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A methodology for the structural design of
LiftWEC: A wave-bladed cyclorotor

Abel Arredondo-Galeana, Weichao Shi, Gerrit Olbert, Martin Scharf,
Andrei Ermakov, John V. Ringwood and Feargal Brennan

Abstract—Novel wave energy convertors (WECs) need to
be designed to ensure both longevity and hydrodynamic
efficiency. Hence there is a need to develop methodologies
that tackle both the hydrodynamic and structural require-
ments of WECs. Here we demonstrate an integral method-
ology for the design of LiftWEC: a two-foil wave bladed
cyclorotor. The hydrofoils follow the orbital motion of the
wave particles and rotate around a central axis. The span of
the hydrofoils is aligned to the crest of the wave, making
the device a wave terminator, i.e. a device that cancels the
incoming wave. The phase of the rotation is different to
that of the incoming wave. This phase difference generates
lift and sustains the rotation of the hydrofoils. In this paper,
a low-order two-dimensional hydrodynamic model and a
structural model based on beam theory are weakly coupled
to assess power production and structural stresses on the
device. We estimate the forces on the hydrofoils due to
regular waves under design conditions. By studying two
rotor configurations and two typical loading cases on the
hydrofoils, we demonstrate that LiftWEC is structurally
resilient to design conditions. We show that, for the
selected wave design conditions, the optimum radius to
span ratio is about 0.8, which ensures maximum mean
power output, but also, a reduced structural penalty. We
therefore demonstrate a powerful design tool and pave the
way for future frequency analysis studies for this type of
devices.

Index Terms—Wave bladed cyclorotor, WEC, linear wave
theory, beam theory, bending moments, hydrofoils.

I. INTRODUCTION

Wave energy is approaching rapidly a commercial
stage. Lessons learnt, such as decreasing installation
and maintenance costs, developing strong and cheap
materials and avoiding racing through the technology
readiness level (TRL) scales [1], together with govern-
mental support schemes, are fomenting the growth of
the sector. Simultaneously, offshore oil and gas and off-
shore multi-platforms are scaling up investments into
low-carbon technologies [2]. This fosters a promising
scenario for wave energy developers as major opportu-
nities lie on the horizon. Development of wave energy,
however, comes with major challenges as well, and
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efforts in areas involving innovation, design, operation
and maintenance, are needed.

Wave energy converters (WECs) are technology di-
verse and have not converged into one type of tech-
nology. This diversity, however, makes wave energy
versatile to suit different wave conditions and loca-
tions. In fact, several ways of classification for WECs
exist. One method for example, is according to their
working principle [3], [4]. For example, they can be:
oscillating water columns, overtopping devices, heav-
ing buoys, submerged pressure differential devices,
wave activated bodies, bulge wave devices, oscillating
wave surge converters, rotating mass devices and wave
bladed cyclorotors.

Typically, the hydrodynamics and structural require-
ments of WECs are unique and analogies in other
industries are difficult to find [5]. In contrast, wave-
bladed cyclorotors utilise foils to generate lift. Vast
information on foils exist in the literature [6] and they
are utilised for energy extraction in horizontal and
vertical wind turbines [7], horizontal tidal turbines [8],
with ubiquitous use in helicopters [9], propellers [10]
and a wide variety of rotating devices. This presents
an advantage for wave bladed cyclorotors, where op-
eration design knowledge is transferable from other
industries, as opposed to other types of WECs where
knowledge transfer is more challenging.

Research into wave bladed cyclorotors started in
the 90s with single hydrofoil devices. The hydrofoils
rotated around an axis parallel to the crest of the
incoming waves [11], [12]. Chaplin and Retzler [13]
proposed the use of spinning cylinders to generate lift,
with the Magnus effect, therefore eliminating the need
to specify an angle of attack. More than a decade later,
the wave cancellation properties of a two foil wave cy-
clorotor were explored in regular waves [14], [15] and
in irregular waves [16]–[18]. Later on, the efficiency of
the device was measured in three dimensional oblique
waves [19], [20]. In recent years, a benchmark study for
a wave bladed cyclorotor was conducted by Siegel [21],
showing great energy capture potential for this type of
device, and Folley and Whittaker [22] also presented an
analysis of the potential benefits of lift-based WECs.

