

# Global Market Assessment for Electric Cooking



Will Coley, Aran Eales, Simon Batchelor, Jon Leary, Stuart Galloway

# University of Strathclyde

May 2021

MECS is funded by UK Aid through the Foreign, Commonwealth, and Development Office. It is a partnership between researchers, innovators, policy makers, and ESMAP drawing on their expertise and relevant work from around the world to co-construct new knowledge with practitioners and the private sector. It is led by Loughborough University, UK. The views expressed do not necessarily reflect the UK government's official policies.









1

# **Executive Summary**

Globally, approximately 2 billion people have access to some form of electricity but do not have access to clean cooking, the majority of which rely on the traditional use of biomass. Cooking with biomass leads to an estimated 3.8 million deaths per year attributed to household air pollution. The widespread practise of cooking with non-renewable wood fuels also contributes to ecosystem degradation and the emission of approximately 1 gigaton of CO<sub>2</sub>/year (2% of global emissions total). According to the State of Access to Modern Energy Cooking Services report by the World Bank, ESMAP and MECS, not progressing beyond the status quo is costing the world more than US\$2 trillion each year; US\$ 1.4 trillion from the negative impacts on health, US\$ 0.2 trillion per year from climate impacts and environmental degradation and US\$ 0.8 trillion per year from its adverse effects specifically on women.

A growing body of evidence is showing that, in many settings, modern energy cooking services such as electric cooking are already cost-effective alternatives. For many countries in the Global South with a strong enabling environment (including having access to affordable, reliable electricity and the presence of a strong, active modern cooking sector) a transition to electric cooking is already taking place, mainly among the consumer class. For other countries where many households have limited or no access to modern energy, a suite of innovative business models and technologies are rapidly expanding opportunities to transition to electric cooking via mini-grid and off-grid systems.

To understand where the greatest opportunities and challenges for a scale up of electric cooking in the Global South lie, a Global Market Assessment (GMA) for electric cooking has been conducted by the Modern Energy Cooking Services (MECS) programme which seeks to "to rapidly accelerate the transition from biomass to clean cooking on a global scale". The GMA has drawn on the experience of a range of stakeholders to identify the key factors which influence the viability of a scale up of electric cooking and represents this as a weighted score constructed from 37 indicators covering 130 countries in the Global South. As electric cooking relies on a electricity which can now be supplied in a variety of different ways, the GMA provides a score for national grid, mini-grid<sup>1</sup> and off-grid (standalone)<sup>1</sup> supported electric cooking.

# **Overall findings**

**Energy infrastructure and human development are key enabling factors for scaling up electric cooking.** There are groups of key indicators which enable a strong GMA score and which are broadly similar across national grid, minigrid and off-grid scenarios: "energy" enablers have a particularly strong effect on GMA score (including indicators on the strength of electricity infrastructure and clean cooking market), as do "development" enablers but to a lesser extent (including human development, gender inequality, ICT adoption, logistics and business indices). For all scenarios, the regulatory environment was also an enabler, while for the mini-grid and off-grid scenarios the market size and strength for these technologies were enablers, as well as aid and renewable energy finance flows.

There are a number of countries where a scale up of electric cooking is both viable and urgently needed. Comparing countries with high GMA scores, for one or more of the scenarios, and those with large proportions of people likely to already be paying significant amounts for polluting fuels (such as kerosene and charcoal) highlights China, Malaysia, Thailand, Laos, Kenya, Myanmar, Philippines, Nigeria, Tanzania, Uganda and Rwanda. Having high GMA scores and the presence of large numbers of people paying for polluting fuels suggests that pivoting to electric cooking could be both viable and affordable in these countries. With high GMA scores and very large absolute numbers of people paying for polluting cooking fuels, China and Nigeria amongst others present opportunities for transition on a huge scale.

Many countries have high GMA scores and the need to transition but ability to pay may be a challenge, as many people cook using cheap or freely gathered fuels (e.g. firewood, or waste from animals or crops). Countries with high GMA scores and many people cooking with these commonly collected fuels include China, India, Laos, Bangladesh, Nepal, Kenya, Myanmar, Afghanistan, Vietnam, Nigeria, Serbia, Uganda, Sri Lanka, Rwanda and the Philippines. These countries have large proportions of their populations in need of a transition but likely to have lower expenditures on cooking fuels and therefore less ability to pay for modern energy cooking services. The GMA also highlights India, China, Nigeria and Bangladesh amongst others which have huge absolute numbers cooking with cheap or freely gathered polluting fuels as well as strong GMA scores.

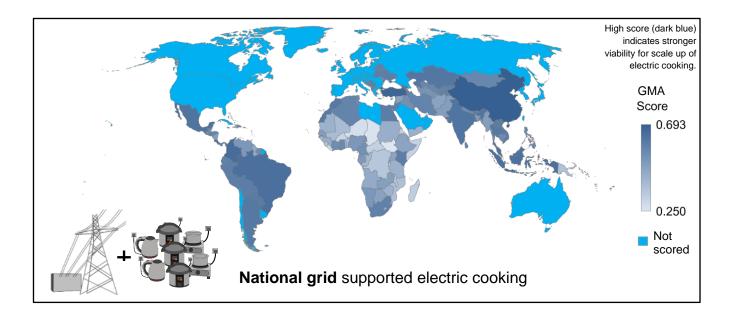
<sup>&</sup>lt;sup>1</sup> In this report "mini-grid" and "off-grid (standalone)" refer to renewables powered systems (e.g. hydro mini-grids, solar home systems) only; non-renewable sources (e.g. diesel generators) are excluded from these terms.










In many cases a scale up of electric cooking on the national grid needs to be coupled with decarbonisation of generation infrastructure. Many high scoring countries have relatively low renewable energy shares and as such need to couple a transition to electric cooking with decarbonisation of their generation infrastructure. This means that for a transition to electric cooking to have the most positive impact in terms of reducing air pollution and CO<sub>2</sub> emissions, it needs to be supported by increased investment in and focus on renewable electricity generation which is already often cheaper than generation from fossil fuels. On this basis, Kenya has particularly strong potential for a transition to electric cooking (others include Laos, Honduras, Montenegro, Guatemala and Ghana). Conversely, other high scoring countries with significant proportions using polluting fuels have carbon intensive grids; these include China (28% renewable), Malaysia (18%), India (21%), Thailand (19%) and Vietnam (28%), and so need to couple a transition to electric cooking on the national grid with significant efforts to decarbonise generation.

The GMA calculates the viability of scale up of national grid, mini-grid and off-grid (standalone) supported electric cooking. The following sub-sections summarise these results, which are also represented as "maps", and followed by conclusions, methodology, limitations and further resources.

