi ⊆ pH for

a subset of the countries i = 1, ..., N . This restriction can be imposed by writing βi = Hϕi, where

ϕi ∈ Vri,s is an unknown s× ri full rank matrix. Our empirical example in the next section shows how

such a restriction can arise. Secondly, we would also like to obtain the probability that all countries

have the same unknown cointegrating space p = sp (β) . Finally, the Appendix also describes how

to calculate the probability that sp (β) ⊆ sp (H) in the case in which all countries share the same

unknown β.

3 Illustration Using Simulated Data

This section uses simulated data to illustrate the properties of the proposed methodology and its

robustness to the speciÞcation of the prior. Instead of a conventional Monte Carlo experiment, we

draw on ideas outlined in Selke, Bayarri, and Berger (2001) to develop a simulation experiment which,

as we explain below, better reveals the performance of our approach.

We consider seven data generating processes (DGPs) and one prior speciÞcation: Hg =
¡
1 1

¢0
, ντ =

15, µ
τ
= 5, νν = 42, µν

= 21, and ρ
b
= 0.4 (we remind the reader that H = Hg (Hg0Hg)−1/2). Ex-

cept for H, this is the same prior that we use in the empirical application in the next section. We

consider N = n = 2, T = 859, l = 0, an intercept in all models (dt = 1) and, in each DGP, we Þx the

error covariance matrix equal to the value used by Groen and Kleibergen (2003) in their Monte Carlo

experiment:

Σii =

µ
1 0.8
0.8 1

¶
and Σij =

µ
0.70 0.60
0.60 0.85

¶
with i 6= j.

We assume that there are only 4 possible models: M1:(r1 = r2 = 0), M2:(r1 = 0, r2 = 1), M3:(r1 =

1, r2 = 0) and M4:(r1 = r2 = 1).

In a conventional Monte Carlo experiment draws from a DGP would involve simply drawing from

a single model (with parameters set to particular values). This is consistent with the hypothesis

9These 85 observations were the last 85 observations of 135. That is, the initial 50 were discarded.
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Table 1: SpeciÞcation of the (hyper) parameters for the distributions from which the parameters are
drawn in the simulation experiment.

Parameter (brief description of the distribution)

DGP pi b

DGP1 Hg =
¡
1 1

¢0
, ντ = 15, µτ

= 5 νν = 42, µν
= 21

DGP2 τ = 1 (Uniform) νν = 42, µν
= 21

DGP3 τ = 1 (Uniform) ν−1 = 0.05 (ν−1 equal to its prior mean)
DGP4 τ = 1 (Uniform) ν−1 = 0.2 (large var(αi))
DGP5 τ = 1 (Uniform) ν−1 = 0.5 (very large var(αi))
DGP6 τ = 1 (Uniform) ν−1 = 0.02 (small var(αi))
DGP7 τ = 1 (Uniform) ν−1 = 0.002 (very small var(αi))

testing ideas underlying frequentist econometrics (e.g. the idea of null hypothesis and the importance

allocated to frequentist concepts such as the size of a test). However, as argued in Selke, Bayarri, and

Berger (2001) and Berger and Selke (1987), the ideas underlying Bayesian model comparison are very

different. Accordingly, following their arguments, in our simulation experiment we repeatedly draw

data sets from different distributions. In particular, we set up distributions over our model space and

parameter spaces and draw from these. For each draw of a model and parameter values, we then

draw an artiÞcial data set. All our DGPs involve the same distributions over the model space and,

accordingly, each of our seven DGPs arise from different distributions over the parameters. Note that

these distributions have the same functional form as our priors, but the hyperparameters selected

to create our DGPs do not have to coincide with the prior hyperparameters we use to estimate our

models.

To be precise, in each of our DGPs data is drawn from each model with probability 1/4, which

is equal to the prior probability of each model. Conditional on model Mi, the parameters are drawn

from distributions that are of the same form as the prior, but with different hyperparameters. In all

cases we use ρ
b
= 0.4. The speciÞcation of the remaining hyperparameter values for each of these

distributions is given in Table 1.