Most of these studies have focused on the far field
hydrodynamics of wave-bladed cyclorotors, with em-
phasis on capturing wave cancellation downstream of
model-scale cyclorotors. However, less effort has been
given to the near field hydrodynamics and to the struc-
tural design of wave-bladed cyclorotors. In fact, to the
best knowledge of the authors, a documented hydro-
structural methodology for wave-bladed cyclorotors is
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missing from the literature. Hence, there is a need to
develop a clear methodology that integrates the near
field hydrodynamic and structural requirements of this
type of device. This will help in the design of large
scale wave cyclorotors and open novel design strate-
gies based on frequency-domain analysis. Here, we
consider the case of LiftWEC, a wave-bladed cyclorotor
considered to have two nominal foils for the purpose
of this study. We develop a holistic methodology that
considers the near field hydrodynamics and the struc-
tural requirements of this type of device.

The structure of this paper is as follows. First, we
introduce the wave-bladed cyclorotor: LiftWEC. Sec-
ondly, we present the wave design conditions and the
hydrodynamic model. The structural model is then
developed based on first principles of beam theory.
The models are coupled and results are shown for the
hydrofoils subject to different types of loading. Finally,
guidance is given in terms of dimensioning the device
for optimum power extraction and reduced structural
penalty, and we set the way forward towards studies
of fatigue and structural dynamics of wave bladed
cyclorotors.

II. METHODOLOGY

A. The LiftWEC concept

The LiftWEC wave-bladed cyclorotor is shown in fig-
ure 1. The rotor consists of two hydrofoils connected to
a central shaft by radial spokes. The support structure,
for the purposes of this study, is assumed to consist of
two v-frames that are connected to the central shaft by
means of roller bearings.

The hydrofoils, of uniform cross-section along the
span s, rotate following the wave orbital motion. The
phase of the rotation is controlled so that it is different
to that of the incoming wave. This phase difference ∆ϕ
generates an inflow velocity w at an angle of attack
α and hence a lift force in the hydrofoils. Provided
that α does not exceed the stall angle of the hydrofoils
(αs), the tangential component of the lift force sustains
the rotation motion of the device. A side-view of a
cyclorotor with two hydrofoils, labelled hydrofoil 1 and
hydrofoil 2, showing w and α on each hydrofoil, and
∆ϕ in hydrofoil 1, is shown in figure 2.

LiftWEC is conceptually designed to operate in the
Atlantic coast of France. According to Sierra et al. [23],
most of the energy in this region is concentrated in sea
states with wave periods (Tp) between 10 to 12 s and
significant wave heights (Hs) between 2 and 4 m. As
such, in this paper, we consider the design sea state to
be Tp = 10 s and Hs = 4m.

B. Hydrodynamic modelling

By considering large span hydrofoils, we can assume
two-dimensional flow. Hence the lift and drag forces on
a hydrofoil are given by

FL =
1

2
ρw2scCL (1)

and

FD =
1

2
ρw2scCD, (2)

Fig. 1. LiftWEC wave bladed cyclorotor in operation near the water
surface and supported by two v-frames

where ρ is the fluid density, w is the relative velocity
of the incoming flow, s is the span of the hydrofoil, c is
the chord length and CL and CD are the lift and drag
force coefficients.

Figure 2 shows the side view of a LiftWEC rotor
at the normalised time period t/Tp = 0. The wave
direction is from left to right and the wave particle
motion is clockwise [24]. Hence the rotation of the
rotor follows the clockwise wave particle motion. The
rotor has a submergence µ measured from the mean
sea level to the zenith of the rotor’s orbital path. The
wave velocity component is v, whilst u is the negative
of the tangential velocity of the hydrofoils.

At t/Tp = 0, the angular position of the rotor (θ) is
set to θ = 0◦. The angle is measured between the radial
strut of hydrofoil 1 and the horizontal positive x-axis.
The wave crest is parallel to the rotating axis of the
rotor and v points into the wave direction. The phase
difference ∆ϕ is measured between u and v of the two
hydrofoils. In figure 2, ∆ϕ = +90◦ for hydrofoil 1 and
∆ϕ = −90◦ for hydrofoil 2.