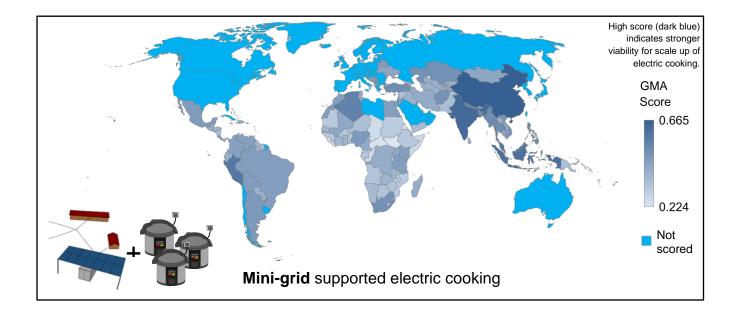
# National grid enabled potential for scale up of electric cooking

The GMA score for the viability of scale up of national grid supported electric cooking (see figure below) is highest for countries with the highest levels of "development"; also described as "emerging markets", with strong electrical infrastructure and clean cooking fuel markets where large proportions of people are already using modern cooking fuels (including LPG and electricity). These include China, Turkey, Colombia, Brazil, Indonesia, Malaysia, Mexico, India, Thailand and Argentina. A number of other countries such as Costa Rica, Georgia, Panama, Laos, Paraguay, Serbia and Kenya also have strong viability for scale up on the national grid. Despite many high scoring countries having strong clean cooking markets and electrical infrastructure, some of these still have large numbers of people doing some, or all their cooking with polluting fuels. Through comparing national grid GMA scores and the proportion of people cooking with biomass, the top countries with not only an opportunity but also a need for scaled up transition on national grids can be shortlisted to include China, Malaysia, India, Thailand, Laos, Serbia and Kenya. These countries are where continued efforts to transition to electric cooking on the national grid is not only most viable, but also pressingly needed.

However, as previously mentioned, many high scoring countries for this scenario have relatively low renewable energy shares. As such, to most effectively reduce air pollution and CO<sub>2</sub> emissions many countries need to couple a transition to electric cooking with decarbonisation of their generation infrastructure.

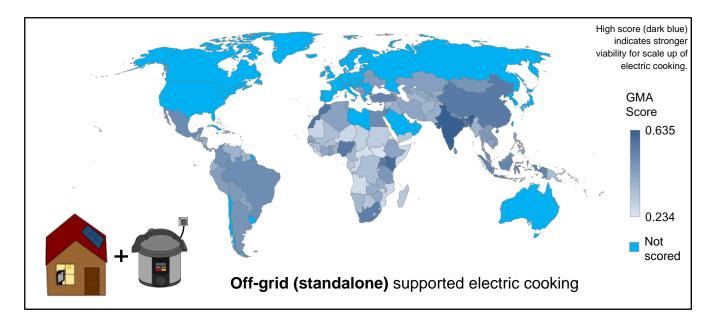












# The importance of mini-grids

For the mini-grids scenario, the viability of a scale up of electric cooking is again topped by emerging markets with strong development indicators and electrical infrastructure including China, India, Indonesia, Peru, Malaysia, Thailand, Turkey, South Africa and Argentina (see figure below). However, other countries with particularly strong mini-grid infrastructure also perform well including Nepal, Bangladesh, Myanmar, Afghanistan, Nigeria and Tanzania. However, the accuracy of the scores for the mini-grid scenario is restricted due to the available data on mini-grids only covering two thirds of countries, lacking detail on energy access tier and fuels used for cooking specifically for those connected to mini-grids.



# Off-grid (standalone) electric cooking

The off-grid scenario also highlights India, Kenya, Bangladesh, Nigeria, China, Uganda, Indonesia, Sri Lanka, Nepal, Rwanda, Malaysia and Tanzania as the highest scoring (see figure below), as they have strong off-grid renewables sectors and consistent development indicators. Again, the accuracy of the scores for the off-grid scenario are particularly affected by a lack of datasets on off-grid markets which adequately cover the Global South (currently available datasets only cover half of the countries in this study).











## Enabling factors - energy infrastructure, human development and other key indicators

Comparing GMA scores with and without including the previously mentioned enabling indicators shows that the viability of a scale up of electric cooking, particularly on the national grid, is most significantly restricted by having poor electricity infrastructure and weak clean fuel markets, while lower levels of human development are also a hindrance but to a lesser extent. This indicates that particularly improvements in electricity infrastructure (including access and reliability), as well as growth in clean cooking markets, are strong catalysts for a scale up of electric cooking. Such improvements could come through mini-grid or off-grid (standalone) technologies, or expansion and upgraded access to the national grid. Almost by definition, those with large amounts of off-grid infrastructure, are countries where development indicators are lacking. They often have large populations, the majority of which are using polluting fuels for cooking.

Improvements in energy (i.e. access and reliability) and human development (i.e. gender equality, Ease of Doing Business, ICT/internet adoption) indicators are needed particularly in much of sub-Saharan Africa. For example, the GMA analysis indicates that improvements in energy indicators would significantly improve the viability of scaling up electric cooking in countries such as: Uganda, Zambia and Namibia (on national grids); Madagascar, Democratic Republic of Congo and Niger (on mini-grids); Zambia and Malawi (on off-grid (standalone) systems).

However, some countries in sub-Saharan Africa already present strong potential for scale up of electric cooking for one or more scenarios. Kenya is relatively less affected by the removal of enabling indicators for the national grid scenario, while the same can be said for Nigeria and Tanzania for the mini-grid scenario (this affect is less prevalent for off-grid).

### Conclusion

The GMA, perhaps unsurprisingly, highlights the role of energy infrastructure and human development indicators in enabling a scale up of electric cooking. It draws attention to Asia (particularly China, India and Indonesia), which already have many of these enabling factors in place and yet still have large parts of their populations using polluting fuels for cooking. India for instance has made major gains over the last 5 years in its grid infrastructure which could enable a more rapid scale up of modern energy cooking services among its poor. China and Indonesia have very strong electricity infrastructure but still have large populations paying for polluting fuels. As the world necessarily decarbonises energy systems, from household up to national scale, there is both a need to develop, and an opportunity to harness, enabling factors in accelerating the transition to modern energy cooking services through greater uptake of electric cooking.

The last ten years have seen significant progress in pursuit of reaching SDG7 (ensure access to affordable, reliable, sustainable and modern energy for all), including improvements in finance for off-grid electricity and upgraded access to national grids. While clean cooking is sometimes considered a marginal issue, the political will for reaching SDG7 could be leveraged such that electrification planning includes cooking loads and supporting services, i.e. incorporating innovative business models and enabling policies for on- and off-grid transitions to modern energy cooking services. International Climate Finance (ICF) is likely to play an increasing role in the coming decade in enabling this transition.

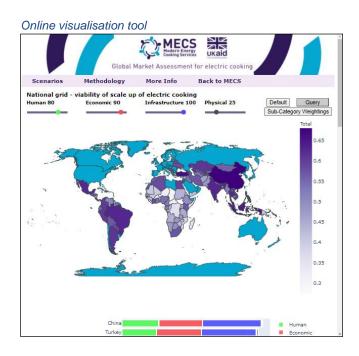
As a UKAid-funded programme, MECS has focused on countries facing perhaps greater challenges regarding a transition to modern energy cooking services; i.e. predominantly those in South Asia and sub-Saharan Africa. The GMA finds that within these clusters there are some countries who have strong enabling factors that could be leveraged to drive forward the adoption of electric cooking and create substantial development impact for low-income households currently cooking with polluting fuels. For example: Kenya on national grids; Nepal, Bangladesh, Myanmar, Nigeria and Tanzania on mini-grids; Kenya, Bangladesh, Nigeria, Uganda, Sri Lanka, Nepal, Rwanda and Tanzania on off-grid (standalone) systems. Again unsurprisingly, the opportunities in these regions are comparatively greater for mini-grid and off-grid supported electric cooking. With continued and accelerated progress towards the provision of energy access for all, there are opportunities across all scenarios which will continue to grow; particularly throughout the coming decade which the European Energy Centre, and others, have referred to as the "decade of renewables".