Note that DGP1 involves the same informative distribution over the cointegrating space as we use

in our prior, but the remaining DGPs are less informative. For the remaining parameters, we have

a wide variety of speciÞcations. The speciÞcations in each DGP imply we draw Ai (deÞned in (4))

from a Uniform distribution on the Stiefel manifold. For DGP2 to DGP7 we Þx τ equal to 1, which

implies that βi is also drawn from a Uniform distribution. This contrasts with the prior we use for

pi = sp(βi), which gives more weight to the space deÞned by H. In addition, DGP3 to DGP7 vary in

the expected value of κi. Higher values of ν
−1 imply higher expected values for κi and therefore higher

expected values for the singular values of Πi. Note that there is 95% prior probability that ν−1 lies in

the interval (0.032, 0.077). Therefore, DGP4 and DGP5 specify a value of ν
−1 that is large compared

to the prior information, whereas DGP6 and DGP7 specify a value that is small.

17



For each DGP, 2500 artiÞcial data sets were generated. For each data set, the posterior probability

of each model (i.e. each rank combination) was calculated. In order to analyse the performance of

posterior probabilities in this setup, let us deÞne the following concepts (see Selke, Bayarri, and Berger,

2001, for the development of these concepts). Let Ci(0.5) be the set of data sets in which model Mi

had posterior probability higher than 0.5. Assume that a model is selected whenever its posterior

probability is higher than 0.5 and let Ri(0.5) be deÞned as an error rate that gives the proportion of

the samples in Ci(0.5) that were not generated from model Mi.

To motivate why these are interesting metrics, we digress brießy to provide a bit of the theory from

Selke, Bayarri and Bayarri (2001). Consider the ideal case where the distribution used to generate the

datasets is the same as the prior. For this case, suppose Mi is chosen whenever its posterior model

probability (pi) is equal to a particular value p∗i . From the deÞnition of posterior model probability,

the error rate that results (i.e. the proportion of samples that were classiÞed as Mi but were in fact

generated from another model) is equal to 1−p∗i . Thus, posterior model probabilities, unlike p-values,

are constructed to reßect true error rates (see also Berger and Selke, 1987, for discussion). However, it

is unlikely that we will ever simulate a dataset that results in posterior probability ofMi being exactly

p∗i so this approach is hard to implement. Therefore, one possibility would be to accept those draws

with posterior model probability lying in the interval (p∗i − ε, p∗i + ε), where ε is a small number. This

is what Selke, Bayarri and Berger (2001) do. Alternatively, a simple rule of thumb such as "select Mi

if pi > p∗i " can be used (as we have done with p∗i = 0.5) and the average value of pi (pi) among the

datasets in Ci(0.5) can be reported and the previous reasoning implies this will also be informative

about the error rate Ri(0.5). In particular, if the number of datasets is large and are generated from

the prior, Ri(0.5) will be equal to 1− pi.

Table 2 shows the values of pi, Ri(0.5) and the number of data sets in Ci(0.5). Overall, the

strategy of choosing Mi when pi > 0.5 seems to work very well, selecting the correct model much of

the time. Recall thatDGP1 draws all model parameters, except for Σ, from the prior. Not surprisingly,

therefore, Table 2 shows that for DGP1, Ri(0.5) is very close to (1− pi) for every i = 1, ..., 4. These

two quantities are still close for every i for DGP2 and DGP3, which indicates that posterior model

probabilities are still a reliable measure of error when the prior of βi is misspeciÞed and/or ν−1 is

Þxed to a particular value instead of being random. When ν−1 = 0.2 (DGP4), which is far outside

the prior 95% credible interval of (0.032, 0.077), (1− pi) is still close to Ri(0.5) for every i. Similarly,

when ν−1 = 0.02 (DGP6), which is small compared to prior information, posterior model probabilities

continue to be a reliable measure of error for every i. However, when ν−1 = 0.5 (DGP5), posterior

model probabilities are not reliable when model M4 is chosen ((1− pi) < Ri(0.5)), although they still

seem to be reasonable when models M1 to M3 are selected. Something similar, but in the opposite

direction, happens when ν−1 is very small (DGP7). In this case, the posterior model probability is

only a reliable measure of error when M4 is chosen.

Thus, the simulation illustrates that posterior model probabilities, unlike p-values (e.g., Selke, Ba-

yarri, and Berger, 2001), are reliable measures of error unless the prior for ν−1 is seriously misspeciÞed.