As stated previously and as shown in figure 2, ∆ϕ
generates w and α on the hydrofoils. This in turns
generates a lift and a drag force FL and FD , respec-
tively. These force components can be transformed
into tangential (FT ) and radial (FR) forces acting on
the hydrofoils, as given later by equations 11 and 12,
respectively. The tangential component FT sustains the
rotation of the rotor, whilst FR causes the bending
moments in the hydrofoils.

We introduce now the equations of the hydrody-
namic model. Consider a rotor of radius r. Then the
position of the hydrofoils, which are considered punc-
tual, is given by

x = r cos(θ(t) + ψ) (3)

and

z = z0 + r sin(θ(t) + ψ), (4)

where θ(t) is the angular position with respect to the
positive horizontal axis and ψ is the initial angular
position of each hydrofoil, measured also from the
positive horizontal axis. For hydrofoil 1, ψ = 0◦ and
for hydrofoil 2, ψ = 180◦. In equation 4, z0 = −(µ+ r).

The tangential velocity components (ux, uy) of the
hydrofoils are obtained by deriving equations 3 and 4,
such that

ux = −ωr sin(θ(t) + ψ) (5)
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Fig. 2. Side view of a LiftWEC rotor showing the lift and drag forces
(FL, FD) on hydrofoils, the wave velocity v, the velocity due to the
rotation of the hydrofoils u, the relative velocity w and the phase
difference ∆ϕ at t/Tp = 0

and
uy = ωr cos(θ(t) + ψ), (6)

where ω is a constant rotational frequency and is equal
to the angular frequency of the incoming monochro-
matic wave.

For intermediate water depths, the wave velocity
components are computed with Airy linear wave the-
ory [25], such that

vx =
ωH

2

cosh(k(z + h))

sinh(kh)
cos(kx− ωt) (7)

and

vy =
ωH

2

sinh(k(z + h))

sinh(kh)
sin(kx− ωt), (8)

where H is the wave height, k is the wave number, h is
the water depth, x and z are the horizontal and vertical
positions of the hydrofoils, as defined by equations 3
and 4, respectively. The wave number k is computed
with the intermediate water depth dispersion relation-
ship [26] and is equal to k = 0.063.

The relative velocity w on the hydrofoils is the
vectorial sum of the wave velocity component v and
the negative of the tangential velocity of the hydrofoils
u, such that

w = v − u, (9)

as shown in the vector diagrams of figure 2.
For this study, we consider symmetric NACA0012

profiles with a zero pitch angle. The corresponding
lift and drag coefficients (CL, CD) are obtained from
Klimas and Sheldhal [27] for a range of α between
−180◦ to 180◦. From figure 2, α is computed by taking
the inverse of the sine of the cross product of w and u,
and dividing it by the product of their Euclidian norm,
such that

α = sin−1

[

||w × u||

||w||||u||

]

. (10)

Subsequently, a look up table is utilised to obtain
CL and CD. Finally, by defining s and c and utilising

equations 1 and 2, FL and FD can be determined. The
tangential force in the hydrofoils is defined as

FT = FL sinα− FD cosα (11)

and the radial force is

FR = FL cosα+ FD sinα. (12)

Because FT is dependent on the angular position (θ),
the average tangential force is expressed as:

FT =
1

2π

∫

2π

0

FT (θ)dθ. (13)

The total torque (Q) is

Q = rNFT , (14)

where N is the number of hydrofoils in the rotor.
Finally, the power output can be computed as

P = Qω. (15)

C. Angle of attack oscillations (α)

We note that the hydrodynamics of this type of
rotor are similar in nature to cross-flow turbines (both
wind and water), where there exists vast research on
dynamic stall - a rotor’s ability to maintain lift through
severe angles of attack through blade/vortex interac-
tions [8]. In figure 3, we present the angle of attack
oscillations (α) throughout one period of revolution at
∆ϕ = 90◦ for hydrofoil 1. Although in this example, the
amplitude of α is not severe, dynamic stall is likely to
occur under different wave conditions. Hence, further
iterations of the model will consider dynamic stall
effects.