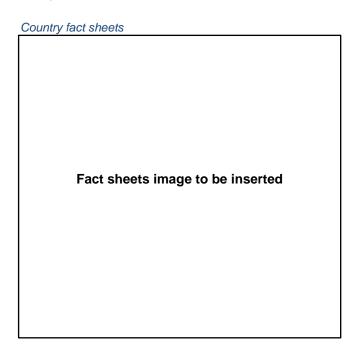
Ultimately the GMA is indicative and prompts more contextual examination of current and developing policies, private sector enabling environments and cooking cultures amongst other factors, to understand the possibilities around addressing the enduring problem of cooking with biomass and its associated health, environmental and gender equity challenges. The GMA highlights possibilities both now and in the coming decade for leveraging modern energy infrastructure to accelerate the transition towards electric cooking and other modern energy cooking services.










# Additional resources

In addition to this report, the GMA project has also produced two other outputs:

- Online GMA visualisation tool (**link TBC**) providing public access to the GMA data with the capability to manipulate and to display scores and rankings according to user needs (**to be released**).
- Country fact sheets (**link TBC**) detailing information as to the opportunities for, and barriers to, a scale up of electric cooking in a number of target countries (**to be released**).















# Contents

| 1. | Background                                                 |    |  |  |  |  |
|----|------------------------------------------------------------|----|--|--|--|--|
| 2. | Methodology                                                |    |  |  |  |  |
|    | 2.1. (Re)assessment of scope                               |    |  |  |  |  |
|    | 2.2. Identification of factors and representative datasets | 11 |  |  |  |  |
|    | 2.3. Calculating indicator weightings                      |    |  |  |  |  |
|    | 2.4. Data pre-processing                                   | 14 |  |  |  |  |
| 3. | Limitations                                                |    |  |  |  |  |
| 4. | Results and Findings                                       |    |  |  |  |  |
|    | 4.1. National grid supported electric cooking              |    |  |  |  |  |
|    | 4.2. Mini-grid supported electric cooking                  | 22 |  |  |  |  |
|    | 4.3. Off-grid (standalone) supported electric cooking      | 26 |  |  |  |  |
|    | 4.4. All round high scoring countries                      | 29 |  |  |  |  |
| 5. | Further analysis                                           |    |  |  |  |  |
|    | 5.1. Correlation of indicators and GMA score               |    |  |  |  |  |
|    | 5.2. Enabling environment indicators                       |    |  |  |  |  |
|    | 5.3. Negatively correlated indicators                      |    |  |  |  |  |
| 6. | Discussion                                                 |    |  |  |  |  |
| 7. | Recommendations                                            |    |  |  |  |  |
| 8. | References                                                 |    |  |  |  |  |
| 9. | Appendices4                                                |    |  |  |  |  |









# 1. Background

It is estimated that approximately 3 billion people globally are without access to clean cooking (the majority of which rely on the traditional use of biomass of cooking) [1]. Meanwhile, just 770 million are now without access to electricity [2], meaning that around 2 billion people have access to some form of electricity, but continue to cook with polluting fuels. Furthermore, using the expanded definition of 'modern energy cooking services'<sup>2</sup> as many as 4 billion do not have access to modern energy for cooking [3]. The widespread practice of cooking with non-renewable wood fuels also contributes to ecosystem degradation and the emission of approximately 1 gigaton of CO<sub>2</sub>/year (2% of global emissions total) [4] an estimated 3.8 million deaths per year are attributed to smoke from cooking fires [5].

In some settings, using electric cooking appliances to cook with reliable grid electricity already offers a cost-effective opportunity to enable clean cooking [6]. For people with unreliable electricity access, and those not connected to the grid, a suite of new electric cooking technologies and business models is emerging to enable a transition away from biomass fuels. To understand and prioritise the opportunities and challenges for accelerating access to electric cooking in different countries, a global market assessment for electric cooking (GMA) was commissioned.

Market assessments aim to quantify the existing potential for the product or service to meet demand, and to identify the opportunities and barriers to increasing this potential through understanding of both the enabling environment and the aspirations, current practices, and characteristics of the consumers/target market. In the context of the MECS programme, a market assessment aims to understand the enabling environment surrounding modern energy cooking services and the needs and motivations of all involved stakeholders, including but not limited to end-users, manufacturers, policymakers, development partners and energy system operators.

In 2017 a GMA was carried out as part of the preliminary stages of MECS research [7], with the intention of focusing efforts in priority areas and to elaborate upon the problem statement to be addressed by the programme; "to rapidly accelerate the transition from biomass to clean cooking on a global scale". Official Development Assistance (ODA) recipient countries' favourability towards implementing grid-connected (battery supported) and standalone solar (battery supported) electric cooking were considered through using a multi-criteria decision analysis (MCDA) methodology. This provided a ranked list of countries, with their respective scores broken down by the contributing factors, along with a more detailed analysis of the most favourable/highest ranking contexts as well as others with interesting market dynamics which were not reflected in the ranked lists. The viability index was then complimented by estimates of market size for key target market segments, such as the number of people living in rural, off-grid regions. These results were used to direct intervention and to identify target countries for the current MECS programme.

Since the 2017 GMA the MECS programme has grown and developed into a large network of researchers and practitioners conducting a variety of activities. A number of national and community scale activities, including market assessments, have been conducted to better understand cooking in specific countries and regions and to direct future MECS activities [8]. This process has improved the understanding of the factors which influence the viability of modern energy cooking services in a variety of contexts and uncovered new target market segments not considered by the 2017 GMA. In addition, the cost of enabling technologies such as efficient, low-powered cooking devices, renewable energy generation and energy storage are falling while their quality and availability is improving, and traditional cooking fuels are becoming scarcer and more expensive. Concurrently, the political environment for such technologies is opening up and renewable decentralised energy generation is increasing in popularity alongside other enabling social, cultural and political factors. As such, the enabling environment for modern energy cooking services, offered through a widening variety of product offerings, is changing across the globe. Therefore, by applying the enhanced knowledge and experience of the MECS programme and drawing on the most recent information, an improved GMA has been conducted to provide an up-to-date picture of the global environment for electric cooking.

This report provides a description of the GMA methodology, followed by a review of the results and additional information on countries where a scale up of electric cooking is shown to be most viable. This is followed by further analysis to identify the key factors which influence the viability of a scale up of electric cooking and the countries/regions where these are strongest and weakest.