Therefore, some amount of careful prior elicitation for ν−1 is desirable to avoid such misspeciÞcation.
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In our case, for example, it should be noted that DGP5 tends to generate very explosive processes

whenever ri = 1, resulting in data that would be extremely unreasonable (at least for standard ap-

plications with macroeconomic data such as the one considered in the next section). For example, it

can be shown that DGP5 implies that about 45% of the datasets would have (|y1,t| > 1000) for every

t = 1, .., T when r1 = r2 = 1, which is not sensible for macroeconomic data such as that which we use

in our application.

M1 M2 M3 M4

DGP1 Ri(0.5) 0.07 0.05 0.06 0.03
1− pi 0.06 0.05 0.05 0.02
fNi 842 527 545 330

DGP2 Ri(0.5) 0.05 0.03 0.04 0.03
1− pi 0.05 0.04 0.05 0.02
fNi 844 541 519 344

DGP3 Ri(0.5) 0.04 0.05 0.03 0.03
1− pi 0.05 0.04 0.04 0.02
fNi 830 545 518 354

DGP4 Ri(0.5) 0.01 0.03 0.07 0.09
1− pi 0.07 0.04 0.05 0.03
fNi 855 540 531 307

DGP5 Ri(0.5) 0.004 0.105 0.107 0.255
1− pi 0.079 0.067 0.061 0.046
fNi 765 531 542 392

DGP6 Ri(0.5) 0.11 0.06 0.07 0.02
1− pi 0.06 0.05 0.05 0.03
fNi 840 558 498 341

DGP7 Ri(0.5) 0.36 0.22 0.24 0.05
1− pi 0.10 0.10 0.10 0.07
fNi 868 514 542 289

Table 2: Error rates (Ri(0.5)), one minus the average posterior probabilities (1 − pi) and number of

samples in Ci(0.5) (fNi) for each DGP .

Table 3 shows other measures that illustrate the performance of Bayesian model selection in this

context. For each DGP and model from which the data was generated, it gives the proportion of times

(denoted %i) that model Mi had the largest posterior probability. In addition, it shows the average

posterior model probability (denoted Pi) of Mi for each DGP and each generating model. Note that the

proportion of times that the correct model has largest posterior model probability is almost always

near or above 90%, and that on average posterior model probabilities are accordingly large. The

exception is DGP7, where the detection rate of the true model is lower, as are average posterior model

probabilities. This is to be expected, as lower values of ν−1 mean that data generated when r > 0 will
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be more similar to data generated when r = 0, and hence model selection becomes more difficult and

we see slightly larger values of %1 and P1.

%1 %2 %3 %4 P1 P2 P3 P4
DGP1 M1 0.99 0.00 0.01 0.00 0.94 0.03 0.03 0.00

M2 0.05 0.94 0.01 0.01 0.05 0.91 0.01 0.03
M3 0.05 0.00 0.94 0.01 0.05 0.00 0.91 0.04
M4 0.03 0.07 0.07 0.84 0.02 0.06 0.07 0.84

DGP2 M1 0.99 0.00 0.00 0.00 0.94 0.03 0.03 0.00
M2 0.04 0.95 0.00 0.01 0.04 0.92 0.00 0.03
M3 0.03 0.00 0.95 0.01 0.04 0.00 0.92 0.04
M4 0.01 0.03 0.04 0.92 0.01 0.03 0.05 0.91

DGP3 M1 0.98 0.01 0.00 0.00 0.94 0.03 0.03 0.00
M2 0.03 0.96 0.00 0.01 0.03 0.93 0.00 0.04
M3 0.03 0.00 0.96 0.01 0.03 0.00 0.93 0.03
M4 0.00 0.04 0.04 0.92 0.00 0.04 0.04 0.91

DGP4 M1 0.95 0.02 0.03 0.00 0.90 0.05 0.05 0.00
M2 0.01 0.96 0.00 0.03 0.01 0.94 0.00 0.05
M3 0.01 0.00 0.97 0.02 0.01 0.00 0.94 0.06
M4 0.01 0.01 0.04 0.94 0.01 0.01 0.04 0.94