Fig. 3. Angle of attack oscillations (α) in hydrofoil 1 for one period
of revolution at design sea state conditions.

III. STRUCTURAL CONSIDERATIONS

A. Hydrofoil material and cross-section

A moderate strength steel, used for offshore applica-
tions [28], is selected as the construction material. The
mechanical properties of the selected steel are listed
in table I. In the table, the allowable stress level is
defined as one third of the yield stress level (σy). We
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note, however, that different thresholds can be selected
according to design requirements.

The hydrofoil is modelled with a square hollow
section (SHS). This is a simplification of the actual
hydrofoil cross-section, which is shown in figure 4. The
cross-section is representative of the wing box, which is
the main structural component of the hydrofoil and of
any wing [29]. Modelling the hydrofoil as a SHS allows
the structural design to be based on first principles
and it enables coupling of the structural model to the
hydrodynamic model in a computationally inexpensive
manner. In figure 4, each side of the SHS is 0.12c, where
c is the chord of the hydrofoil.

TABLE I
MECHANICAL PROPERTIES OF MODERATE

STRENGTH OFFSHORE STEEL

Property Threshold (MPa)

Yield stress (σy) 350

Ultimate strength (σu) 410

Allowable stress (σa) 117

c 

0
.1
2

c

Fig. 4. Hydrofoil cross-section of NACA 0012, with square hollow
section (SHS) used in the structural model. The SHS is made of steel,
which is the same material utilised for the suction and pressure walls
of the foil.

B. LiftWEC configurations - fixed and cantilever beam

Two prototype configurations for LiftWEC are anal-
ysed: One where the hydrofoils are supported at both
ends (figure 5a), and one where the hydrofoil is sup-
ported in the middle only (figure 5b). We refer to
these configurations, as the fixed and cantilever beam
configurations, respectively. Both configurations have
two hydrofoils and are supported by two bottom fixed
v-frames attached to the seabed. The main substruc-
tures of the device are shown in figure 5, namely the
hydrofoils, spokes, support structure, central shaft and
power take-off (PTO). The hydrofoils are the substruc-
tures that are subject to the highest bending stresses
and therefore are more susceptible to failure. Hence,
we focus the structural analysis on these substructures.

C. Loading distribution on hydrofoils

For a LiftWEC device of large span, we expect two-
dimensional flow and uniform loading. However, for
small spans, three dimensional effects (tip vortices,
spanwise flow, etc.) may play a more significant role
and non-uniform loading might occur on the hydro-
foils. As an example, figure 6 shows the surface of
a hydrofoil subject to different types of loading. In
the figure, the vertical axis shows the normalised dis-
tributed load, which is referred to as non-dimensional
distributed load, whilst the horizontal axis shows the

Hydrofoil

Hydrofoil

Hydrofoil

Hydrofoil

Rotor Rotor

(a) (b)

Spokes
Spokes

Support structure Support structure

PTO PTO

Fig. 5. a) LiftWEC rotor with hydrofoils supported at both ends
(fixed beam configuration) and b) LiftWEC rotor with hydrofoils
supported in the middle and with free ends (cantilever beam con-
figuration).

non-dimensional span of the hydrofoil. Uniform, ellip-
tical, quadratic and linear types of loading are shown
with solid, dashed, starred and dotted-dashed lines,
respectively. We recall that uniform an elliptical loading
are typical loading examples of large-span and ellip-
tical wings, respectively. Quadratic and linear load-
ings are geometrical approximations of more complex
types of loading [30] that could occur due to three-
dimensional effects.

Fig. 6. Different types of loading on the surface a hydrofoil: uniform
(solid line), elliptical (dashed line), quadratic (starred line) and
linear (dotted-dashed line). In the figure, the horizontal axis is the
non-dimensional span and the vertical axis is the non-dimensional
distributed load.

We utilise uniform and linear loading as two rep-
resentative extreme cases of loading. We assume that
uniform loading is the envelope for two-dimensional
flow, with linear loading the one relevant for three-
dimensional flow. We will then compute the shear
forces (V ), bending moments (M ) and deflections (z)
over hydrofoils of a given span.