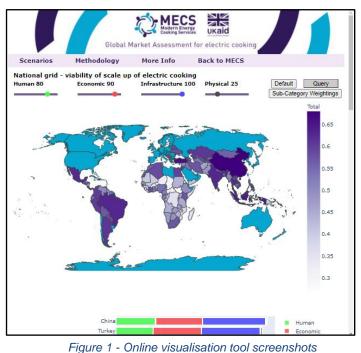
<sup>&</sup>lt;sup>2</sup> Defined as lacking "the ability to cook efficiently, cleanly, conveniently, reliably, safely, and affordably" [3].












### Additional outputs

In addition, to effectively and quickly scale-up modern energy cooking services, stakeholders from a number of nonacademic sectors including the private (e.g. manufacturers, distributors, retailers, energy services), finance (e.g. microfinance/carbon finance institutions) public and third sectors (e.g. policy makers, development organisations) need to be aware of the drivers and opportunities and informed by accurate, up-to-date information. As such, two additional outputs have been produced to broaden the reach of this study's findings and provide improved accessibility to the MECS programme's growing body of context specific research:

#### - Online GMA visualisation tool (link TBC)

This study has produced a huge quantitative dataset containing a wealth of data pertinent to the aims of the MECS programme that is now available in a single location. Such a dataset presents the opportunity to perform further analysis by all stakeholders (as well as researchers) based on their needs and preferences. Therefore, an online visualisation tool has been created to provide anyone with the ability to manipulate the data through an easy-to-use interface and display the results as an attractive graphic. The source excel database including the raw datasets is also available via the tool. Screenshots of the online visualisation tool are shown in Figure 1.



rigure 1 - Online visual

#### - Country fact sheets (link TBC)

While there was once a dearth of understanding of cooking practises and markets, MECS has developed an evergrowing knowledge base around these topics, particularly for MECS focus countries. However, so far, outputs of these activities have largely been aimed at academic audiences and used to inform the design of successive MECS activities. Therefore, to communicate the results of the GMA more effectively, alongside context-specific information about the opportunities and barriers for modern energy cooking services, detailed country "factsheets" have been created.

#### Insert screenshots when available









# 2. Methodology

The methodology used to carry out this study draws on that used by Leary et. al [7] which centres around using publicly available datasets to represent the viability of a scale up of electric cooking across the 130 countries on the Development Assistance Committee (DAC) list of Official Development Assistance (ODA) recipients [9]. These datasets are collated into a database of indicators, grouped into sub-categories and categories, weighted according to their relative importance and summed to produce a score which represents the relative viability of a scale up of electric cooking<sup>3</sup>. This methodology is detailed in the following sub-sections.

In addition, by drawing on the expertise of researchers and experts within and outside the MECS programme, a project steering group was set up to oversee its direction and development. This steering group included representatives from MECS, the World Bank Group's Energy Sector Management Assistance Program (ESMAP) and the Clean Cooking Alliance (CCA).

# 2.1. (Re)assessment of scope

Electric cooking at its most fundamental level relies on a supply of electricity which, particularly across the Global South, is provided in a variety of different ways. The first iteration of the GMA focussed on two target market segments: "PV-eCook... regions where no grid infrastructure exists (nor is it likely to in the near future), i.e. rural off-grid HHs" and "Grid-eCook... the fringes of the grid, where the infrastructure is weakest, i.e. urban slums or rural grid-connected HHs".

This study has included and supplemented these markets by expanding the Grid-eCook market to represent households on both strong and weak grids<sup>4</sup>, and supplemented them by considering mini-grid supported electric cooking. In addition, to emphasise the need for focus on context as well as technologies, these target markets were renamed as "national grid", "mini-grid" and "off-grid (standalone)" scenarios (shown in Figure 2). These terms refer to mini-grid and off-grid (standalone) systems powered by renewable sources (e.g. hydro mini-grids, solar home systems) only; non-renewable sources (e.g. diesel generators) are excluded.

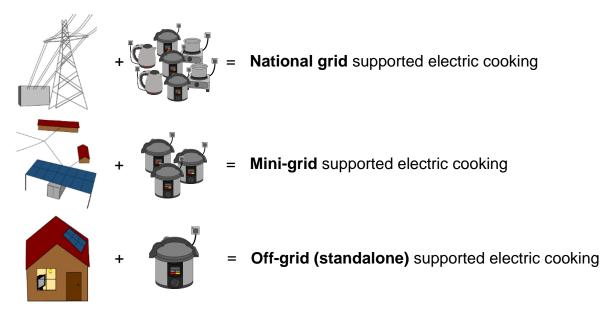



Figure 2 - GMA scenarios

<sup>&</sup>lt;sup>4</sup> Separate weak and strong grid scenarios were considered, but a lack of differentiating datasets meant little distinction could be made between them. These were therefore combined into the "national grid" scenario.









<sup>&</sup>lt;sup>3</sup> There are numerous examples of this overall methodology is used in the construction of multidimensional indices, including: ESMAP's Regulatory Indicators for Sustainable Energy (RISE) [31], BloombergNEF's Climatescope [32], and the World Bank's Ease of Doing Business Index [33].

# 2.2. Identification of factors and representative datasets

Beyond the fundamental requirement of having access to electricity, the viability of a scale up of electric cooking is reliant on a wide range of factors from spheres including the political, economic, social and technical. Using the first iteration of the GMA as a starting point, a review of these viability-influencing factors was carried out by consulting with the project steering group and a wide range of MECS researchers, MECS collaborating partners and contacts.

To represent as many of these factors within the GMA database as possible, a thorough review of publicly available datasets was performed, identifying over 100 potential indicators from over 50 different sources. The criteria for inclusion in the GMA database was based on importance (in representing the viability of electric cooking), coverage level (across the 130 DAC listed countries) and availability of equivalent or better alternatives. Finally, these datasets were given "indicator" names (describing the factor they represent) and grouped into sub-categories and categories. As shown below in Table 1, the analysis for all three scenarios included 37 indicators<sup>5</sup>, 18 sub-categories and four categories. The sources for these indicators can be found in Appendix 1.