DGP5 M1 0.85 0.07 0.06 0.02 0.79 0.08 0.09 0.03
M2 0.00 0.93 0.00 0.06 0.00 0.90 0.00 0.10
M3 0.00 0.00 0.91 0.08 0.00 0.00 0.88 0.11
M4 0.00 0.00 0.01 0.99 0.00 0.00 0.01 0.99

DGP6 M1 0.98 0.01 0.01 0.00 0.94 0.03 0.03 0.00
M2 0.07 0.92 0.00 0.01 0.07 0.89 0.01 0.04
M3 0.09 0.01 0.90 0.01 0.08 0.01 0.87 0.04
M4 0.03 0.07 0.08 0.82 0.03 0.07 0.08 0.82

DGP7 M1 0.98 0.01 0.01 0.00 0.91 0.04 0.04 0.00
M2 0.24 0.73 0.02 0.01 0.21 0.70 0.03 0.05
M3 0.23 0.02 0.74 0.01 0.22 0.03 0.70 0.05
M4 0.10 0.19 0.21 0.49 0.09 0.19 0.20 0.51

Table 3: Two summaries (%i and Pi) for each DGP. %i is the percentage of times that Mi has largest
posterior model probability. Pi is the average posterior model probability of Mi.

4 Empirical Work

In this section we investigate support for the monetary model of the exchange rate commonly employed

in international Þnance. We focus upon the speciÞcation proposed by Groen (2000) which implies a

particular testable relationship among the following variables: ei,t, the log of the exchange rate for

country i at time t; mi,t, the log of the ratio of the quantity of domestic to foreign money supply; and

xi,t, the log of the relative real income. Groen (2000) shows that in a long-run model for bilateral
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exchange rates, the theory implies the relation

ei,t − β1mi,t − β2xi,t = β0 + zi,t

will be stationary (i.e., zi,t should be an I (0) process) with β1 = 1 and β2 < 0. If the variables in the

vector yi,t = (ei,t,mi,t, xi,t) are I (1) , this model implies they cointegrate with a particular cointegrating

space. The data are quarterly and consist of U.S. dollar exchange rates and the log ratio of money

(m) and income (x) for France (i = 1), Germany (i = 2), and the United Kingdom (i = 3) to the U.S.

equivalents. The dat runs from the Þrst quarter of 1973 to the last quarter of 1994. The data were

those used in Groen and Kleibergen (2003) and are described in detail in Groen (2000).

We have chosen this application because the economic model implies a varied and clear set of

testable restrictions on the cointegrating space. That is, we have a requirement that the cointegrating

rank be one for all countries, a linear restriction on β1, as well as an inequality restriction upon

β2. We note that it is often the case that the economic model of interest implies such a set of joint

restrictions, some of which are linear and some are nonlinear. In such a case, classical inference usually

proceeds with a mixture of sequential testing and informal inference to gather evidence for or against

the model, with no single statistic with known power to indicate the degree of support in favor of the

model. Therefore, the classical work of Groen, which tested sequentially the rank restriction and the

other restrictions, provided only informal evidence about the degree of support for the model. An

advantage of using the Bayesian approach is that we are able to provide a formal summary of the

evidence for the model via posterior model probabilities. We are also able to assess the evidence, if

desired, for components of the model. For example, we may be interested in whether the variables

cointegrate or whether the cointegrating ranks are common to all countries, or whether the β0s are

common across all countries.

Within the speciÞcation of the statistical model we use, the monetary exchange rate model implies

that ri = 1 for each country and that the cointegrating spaces are restricted. In particular, if we deÞne

the orthogonal matrix H as:

H =

⎡
⎢⎣

1√
2

0

− 1√
2

0

0 1

⎤
⎥⎦ ,

and introduce the semi-orthogonal vector ϕi =

D
ϕ1,i
ϕ2,i

E
, we can write these restrictions as:

βi = Hϕi =

⎡
⎢⎣

1√
2
ϕ1,i

− 1√
2
ϕ1,i

ϕ2,i

⎤
⎥⎦ , with

ϕ2,i
ϕ1,i

> 0. (22)

Note that, for ri = 1, this set of restrictions does not actually require that all panels share the same

cointegrating space, since the inequality restriction allows a different value of φ2,i for each panel,

provided that it has the same sign as φ1,i. However, all of these spaces will be subspaces of the space

deÞned by H. Other restrictions of more general interest in the cointegrating panel data model are
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equality of the ranks for all panels (ri = r for all i), and equality of the cointegrating spaces for all

panels, pi = p such that ri = r and βi = β for all i.