D. Structural model

The structural model is introduced in this subsection.
Figures 7a and 7b show uniform and linear loading
applied to the fixed and cantilever beam configura-
tions, respectively. The origin in the y-axis (y = 0) is
defined in both of the subfigures. Different reference
systems are used for each of the beam configurations,
because typically, the full length of the cantilever beam,
is considered from fixed-end to free-end, whilst in
fixed beams, the full length is considered from fixed-
end to fixed-end. We note, however, that the reference
systems could be modified to be the same for both rotor
configurations.
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1) Uniform loading UL: The total force F acting on
the hydrofoil of the fixed beam configuration under
uniform loading is FR, as defined previously in equa-
tion 12. In the cantilever beam configuration, F is
half of that computed with equation 12, because the
structural model depicts just half of the length of the
hydrofoil (figure 7b). We can distribute F uniformly
along the length of the hydrofoil, such that

w0 =
F

l
, (16)

where w0 is the distributed load and l is the length
of the hydrofoil as specified in figures 7a and 7b.
For uniform loading, w0 is constant along the y-axis.
Hence the local distributed load wy is equal to w0.
Consequently, we can define the local force Fy , such
that

Fy = wyy, (17)

where y is defined within the range 0 ≤ y ≤ l, as
specified in figures 7a and 7b.

2) Linear loading LL: In this case, the local distributed
load wy changes with y. Hence, for the fixed beam
configuration

wy =
2w0y

l
, (18)

in the interval of 0 ≤ y ≤ l/2 and for the cantilever
configuration

wy =
w0y

l
, (19)

in the interval of 0 ≤ y ≤ l.

The equivalent local force Fy , in the fixed beam
configuration is computed by calculating the area of
a triangle of base y and height wy , such that

Fy =
w0y

2

l
, (20)

over the range 0 ≤ y ≤ l/2. In contrast, for the
cantilever beam configuration,

Fy =
w0y

2

2l
, (21)

over the range 0 ≤ y ≤ l.

We can now compute Fy , with equations 17, 20 or
21, depending on the type of loading (uniform, linear)
and type of configuration (fixed, cantilever). The point
of action of Fy is the centroid of the area delimited by
the type of loading. For a rectangular shape (uniform
loading), the centroid is at the symmetry line. For a
right-angled triangle (linear loading), the centroid is
located at a 1/3rd distance from the right angle.

As an example, the centroid of the equivalent load
between y = 0 and y = l/2, in the fixed beam
configuration, and the centroid of the equivalent load
between y = 0 and y = l, in the cantilever beam
configuration, are shown as circular black markers in
figure 7a and figure 7b, respectively.

3) Shear forces, bending moments and deflections: The
local forces Fy and the centroid locations defined in the
y−axis are utilised in the free body diagrams to solve
for the shear forces (V ) and bending moments (M ). The
cantilever beam configuration is a determinate problem
and V and M can be solved with the static equilibrium
equations. In contrast, the fixed beam configuration is
an indeterminate problem, and the problem is solved
with a further equation. The additional equation is the
general differential equation of the elastic curve:

EI
d2z

dy2
=M, (22)

where M is the bending moment, E is the elastic
modulus of the material, and I is the second moment
of area of the cross-section. Equation 22 is integrated
twice and solved for z by defining a couple of bound-
ary conditions, the maximum or minimum deflection,
and the zero displacement point of the beam. Maxi-
mum or minimum deflection occurs at midspan in the
fixed beam configuration, whilst zero deflection occurs
at the fixed ends of the beam.

The procedure described above can be applied to
different types of loading by recomputing equations
18, 19, 20 and 21. Table II summarises the solutions
for V , M and z for LL for fixed and cantilever beam
configurations. For UL, solutions can be found in
structural mechanics text books [31]. The results of the
LL equations of table II and the UL equations, were
validated with online solvers SkyCiv and ClearCalcs.