| Category       | Sub-category              | Indicator                                               |
|----------------|---------------------------|---------------------------------------------------------|
|                |                           | Users of electric cooking                               |
|                | Clean fuel users          | Users of clean alternatives (e.g. LPG, biogas)          |
|                |                           | Users of commercialised polluting fuels (e.g. charcoal) |
|                | Fuel markets              | Unrealised potential for electric cooking               |
| ECONOMICS      | Fuel markets              | Affordability of electricity                            |
|                |                           | Credit rating                                           |
|                | Finance                   | Mobile money                                            |
|                | Finance                   | OECD aid flows                                          |
|                |                           | Renewable energy finance flows                          |
| PHYSICAL       | Solar resource            | Photovoltaic power potential                            |
| PHIORE         | Deforestation             | Tree cover loss                                         |
|                | Capacity                  | ICT/internet adoption                                   |
|                | Business                  | Ease of Doing Business Index (EoDB)                     |
|                | Policy                    | Regulatory Indicators for Sustainable Energy (RISE)     |
|                | Health                    | Household Air Pollution (HAP) attributable deaths       |
|                | Gender                    | Gender Inequality Index (GII)                           |
| HUMAN          | Demographics              | Urban population growth                                 |
|                | Development               | Human Development Index (HDI)                           |
|                | Displacement              | Number of displaced persons (DPs)                       |
|                |                           | DPs using clean cooking fuels (grid)                    |
|                |                           | DPs using clean cooking fuels (off-grid/mini-grid)      |
|                |                           | DPs with unrealised potential for electric cooking      |
|                | Logistics                 | Logistics Performance Index (LPI)                       |
|                | Manufacturing and imports | Manufacturing, value added (% of GDP)                   |
|                |                           | Access to electricity (all areas)                       |
|                |                           | Access to electricity (urban)                           |
|                | Grid                      | Electricity access projections (grid)                   |
|                |                           | Renewable energy share                                  |
|                |                           | Grid reliability                                        |
|                |                           | Access to electricity (all areas)                       |
| INFRASTRUCTURE |                           | Access to electricity (rural)                           |
| INFRASTRUCTURE | Mini-grid                 | Electricity access projections (mini-grid)              |
|                | wini-gna                  | Off-grid renewables capacity (mini-grid)                |
|                |                           | Number of mini-grid developers                          |
|                |                           | Number of people connected to mini-grids                |
|                |                           | Access to electricity (all areas)                       |
|                |                           | Access to electricity (rural)                           |
|                | Off-grid                  | Electricity access projections (off-grid)               |
|                |                           | Off-grid renewables capacity (standalone)               |
|                |                           | Off-grid lighting/appliance customers                   |
|                |                           |                                                         |

<sup>&</sup>lt;sup>5</sup> Table shows 40 indicators as two indicators appear more than once: access to electricity (rural) for both mini-grid and off-grid scenarios, and access to electricity (all areas) for all three scenarios.









# 2.3. Calculating indicator weightings

To represent the extent to which the above indicators contribute to the viability of a scale up of electric cooking is incorporated into the GMA, each indicator, sub-category and category is multiplied by a "weighting". These weightings represent their relative importance for each scenario while also considering the reliability and coverage of the indicators' dataset; lower weightings given to indicators with less reliable data and/or poorer coverage. A group of key stakeholders, including representatives from MECS, ESMAP, CCA and FCDO<sup>6</sup>, was asked to provide these relative importances through employing Multi-Criteria Decision Analysis (MCDA) techniques. These were gathered initially using the Delphi method [10] and SMART technique [11] (via two rounds of anonymous questionnaires) and finally through a focus group discussion. The process is summarised below:

- As per Delphi method, blank questionnaire distributed to group members alongside training on how to complete it. Anonymously, group members use the SMART technique to assign relative importance to indicators following the below steps (also shown in Figure 3):
  - (1) Assign weight of 100 to most influential indicator in sub-category
  - (2) Weight each indicator against others in sub-category, repeat for all sub-categories
  - (3) Follow same process, weighting sub-categories within categories
  - (4) Follow same process, weighting categories against each other.
- b) Responses collated and analysed. Condensed questionnaire re-distributed, highlighting indicators, subcategories, and categories with poor agreement or where that member's responses vary significantly relative to the rest of the group. Group members asked to revise weightings and/or provide comment or justification.
- c) Focus group discussion held to agree, by consensus, on final weightings with particular focus on areas where disagreement still present.

| Category               | Weight                   | Sub-category Weight                    |                          | Indicator                                    | Weight            |
|------------------------|--------------------------|----------------------------------------|--------------------------|----------------------------------------------|-------------------|
|                        |                          |                                        |                          | Users of eCook/clean alternatives etc.       | Indicator weights |
| Economics              | <i>90</i> <sup>(4)</sup> | Clean fuel users                       | <b>90</b> <sup>(3)</sup> | Potential growth, lifeline/elec. prices etc. | Indicator weights |
| LCOHOMICS              | Economics 90             |                                        | 50                       | Credit rating                                | 65 <sup>(2)</sup> |
| Physical               | 25 <sup>(4)</sup>        | Fuel markets 100 <sup>(3)</sup>        |                          |                                              |                   |
| riiysicai              | 23                       |                                        | 100                      | Mobile money                                 | 70 <sup>(2)</sup> |
| Human                  | 80 <sup>(4)</sup>        | Finance                                | <i>80</i> <sup>(3)</sup> |                                              |                   |
| пипап                  |                          |                                        |                          | OECD aid flows                               | 40 <sup>(2)</sup> |
| In free stresses to me | 100 <sup>(4)</sup>       | Solar resource, Deforestation etc.     | Sub-cat. weights         |                                              |                   |
| Infrastructure         | 100                      | Capacity, Business, Policy, Healthetc. | Sub-cat. weights         | RE finance flows                             | 10010             |
|                        |                          | Logistics, Manufacturing, Grid etc.    | Sub-cat. weights         |                                              | /                 |

Figure 3 - Weighting process using SMART technique, highlighting the indicator weightings assigned to the Finance sub-category.

<sup>&</sup>lt;sup>6</sup> Two weightings groups were originally targeted, to represent: "impact" – highlighting where electric cooking could have the greatest development impact; and "investment" – highlighting where electric cooking could present the most attractive investment or business opportunity. However, due to difficulties in fostering interest from investment stakeholders, the weighting process was only completed for the impact group.









An example of the relative importances gathered by the MCDA techniques and used for the national grid GMA scores are shown in Table 2. These were used to calculate the final weightings for multiplication with the indicators using the steps outlined in Table 3. The final weightings used in the study are represented in Figure 4.

| Table 2 - Indicator, | sub-category a | and category | relative importances | for national grid scenario |
|----------------------|----------------|--------------|----------------------|----------------------------|
|                      |                |              |                      |                            |

| Category       | Wt. | Sub-category        | Wt. | Indicator                                               | Wt. |
|----------------|-----|---------------------|-----|---------------------------------------------------------|-----|
|                |     |                     |     | Users of electric cooking                               | 100 |
|                |     | Clean fuel users    | 90  | Users of clean alternatives (e.g. LPG, biogas)          | 70  |
|                |     |                     |     | Users of commercialised polluting fuels (e.g. charcoal) | 70  |
|                |     | Fuel markets        | 100 | Unrealised potential for electric cooking               | 100 |
| ECONOMICS      | 90  | ruei markets        | 100 | Affordability of electricity                            | 70  |
|                |     |                     |     | Credit rating                                           | 65  |
|                |     | Finance             | 80  | Mobile money                                            | 70  |
|                |     | Finance             | 00  | OECD aid flows                                          | 40  |
|                |     |                     |     | Renewable energy finance flows                          | 100 |
| PHYSICAL       | 25  | Solar resource      | 50  | Photovoltaic power potential                            | 100 |
| FILIOICAL      | 25  | Deforestation       | 100 | Tree cover loss                                         | 100 |
|                | 80  | Capacity            | 45  | ICT/internet adoption                                   | 100 |
|                |     | Business            | 80  | Ease of Doing Business Index (EoDB)                     | 100 |
|                |     | Policy100Health85   |     | Regulatory Indicators for Sustainable Energy (RISE)     | 100 |
|                |     |                     |     | Household Air Pollution (HAP) attributable deaths       | 100 |
| HUMAN          |     | Gender              | 50  | Gender Inequality Index (GII)                           | 100 |
|                |     | Demographics        | 95  | Urban population growth                                 | 100 |
|                |     | Development         | 50  | Human Development Index (HDI)                           | 100 |
|                |     |                     |     | Number of displaced persons (DPs)                       | 35  |
|                |     | Displacement        | 25  | DPs using clean cooking fuels (grid)                    | 60  |
|                |     |                     |     | DPs using clean cooking fuels (off-grid/mini-grid)      | 100 |
|                |     | Logistics           | 60  | DPs with unrealised potential for electric cooking      | 100 |
|                |     | Manufact. & imports | 65  | Logistics Performance Index (LPI)                       | 100 |
|                |     |                     |     | Manufacturing, value added (% of GDP)                   | 100 |
| INFRASTRUCTURE | 100 | Grid 1              |     | Access to electricity (all areas)                       | 100 |
|                |     |                     | 100 | Access to electricity (urban)                           | 80  |
|                |     |                     |     | Electricity access projections (grid)                   | 75  |
|                |     |                     |     | Renewable energy share                                  | 70  |