We compute posterior probabilities distributions for the cointegrating ranks from both unrestricted

and restricted models. We consider two types of restrictions. The Þrst imposes the same unknown

cointegrating space: βi = β and ri = r for all i. The second restricts the cointegrating space of at least

one country, such that sp (βi) ⊆ sp (H) for some i with ri = 1, 210 . This makes a total of 221 models.

Following Groen and Kleibergen (2003), all models include an intercept and 3 seasonal dummies and

we Þx the number of lags equal to 3. As in the artiÞcial data experiment in the previous section, we

choose our prior hyperparameters as: νν = 42, µ
ν
= 21, ντ = 15, µ

τ
= 5, and ρ

b
= 0.4. We use 15000

replications of the sampling algorithm presented in Section 2.3. For the sake of comparison, we also

calculate the Bayesian Information Criterion (BIC) for each of these models11 .

Recall we let i = 1, 2, 3 correspond to France, Germany and UK, respectively. The BIC selects the

model with (r1 = r2 = r3 = 0) as the best model, followed by the model with (r1 = 1, r2 = r3 = 0) and

no other restrictions. If posterior model probabilities are calculated using the BIC approximation,

these two models would get 90% of the probability. However, the actual posterior model probabilities

calculated using our approach are spread over a wide range of models: no less than 28 models would

be required to contain 98% of the probability. Table 4 presents the details of the 5 most likely models,

which get 71.4% of the probability mass. All these models assign rank equal to one to France and

Germany and restrict sp (βi) ⊆ sp (H) in at least one country. In particular, the model with ri = 1 and

sp (βi) ⊆ sp (H) for every i, which gives support to the monetary exchange model, has a non negligible

probability that is equal to 0.05. Conditional on this model, Pr(φ2i/φ1i > 0 for i = 1, 2, 3)12= 0.12, which

means that the probability of all the restrictions implied by the the monetary exchange model holding

in every country is 0.12 ∗ 0.05 = 0.006. The probability of many other restrictions of interest can be

evaluated by simply adding up the posterior model probabilities of models in which the restriction

is true. For example, Pr(r1 = r2 = r3) = 0.09, Pr(sp (β1) = sp (β2) = sp (β3)) = 0.004, Pr(r2 = 1) = 0.86,

Pr(sp (β1) ⊆ sp (H) , r1 > 0) = 0.79. Finally, the probability that (sp (βi) ⊂ sp (H) , ri = 1) for at least one

country is 0.94, which again gives support to the monetary exchange model holding in at least one

country.

10 If ri = 1, then pi ⊂ pH , while if ri = 2, then pi = pH .
11 In order to calculate the penalty for the number of parameters in the BIC, we count the parameters in the semi-

orthogonal but otherwise unrestricted βi matrix as nri − r2i , which is the dimension of the Grassman manifold Gn,ri

deÞned above (Strachan and Inder, 2004). Similarly, when βi is restricted such that pi ⊆ p
H , we Þx the penalty

corresponding to the semi-orthogonal but otherwise unrestricted φi matrix to be 2ri − r2i . We use our algorithm to
search for the maximum value of the actual likelihood by using 1000 draws from a modiÞed posterior density. This
modiÞcation increases the accuracy of the obtained maximum likelihood values and consists in analysing the posterior
that results when the sample size is increased by a factor of 600 and the additional data is just a replication of the real
data. Therefore, the maximum value of the log likelihood function in this modiÞed dataset is 600 times the value of the
log likelihood in our real data. And most importantly, the dispersion of the posterior around the mode will be much
smaller and therefore the accuracy of the maximized likelihood will be much larger.
12This probability was approximated by the proportion of draws from the posterior of this model in which the restriction

was veriÞed.
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r1 r2 r3 o1 o2 o3 E Prob

1 1 0 1 1 0 0 0.35
1 1 0 1 0 0 0 0.12
1 1 0 0 1 0 0 0.10
1 1 2 1 1 1 0 0.10
1 1 1 1 1 1 0 0.05

Table 4: Posterior probabilities for the 5 most likely models. The Þrst 3 columns indicate the rank of
each country in a particular model. i = 1, 2, 3 corresponds to France, Germany and UK, respectively.
In the following three columns oi takes value 1 when the restriction sp(βi) ⊆ sp(H) is imposed and 0
otherwise. E takes value 1 if the restriction sp(β1) = sp(β2) = sp(β3) is imposed and zero otherwise.
The last column indicates the probability of each model.