4) Bending stresses: For both fixed and cantilever
cases, the maximum bending stresses occur at the most
distant point from the neutral axis of the beam cross-
section [32] and is given by

σ̂ =
M̂ ẑ

I
, (23)

where M̂ is the maximum bending moment, ẑ is the
distance from the neutral axis to the outermost point
of the beam and I is the second moment of area of
the cross section. In this study, the thickness of the
hydrofoil profile is 0.12c, therefore ẑ = 0.06c.

The coupling of the structural and hydrodynamic
models is performed in Python. This allows for a
structurally computationally inexpensive analysis and
is a powerful evaluation tool that can be used to design
large-scale to full-scale LiftWEC prototypes.

IV. RESULTS

A. Tangential and radial forces

Force data, for wave-bladed cyclorotors, is scarce
in the literature. Although the LiftWEC consortium
will perform an experimental campaign, the data is
not available yet. As such, two dimensional numerical
simulations force data from Scharmann [33] is utilised
here to validate, qualitatively, the outputs of the hy-
drodynamic model.

The numerical methodology from Scharmann was
developed in the commercial solver Ansys CFX and
was validated with experimental tests of a laboratory-
scale two-bladed cyclorotor device. He then extended
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Fig. 7. a) Fixed beam configuration with uniform and linear loading and b) cantilever beam with uniform and linear loading. The maximum
distributed load is w0. The origin of the y-axis is defined in the figures for each configuration.

TABLE II
LINEAR LOADING EQUATIONS FOR V , M AND z FOR FIXED AND CANTILEVER CONFIGURATIONS

Fixed beam Cantilever beam

Shear forces V V = w0l
(

1

4
− y2

l2

)

V = w0

(

y2

2l

)

Bending moments M M = w0

(

ly

4
− y3

3l
− 5l2

96

)

M = w0

(

y3

6l

)

Deflections z z =
1

EI

(

w0ly
3

24
− w0y

5

60l
− 5w0l

2y2

192

)

z =
1

EI

(

w0ly
3

24
− w0y

5

60l
− 5w0l

2y2

192

)

his numerical methodology to a large-scale device, and
compared the results computed with Ansys CFX and
OpenFoam. Here, because we are interested in the
structural penalty of a large-scale rotor (r = 10m,
c = 4m), we utilise his results for a large-scale device
computed in Ansys CFX, which are valid under the
assumption of two-dimensional flow.

The wave design parameters used by Scharmann
[33] are Tp = 8 s and H = 3 m. We note that these
parameters are different to our wave design parameters
specified in Sec. II. The remainder of the rotor param-
eters are r = 10 m and c = 4 m. The submergence
depth (µ), phase difference (∆ϕ) and water depth
(h) are not specified by Scharman. Here, we make
estimates of these parameters. We note that because
Hs = 3m, in order for the hydrofoils to remain under
the through of the wave, the minimum submergence
should be µ > 3m. Hence, we set µ = 6m, where µ±1
m does not change the model outputs significantly.
Then h = 50 m, because we consider intermediate
water depths, and deeper water depths (h > 50 m) do
not change the trends in the modelled results. Whilst
∆ϕ = 90◦ is chosen for hydrofoil 1, to set the rotor
to the optimum phase. This is further discussed in the
next subsection.

Figure 8 shows the comparison of the hydrodynamic
model outputs to the results from Scharmann [33]. The
figure shows FT (figure 8a) and FR (figure 8b) for
one normalised period of revolution t/Tp. Results are
shown for the two hydrofoils. The model outputs are
shown with solid and dotted black lines for hydrofoil
1 and 2, respectively. Scharmann’s results are plotted
with solid and dotted red lines, for hydrofoils 1 and
2, respectively. In figure2, FT is plotted considering a
local reference frame at the leading-edge of each hydro-
foil, where the force is positive pointing outwards of

the chord of the foil, as shown in figure 2. In contrast,
FR is defined in the global reference system of the rotor
and is defined positive, pointing along the same global
direction in both hydrofoils, as shown in figure 2.