#### Table 3 - Process for calculating indicator weightings from relative importances

| Ste | eps                                                                                                                           | Example (grid scenario)                                                       |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| 1)  | Relative importances are divided by the total of the importances in the sub-                                                  | Users of electric cooking (importance fraction):<br>100 / (100+70+70) = 0.416 |  |  |
|     | category/category/overall to calculate the<br>"importance fraction".                                                          | Clean fuel users (importance fraction):<br>90 / (90+100+80) = 0.333           |  |  |
|     |                                                                                                                               | Economics:<br>90 / (90+25+80+100) = 0.305                                     |  |  |
| Ĺ   | These importance fractions are multiplied<br>by the number of other importance<br>fractions within the sub-category/category. | Users of electric cooking (adjusted fraction):<br>0.416 * 3 = 1.25            |  |  |
|     |                                                                                                                               | Clean fuel users (adjusted fraction):<br>0.333 * 3 = 1                        |  |  |
|     |                                                                                                                               | Economics (adjusted fraction):<br>Remains unchanged (0.305…)                  |  |  |
| 3)  | These fractions are multiplied together<br>and scaled so that the total of all the                                            | Users of electric cooking (unscaled weighting):<br>1.25*1*0.305 = 0.381       |  |  |
|     | fractions is equal to one.                                                                                                    | Users of electric cooking (final weighting):<br>0.381 / 8.04 = 0.0473         |  |  |









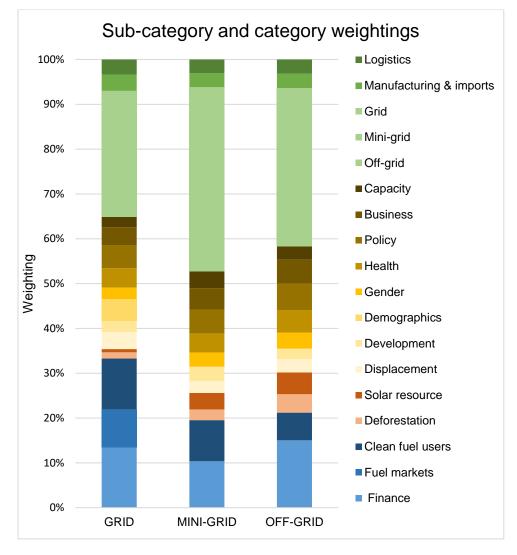



Figure 4 - Sub-category and category weightings

## 2.4. Data pre-processing

To calculate the score for all countries for each scenario, a weighted sum model requires a complete database without any gaps. The first step towards achieving this was to remove countries with insufficient coverage by the indicators (threshold set at 70%). As such, the initial list of 142 DAC listed countries was reduced to 130<sup>7</sup>.

The second step was to apply upper and lower bounds to datasets. Upper bounds were set using the following criteria (bounds used for all indicators shown in Appendix 2):

- If indicator is a percentage (e.g. % users of electric cooking), set upper bound at 100%
- If indicator is an index, upper bound set at theoretical limit (e.g. Logistics Performance Index limit = 5)
- If indicator has no theoretical limit, upper bound set at the global maximum value
  - If indicator datapoint is identified as an outlier, upper bound set at 90<sup>th</sup> percentile.

<sup>&</sup>lt;sup>7</sup> Removed countries: Wallis and Futuna, Saint Helena, Montserrat, Tokelau, Niue, West Bank and Gaza Strip, Kosovo, North Korea, Tuvalu, Nauru, Libya, Cuba









An example dataset is shown in Figure 5 to show the effect of gaining greater detail through applying bounds.

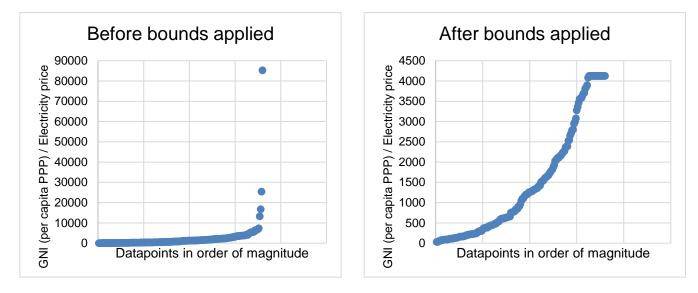



Figure 5 - Effect of imposition of bounds on affordability of electricity indicator

The third data pre-processing step normalises the indicators; scaling the datapoints so that the minimum value is zero and maximum value is one.

The final step before calculating country scores, fills all gaps in the GMA database using imputation. Although one of the three criteria for indicators' inclusion in the analysis was their level of global coverage, in some cases their importance in representing the viability of a scale up of electric cooking and a lack of appropriate alternatives meant that some with poor coverage were included (see section 2.4.2). In order to produce an accurate, but also complete database, two imputation methods were used: imputation by regression, and imputation by grouping.