5 Conclusion

In this paper, we have discussed Bayesian inference in cointegrated panel data models. We adopt a

very general speciÞcation where each individual is characterized by its own vector error correction

model. Special cases of this model allow for individuals to have common cointegrating rank and/or

common cointegrating spaces. We develop a noninformative prior as well as an informative prior which

allows for sensible priors on the cointegration spaces. The latter prior also allows for prior information

about the degree of common structure across individuals to be used. Efficient posterior simulation is

carried out using a collapsed Gibbs sampler.

While we consider this a useful start to employing Bayesian methods in this area of models,

there are a number of directions for future development. For instance, in a PPP study, Li (1999)

argues that estimating relationships of interest individually for each country results in overly noisy

estimates. On the other hand, imposing strict homogeneity by assuming these relationships are the

same for all countries tends to be overly severe due to the differences in macroeconomic policies in each

country. Such severe restriction are often rejected. Li suggests specifying an unknown hierarchical

prior and conducting inference upon the distribution from which the parameters for the PPP relations

come, not upon the actual PPP parameters themselves. In this paper we have assumed that the

cointegrating spaces came from a common known prior distribution and investigated support for

common cointegrating spaces (pi = p for all i). To adopt the Li approach, a hierarchical prior could be

placed upon the prior distribution for the cointegrating spaces, rather than assuming a known prior

distribution. That is, a prior could be placed upon pH in Section 2.2.2.

Further, while we have provided a method of conducting inference upon a class of models, we

have only alluded to the conduct of policy advice. The application of this class of models to policy

via, say, forecasts or cross impulse responses could provide useful information on, e.g., the forms of

international linkages. Finally, Bayesian model averaging over combinations of pi, li and di could be

used to provide inference using an even wider set of models.
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Appendix: Over-identifying Restrictions and Other Restricted Models
Probability of over-identifying restrictions

In practice it is often the case that there is interest in testing the overidentifying restriction pi ⊆ pH

for a subset of countries i = 1, ...,N. Our empirical example showed how such a restriction can arise.

This restriction can be imposed by writing βi = Hϕi, where H is a n × s semi-orthogonal matrix and

ϕi ∈ Vri,s is an unknown s × ri full rank matrix, with s ≥ ri. This speciÞcation13 requires a prior for

ϕi and in this paper we use a Uniform prior for ϕi on Vri,s, although an informative MACG prior

(Chikuse, 1990) could also be used. Within this framework, it is also possible to use the SDDR to

obtain the Bayes factor, which in this case is deÞned as the probability of the restricted (overidentiÞed)

model over the probability of the unrestricted model. Note that one can write β∗i = Hϕ∗i +H⊥λi, where

ϕ∗i = H0β∗i is a s × ri full rank matrix and λi = H0

⊥β
∗
i is a (n − s) × ri full rank matrix. Therefore, the

overidentifying restriction can be imposed by setting λi = 0. The numerator in the SDDR can be easily

estimated by noting that (λ1, ..., λN ) is a linear transformation of bβ∗ and therefore the conditional

posterior of (λ1, ..., λN ) given (c,Σ, v, τ) is a Normal density (e.g. Bauwens, Lubrano and Richard, 1999).

In particular, let ⁄H be a block diagonal matrix with diagonal blocks equal to: (Ir1 ⊗H⊥, ..., IrN ⊗H⊥).