In figure 8a, a good match (within 2%) between
the predicted and Scharmann’s FT2

is seen, whilst the
predicted FT1

shows a similar trend to Scharmann’s
curve but has a different peak magnitude. The maxi-
mum amplitude of this peak is about a third of that

Fig. 8. Tangential (FT ) and radial forces (FR) computed for hydrofoil
1 and 2 (solid and dotted black lines) of a LiftWEC rotor in one
period of rotation (t/Tp), compared to results of two-dimensional
numerical simulations by Scharmann [33].
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predicted by our current model. Here, the subindices
refer to hydrofoil 1 and hydrofoil 2. Figure 8b shows
similar trends for FR, in the two hydrofoils, between
Scharmann’s results and the current model. With the
current model over predicting the maximum ampli-
tude of the loads by about 25%. Discrepancies could
be due to unsteady effects that are not accounted for
in the hydrodynamic model. The model also does not
consider forces on the hydrofoil due to radiated waves,
which will have some impact, but these will depend on
the width of the hydrofoil [34], [35]. However, we recall
that the purpose of this paper is to develop an integral
methodology between structural and hydrodynamic
models. As such, future refinements to both hydrody-
namic and structural models can be included. For the
structural analysis, we take a conservative approach
and take FR of hydrofoil 1 computed with the model.
We recall that FR will be the cause of the bending
moments and stresses in the hydrofoils.

B. Effect of phase difference (∆ϕ) in mean power output

In Sec. II, equation 15 shows that the power output
(P ) depends on FT and r. In this section, we show the
effect of ∆ϕ on the mean power output P . This will
enable us to calculate the optimal ∆ϕ of operation. We
consider ∆ϕ for hydrofoil 1, since this also defines ∆ϕ
for hydrofoil 2, as shown in figure 2.

Figure 9 shows P , computed with the current hy-
drodynamic model, over a range of ∆ϕ between -
180◦ to 180◦. In the figure, it can be seen that when
the rotation of hydrofoil 1 is in phase with the wave,
i.e. ∆ϕ = 0◦, P becomes negative. This means that
power is not generated but rather consumed and this
is the worst case scenario for the rotor. In contrast,
maximum peaks in P are obtained when ∆ϕ = ±90◦.
The difference in sign defines the direction of the radial
force along the radius of the rotor. Positive sign defines
an outwards radial force along the radius of the rotor,
whilst negative sign defines an inboard radial force, as
shown for example, in figure 2, for hydrofoil 1 and 2,
respectively.

We note that the pitch angle of the hydrofoils can sig-
nificantly increase the mean power capture of LiftWEC.
For example, with a pitch angle increase from 0◦ to 5◦,
the mean power capture increases from approximately
5 kW/m to about 40 kW/m. In fact, according to Siegel
[15], a wave bladed cyclorotor of 13 m span could yield
about 1 MW of extracted power. However, the scope
of this paper does not include any comprehensive
discussion on the effect of the pitch angle.

C. Rotor selection: fixed or cantilever beam

The criterion for rotor selection, between fixed and
cantilever beam configurations, is presented in this
section. Both configurations are shown in figure 5a and
figure 5b. The selection criterion is defined in a con-
servative manner. Firstly, we chose the configuration
subject to the lowest maximum bending moment under
UL conditions. This is the type of loading that will
exert the highest force on the foil. Secondly, we look at
the configuration with the lowest variability in bending

Fig. 9. Mean power output (P ) in kW/m plotted over a range of ∆ϕ
between -180◦ to 180◦ , where ∆ϕ is the phase difference between
the rotation of the cyclo-rotor and the incoming wave, as shown in
figure 2. The maximum P is achieved at ∆ϕ = ±90◦ .

moments when the loading changes from UL to LL.
Although large-spanned hydrofoils can promote UL,
spanwise flow and eddies due to the unsteadiness of
the marine environment can alter and induce a differ-
ent type of loading. Hence, it is important to minimise
this variability and therefore, any cyclic loading and
induced failures associated to it.

The solid lines in figure 10 show the bending mo-
ments of LiftWEC under UL, whilst the dotted lines
show the bending moments for an LL type of loading.
The bending moments are plotted during a normalised
period (t/Tp). In the figure, the red lines correspond
to the cantilever configuration and the black lines to
the fixed beam configuration. The maximum bending
moments during UL are indicated with circular mark-
ers in the figure. The color of the markers follows the
same notation as that used for the lines in the figure. It
can be seen that, when the hydrofoil is subject to UL,
the configuration with the lowest maximum bending
moment is the fixed beam configuration.