#### 2.4.1. Imputation by regression

Indicators with inadequate coverage (less than 90% of countries with datapoints) were compared with all other indicators in the database and selected additional datasets to find strong correlation. A polynomial fit using regression techniques is undertaken to characterise the relationship between pairs of variables. The coefficient of determination<sup>8</sup> is used to quantify the variation between pairs of variables and this provides a value between 0 and 1 that provides a 'goodness of fit' measure. Where strong enough correlation was found (R<sup>2</sup> the coefficient of determination) takes a value at least 0.7 imputation by regression was used to fill gaps (using interpolation) and significantly improve global coverage. Table 4 shows the results of imputation by regression indicating coverage before and after, with source and proxy used for the imputation. Figure 6 shows an example data set comparison before and after imputation.

| Indicator                                  |        | ge    | Source                            | Descrit                                  |  |
|--------------------------------------------|--------|-------|-----------------------------------|------------------------------------------|--|
| Indicator                                  | Before | After | Source                            | Proxy                                    |  |
| Mobile money                               | 72%    | 97%   | WB - Global Findex Database       | Broadband Subscriptions * GNI per capita |  |
| Gender Inequality Index (GII)              | 83%    | 99%   | UNDP - Gender Inequality Index    | HDI                                      |  |
| DPs using clean fuels (grid)               | 73%    | 100%  | MEI - Refugees and Cooking        | Access to clean fuels %                  |  |
| DPs using clean fuels (off/mini grid)      | 73%    | 100%  | MEI - Refugees and Cooking        | Access to clean fuels % (rural)          |  |
| DPs with unrealised potential for eCook    | 73%    | 97%   | MEI - Refugees and Cooking        | Access to electricity %                  |  |
| Logistics Performance Index (LPI)          | 81%    | 100%  | WB - Logistics Performance Index  | E-Government Participation Index * HDI   |  |
| Electricity access projections (grid)      | 45%    | 100%  | GEP - Electrification Projections | Access to electricity % * HDI            |  |
| Grid reliability                           | 65%    | 96%   | WB - Ease of Doing Business       | EoDB (Getting electricity score) * HDI   |  |
| Electricity access projections (mini-grid) | 45%    | 100%  | GEP - Electrification Projections | Access to electricity % * HDI            |  |
| Electricity access projections (off-grid)  | 45%    | 100%  | GEP - Electrification Projections | Access to electricity * HDI              |  |

#### Table 4 - Coverage, source and proxies for imputation of indicators by regression

8 https://online.stat.psu.edu/stat462/node/95/









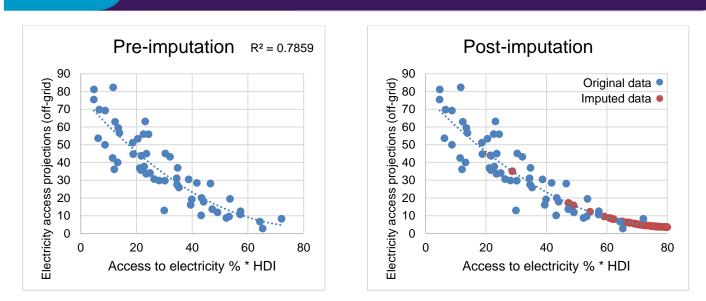



Figure 6 – Effect of imputation by regression on electricity access projections (off-grid) indicator

### 2.4.2. Imputation by grouping

After imputation by regression, all indicators (apart from those where no suitable proxy indicator could be found<sup>9</sup>) had at least 90% coverage. To complete the database to 100% coverage, a three-stage process, using loosening grouping criteria, imputed values based on the median of other countries with datapoints in the same group<sup>10</sup> (shown in Table 5).

The first grouping stage sees missing values replaced with an average from other countries in the same region, income group [12] and whether they are classified as heavily indebted [13], a small state [14] or fragile state [15]. The second stage sees these criteria loosened, with missing values replaced by an average from other countries in the same region and whether they are a small state or not. To fill the small number of remaining gaps, the criteria is further loosened to take an average based on the small states grouping only.

|                      |                  | Pre-       | Imputation stage |       | age    |
|----------------------|------------------|------------|------------------|-------|--------|
|                      |                  | imputation | 1                | 2     | 3      |
|                      | Completeness     | 97.2%      | 98.9%            | 99.7% | 100.0% |
| 5                    | Region           |            |                  |       |        |
| ia j                 | Income group     |            |                  |       |        |
| iter                 | Heavily indebted |            |                  |       |        |
| Grouping<br>criteria | Small States     |            |                  |       |        |
| Ŭ                    | Fragile state    |            |                  |       |        |



### 2.4.3. Calculate GMA score and rank

The final scores for each country were calculated by multiplying the datapoints for each indicator, by its respective weighting (as produced by method detailed in section 2.3). Countries were ranked for each scenario, with the highest scoring countries having the best ranking (see section 4. Results and Findings).

<sup>&</sup>lt;sup>10</sup> Groupings: Region – East Asia & Pacific, Europe & Central Asia, Middle East & North Africa, Latin America & Caribbean, South Asia, Sub-Saharan Africa; Income group – high, upper middle, lower middle, low; Heavily indebted – yes, no; Small state – yes, no; Fragile (and conflict affected) state – yes, no.









<sup>&</sup>lt;sup>9</sup> No proxy found for six indicators. Two had moderate coverage (RISE 74%, off-grid renewables capacity (mini-grids) 80%), so were included in imputation by grouping. Four had poor coverage (no. mini-grid developers 57%, no. people connected to mini-grids 63%, off-grid renewables capacity (standalone) 48%, and off-grid lighting/appliance customers 65%); countries with no data for these indicators were given a value of zero.

# 3. Limitations

The purpose of creating a composite indicator is to distil the complexity of a problem into a series of quantitative indicators which are combined into a single score which is simpler to understand, communicate and interpret for a wider range of stakeholders. Common criticisms of this approach are that it can over-simplify complex issues and be misleading or misused when poorly understood, especially when unreliable datasets are used [16] [17] [18]. To avoid some of these pitfalls, this report has provided a detailed methodology and results (with more information available via the excel tool<sup>11</sup>) and engaged with a multidisciplinary steering group at all stages. In addition, key limitations associated with the availability and accuracy of data are summarised below.

During the "identification of factors and representative datasets" stage (as detailed in section 2.2) a wide range of factors which influence the viability of a scale up of electric cooking were long- and short-listed through consultation with stakeholders from multiple disciplines. Through an extensive review of publicly available sources, datasets were matched with these factors to represent them in the GMA database, but for a number of factors suitable datasets were not available. Three key areas are listed below:

#### Cost competitiveness of electric cooking – lack of fuel prices data

To the authors' knowledge, there is no publicly available dataset for the cost of cooking fuels (LPG, charcoal and kerosene in particular) across the Global South, preventing comparison with the cost of cooking on electricity (electricity prices across the globe are available from the Ease of Doing Business database). Significant attempts to source this information were made, including via an online survey sent to Clean Cooking Alliance (CCA) networks (amongst others), but were able to collect a small number of responses from only 20 countries.

#### Knowledge gaps around the relationship between cuisines, cooking practices and cooking energy consumption

There is still much to be learned about the differences in energy required to cook foods on different devices, and how this varies according to the cooking processes involved for cooking "typical daily/weekly" menus across the world. For example, a diet which often includes boiling or stewing foods for long periods (e.g. tripe, beans) are well suited to energy-efficient insulated and pressurised electrical devices, while cooks often prefer LPG when quickly shallow frying.

### Cooking fuels and electricity access – global datasets still lack multi-dimensionality.

Some of the highest weighted, and therefore most influential indicators relate to the cooking fuels used (drawing on the WHO household energy database [19]) and access to electricity (drawing on the World Bank DataBank [20]). However, these datasets still lack the necessary nuance to account for fuel stacking and tiers of electricity access (as highlighted by ESMAP [3]) which vary hugely across the Global South and is likely to strongly influence the viability of a scale up of electric cooking. In order to account for fuel stacking to some extent the "upper bound" (rather than the average) of household cooking fuels is used in the GMA scores, however, until a much larger number of countries have implemented data gathering methodologies such as ESMAP's Multi-tier Framework [21] or incorporated more nuance into energy and cooking questions in household censuses this will continue to hinder national, regional and global analyses.