The conditional posterior density of λ = (vec(λ1)0, ..., vec(λN )
0)0 is Normal with variance ⁄H0V β∗ ⁄H and mean

⁄H0bβ∗ , where V β∗ and bβ∗ were deÞned in Section 2.3. The numerator of the SDDR for this restriction

is estimated as:

(2π)−(n−s)Nr/2

M

Mz

m=1

... ⁄H0V
(m)
β∗ ⁄H

...
−1/2

exp

<
−1
2
b
(m)0
β∗ ⁄H

2
⁄H0V

(m)
β∗ ⁄H

3−1 ⁄H0b
(m)
β∗

=

where Nr =
rN

i=1 ri. The denominator, which is given by the prior of λ evaluated at zero, is equal to:

p (λ)|λ=0 =

B
2ντ (νν − nNr)

µ
τ
µ
ν
π

C(n−s)Nr/2 Γ
2
ντ+(n−s)Nr

2

3
Γ

4
(n−s)Nr+(νν−nNr)

2

5

Γ (ντ/2)Γ ((νν − nNr) /2)

Estimation with equal cointegrating spaces: {sp(βi) = sp(β), i = 1, ...,N}

We would also like to obtain the probability that all countries have the same cointegrating space.

For this purpose, we Þrst discuss how to set up a posterior simulator for the model that restricts

all cointegrating spaces to be the same. Let β be a n × r semi-orthogonal matrix that represents the

cointegrating space common to all countries. We rewrite the matrix of long-run multipliers as:

βα0i = βiDD−1α0i ≡ ⁄β⁄α
0

i

where D is a r× r is a symmetric positive deÞnite matrix. We stress that unlike κi, which was deÞned

as one of the components of the polar decomposition of αi (Golub and van Loan, 1996, p. 149), the

matrix D is not identiÞed. However, the introduction of D facilitates posterior computations because

neither ⁄β nor ⁄αi are subject to restrictions. Our strategy is to specify a proper prior on D and to

use a simple Gibbs sampling algorithm. We note that this strategy could also be used for the case

13Further motivation is given in Strachan and Inder (2004). Strachan and van Dijk (2004b) shows how this speciÞcation
can be implemented in a macroeconomic example.
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in which cointegrating spaces differ between countries, but stress that it would be less efficient than

the �κ−algorithm� that we specify in Section 2.3 above for two reasons. Firstly, the κ−algorithm
(implicitly) integrates out the parameter D, and it thereby achieves a comparative advantage (Liu,

1994). Secondly, the κ−algorithm draws bβ and c marginally on (κ1, ..., κN ), which is likely to result in

smaller autocorrelations in the Markov Chain.

We specify the same prior on the cointegrating space as in Section 2.2.2. We deÞne b⁄β = vec(⁄β)
and assume that b⁄β follows a priori a N(0, n−1Ir ⊗ Pτ ), where Pτ is deÞned as above. Note that this

implicitly speciÞes a proper prior for D and that the marginal prior for β continues to be the same as

the one presented in Section 2.2.2. As a prior for vec(⁄αi) we choose a N
"
0, ν−1Inr

#
. Note that this prior

speciÞcation implies that the prior mean of αi is zero and the variance-covariance matrix of vec(αi)

conditional on (ν, β, τ) is
2
ν−1

"
β0P−1

τ β
#−1 ⊗ In

3
. Therefore, the prior mean and variance for (α1, ..., αN )

are the same as in Section 2.2.2.

Let us deÞne ⁄b =
2
⁄b01, ...,⁄b0N

3
0

, where ⁄bi = vec
"
(⁄αi,Γi,1, . . . ,Γi,l,Φi)

0
#
. The prior for ⁄b is a N(0, ν−1 ⁄V ),

where ⁄V is speciÞed in the same way as V except for the diagonal blocks corresponding to ⁄αi, which

are now equal to the identity matrix.

In order to obtain the posterior conditional of ⁄β, let ẍi = (⁄αi ⊗ yi,−1), ẍ = (ẍ01, ..., ẍ0N )
0, V⁄β =

"
ẍ0V −1

e ẍ
#−1,

¡b⁄β = V⁄β ẍV
−1
e ⁄y and V ⁄β = n−1Ir ⊗ Pτ . The conditional posterior of ⁄β given (b,Σ, τ , ν) is Normal with

covariance V ⁄β =
¤
V −1
⁄β + V −1

⁄β

“−1
and mean b⁄β = V ⁄βV

−1
⁄β
¡b⁄β.