Fig. 10. Maximum bending moment |Mmax| for fixed and cantilever
beam configurations subject to uniform and linear loading during
one period of revolution t/Tp .

In terms of variability of bending moments between
UL and LL, this is highlighted in figure 10 at the
point where the variability is highest. The red vertical
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arrow indicates the variability for the cantilever beam
configuration, whilst the black vertical arrow indicates
the variability for the fixed beam configuration. It
is observed that the lowest variability in maximum
bending moments occurs in the fixed beam configura-
tion. Based on the above observations, the fixed beam
configuration is chosen to size the radius and span of
the rotor.

D. Selection of rotor radius and span

The previous section shows that the fixed beam
configuration best satisfies our selection criteria: lowest
maximum bending moment at UL and lowest variabil-
ity when the loading changes between UL and LL. In
this section, we size the span s and the radius r of the
fixed beam configuration rotor, based on σa. We recall,
from Table I, that σa = 117 MPa. The wave design
conditions are Tp = 10 s and H = 4 m, as specified in
Sec. II.

Figure 11 shows the maximum bending stresses (σ̂)
for the fixed beam configuration at UL versus different
hydrofoil spans (s). Different radii ranging from 1 to
15 m are plotted with grey dotted lines in intervals
of 1 m. The lower and upper boundaries (1 and 15
m) are highlighted with a blue and pink solid lines,
respectively. We note that for the tested conditions and
∆ϕ = 90◦ in hydrofoil 1, P increases with the rotor ra-
dius from 1 to 7 m. Thereafter, P decreases. These two
areas of increasing and decreasing P are highlighted in
figure 11 in yellow and in pink, respectively. The radius
where P is maximum is highlighted with a black solid
line and is equal to 7 m. The thresholds for σa and
σy are shown with horizontal green and red dotted
lines, respectively. We intend to design a rotor whose
σ̂ remains below σa, ensuring that the material stays
in the elastic range. We compute the distributed load
w0 at the wave design conditions and use this value
as the input to the structural model. The span of the
device is varied from 0 to 15 m.

Results suggest that the optimum radius to span
ratio for the cycloidal rotor is about r/s ≈ 0.8. This
ratio ensures that maximum P is extracted, whilst it
also ensures that the hydrofoil stresses remain at the
allowable stress threshold.

V. CONCLUSION

This paper presents a methodology for the structural
design of LiftWEC. We presented the LiftWEC concept
and an efficient hydrodynamic model to estimate the
tangential and radial forces of the rotor. We showed the
importance of the phase difference (∆ϕ) between the
phase of the incoming wave and that of the rotation of
LiftWEC, by displaying the mean power output P at
different ∆ϕ. The optimum ∆ϕ is shown to be ±90◦.

Two rotor configurations are analysed, one where the
foils of the rotor are supported at the ends (fixed beam)
and one where the foils are simply supported in the
middle (cantilever beam). We find that the fixed beam
configuration encounters a lower maximum bending
moment under UL and that for varying loading, the
fixed beam configuration undergoes lower variation in

Fig. 11. Maximum bending stresses (σ̂) versus span (s), at different
radii for a fixed beam configuration subject to uniform loading. The
radii of the rotor is highlighted at r = 1, 7 and 15 m with blue,
black and pink solid lines, respectively. Intermediate radii are plotted
with dotted grey lines in steps of 1 m. The σa and σy thresholds are
plotted with dotted horizontal green and red lines, respectively. The
radius that allows maximum P is 7 m.

maximum bending moments. Hence, the fixed beam
configuration is selected as the preferred option to
study the effect of the span and the radius size.

Our analysis shows, for the wave design tested
conditions, the optimum radius to span ratio for the
cycloidal rotor is about r/s ≈ 0.8. This ratio ensures
that maximum P is extracted, whilst it also ensures that
the hydrofoil stresses remain at the allowable stress
threshold.
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