The conditional posterior of ⁄b given
2
⁄β,Σ, τ , ν

3
is a Normal with mean b⁄b and variance V ⁄b. The

expressions for b⁄b and V ⁄b are obtained in the same way as bb and variance V b respectively in Section 2.3,

except we replace all βi everywhere with ⁄β. Similarly the posterior for ν has the same form as in Section
2.3, except we replace b with ⁄b and V with ⁄V , such that ν has a Gamma posterior distribution with

mean νν
¤
(νν −Nnr) /µ

ν
+⁄b0 ⁄V −1⁄b

“−1
and degrees of freedom νν = Nnk + νν. The conditional distribution

for τ−1 is Gamma with degrees of freedom ντ = ντ+(n− r) r and mean µτ = ντ
¤
ντ/µτ

+ n−1tr⁄β0H⊥H
0

⊥⁄β
“−1
.

Therefore, a Gibbs sampling algorithm is deÞned by simply sampling iteratively from ⁄b|
2
b⁄β ,Σ, τ , ν

3
,

b⁄β |
2
⁄b,Σ, τ , ν

3
, Σ|

2
⁄b, b⁄β , τ , ν

3
, τ |

2
⁄b, b⁄β ,Σ, ν

3
and ν|

2
⁄b, b⁄β , τ ,Σ

3
. A sample from the posterior of (b, β,Σ, τ , ν,D)

can be obtained using the following transformations:

D =
2
⁄β0⁄β
31/2

β = ⁄βD−1 αi = ⁄αiD

Finally, we note that although the κ-algorithm cannot be used to sample from the posterior when the

restriction sp(βi) ⊂ sp (H) is imposed for some i, the D- algorithm just described can be easily adapted

to this case.

Calculating the probability that {sp(βi) = sp(β), i = 1, ..., N}

Let ƒMr be the model in which sp(βi) = sp(β), for every i = 1, ...,N and rank(β) = r. To compute the

Bayes factor for this model (ƒMr) against the model M0 with r = (0, . . . , 0), note that M0 arises when

⁄α = (vec(⁄α1)0, ..., vec(⁄αN ))
0
= 0. Therefore, the SDDR can be estimated as:

⁄B0,r =

1
M
ΣM
m=1 p

2
⁄α|ƒMr,Σ

(m), C
(m)
1 , ..., C

(m)
N , ⁄β(m)

, ν(m), τ (m), y
3...

⁄α=0

p
2
⁄α|ƒMr

3...
⁄α=0
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where the numerator and denominator are given, respectively, by the following two expressions:

(2π)−Nnr/2

M

Mz

m=1

...V (m)
⁄α

...
−1/2

exp

<
−1
2

2
b
(m)
⁄α

3
0

V ⁄α
2
b
(m)
⁄α

3=
and

Γ
" νν
2

#

Γ ((νν −Nnr)/2)

B
νν −Nnr

µ
ν
π

CNnr/2

where M is the number of (post burn-in) replications of the Gibbs sampler, (m) superscripts denote

Gibbs sampler draws and (b⁄α, V ⁄α) are the elements of
"
b⁄b, V ⁄b

#
that correspond to ⁄α.

Calculating the probability that sp(β) ⊆ sp (H) .

Finally, we present the SDDR to obtain the posterior probability that sp(β) ⊆ sp (H) in the case

where sp(βi) = sp(β). To evaluate the hypothesis that sp (β) ⊆ sp (H), we write ⁄β = H⁄ϕ + H⊥⁄λ, where
⁄ϕ = H0⁄β is a s × r full rank matrix and ⁄λ = H0

⊥⁄β is a (n − s) × r full rank matrix. Note that vec
2
⁄λ
3

is Normally distributed with mean λ = (Ir ⊗H0

⊥) b⁄β and covariance matrix V⁄λ = (Ir ⊗H0

⊥)V ⁄β (Ir ⊗H⊥).

Therefore, the overidentifying restriction can be imposed by setting ⁄λ = 0. The SDDR can be estimated
by:

(2π)−(n−s)r/2

M
2

ντ
µ
τ
πn

3(n−s)r/2 Γ
2
ντ+(n−s)r

2

3

Γ(ντ/2)

Mz

m=1

...V (m)
⁄λ

...
−1/2

exp

<
−1
2
λ
(m)0

V⁄λλ
(m)
=

.
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