### Mini-grid and off-grid market size and strength - poor global coverage

The availability of data on the size and strength of mini-grid and off-grid markets varies significantly between countries with many having little or no data. The GMA's mini-grid and off-grid infrastructure indicators use datasets (see Appendix 1 for more information) which rely on countries voluntarily updating open access resources (such [22] and [23]), governments keeping publicly available records of their sectors or being members of an association which collects such data [24] which leads to databases of varying quality for around half of the countries included in the GMA. Given the current growth of the mini-grid and off-grid markets, and its expected continued acceleration in the coming years, significant improvements in such resources are needed, alongside understanding of which cooking fuels are currently being used by those with different tiers of energy access (perhaps more useful than current datasets which focus on the arbitrary disaggregation of rural vs urban).

<sup>11</sup> Link TBC









# 4. Results and Findings

This section outlines the results of the GMA as a global ranking and score for each of the national grid, mini-grid and off-grid (standalone) supported electric cooking scenarios. A high score/ranking indicates better viability for a scale up of electric cooking, and a low score/ranking indicates a worse viability. Short descriptions of selected countries' scores (grouped when of countries' scores are similar) are also provided. This is followed by further analysis (in section 4.4) highlighting "enabling environment" indicators and comparing GMA scores with and without selected indicators.

# 4.1. National grid supported electric cooking

The scale up of national grid supported cooking (Figure 7 and Table 8) is most viable in China, with other strong economies (e.g. Turkey, Colombia, Brazil, Indonesia, Malaysia, Mexico and India) also inside the top 10. The ranking list suggests that national grid supported electric cooking is most viable in countries classified as "emerging markets". In fact, using Morgan Stanley Capital International (MSCI) market classifications [25], eight of the top ten countries in the ranking list are considered emerging markets, while Costa Rica and Kazakhstan make up the remainder of the top 10. The lowest scoring countries are predominantly concentrated in sub-Saharan Africa (with the bottom 14 all countries from this region). High scoring countries for the viability of scale up of national grid supported electric cooking often have widespread access to reliable electricity, but low numbers of people using it for cooking (and thus high unrealised potential for electric cooking) and usually already have large proportions of using clean alternatives to electric cooking (e.g. LPG, biogas). They also have high scores for indicators in the human and economics categories (e.g. large OECD aid and renewable energy finance flows, and high Ease of Doing Business and sustainable energy policy scores).

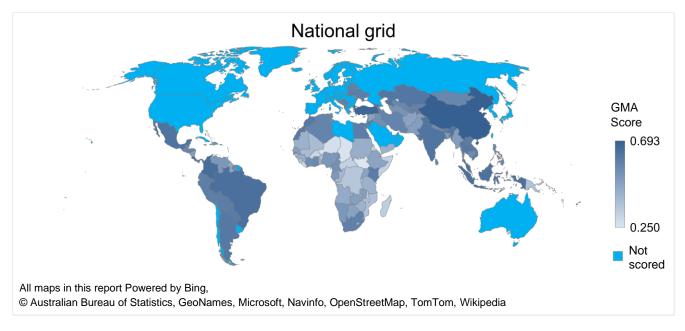



Figure 7 – Choropleth of GMA score for national grid scenario

Nevertheless, there are still significant proportions of people cooking with biomass in these countries (Table 6). For example, especially given their large populations, **China and India still have large numbers of people cooking on biomass, while they score very highly on the national grid scenario.** However, particularly in India, many of these are likely to be cooking on freely-collected biomass (as they have relatively low numbers of people using commercialised polluting fuels), so have little existing cooking energy expenditure, and are perhaps likely to have weaker energy infrastructure (due to living in remote or informal settlements).

Malaysia, Thailand, Laos, Serbia, Kenya and Vietnam (and a number of other countries shown in Table 6) also have significant numbers in need of a transition whilst also scoring well for the national grid scenario. More analysis relating cooking fuels and the GMA score included in section 5.3.2).









|      |                        | *Commercialised<br>polluting fuels (%) |                 |                | **Biomass (%)  |                 |                |
|------|------------------------|----------------------------------------|-----------------|----------------|----------------|-----------------|----------------|
| Rank | Country                | Lower<br>bound                         | Primary<br>fuel | Upper<br>bound | Lower<br>bound | Primary<br>fuel | Upper<br>bound |
| 1    | China                  | 1                                      | 7               | 21             | 11             | 28              | 50             |
| 7    | Malaysia               | 0                                      | 0               | 30             | 0              | 1               | 20             |
| 9    | India                  | 0                                      | 2               | 10             | 26             | 48              | 69             |
| 11   | Thailand               | 4                                      | 10              | 22             | 4              | 10              | 20             |
| 16   | Laos                   | 9                                      | 26              | 54             | 41             | 65              | 85             |
| 18   | Serbia                 | 0                                      | 0               | 8              | 16             | 33              | 53             |
| 19   | Kenya                  | 9                                      | 22              | 44             | 52             | 66              | 79             |
| 23   | Vietnam                | 0                                      | 2               | 14             | 18             | 32              | 49             |
| 27   | Bhutan                 | 0                                      | 0               | 10             | 3              | 21              | 52             |
| 34   | Bosnia and Herzegovina | 0                                      | 0               | 7              | 22             | 54              | 89             |
| 35   | Honduras               | 0                                      | 3               | 10             | 17             | 40              | 60             |
| 38   | Sri Lanka              | 0                                      | 1               | 7              | 49             | 67              | 83             |
| 39   | Montenegro             | 0                                      | 2               | 11             | 20             | 42              | 67             |
| 40   | North Macedonia        | 0                                      | 2               | 27             | 10             | 30              | 56             |
| 41   | Mongolia               | 8                                      | 15              | 27             | 23             | 34              | 48             |
| 42   | Uzbekistan             | 0                                      | 0               | 13             | 0              | 13              | 50             |
| 45   | Philippines            | 5                                      | 12              | 24             | 26             | 41              | 56             |
| 47   | Dominica               | 0                                      | 1               | 48             | 0              | 11              | 42             |
| 48   | Guatemala              | 0                                      | 2               | 16             | 36             | 50              | 66             |
| 49   | Ghana                  | 21                                     | 31              | 46             | 28             | 40              | 53             |

\*Commercialised polluting fuels = kerosene, charcoal, coal,\*\*Biomass = wood, crop waste, dung

It is evident that high scoring countries for this scenario also often score highly across what may be called "development" indicators including HDI, GII, Ease of Doing Business, RISE and ICT/internet adoption (more in section 4.4).

However, many high scoring countries have relatively low renewable energy shares (average of 40% for the top 10) and as such need to couple a transition to electric cooking with decarbonisation of their generation infrastructure; such countries include: Thailand, Kazakhstan, India, Mexico, Malaysia and Indonesia. High scoring countries with relatively high renewable energy shares are shown in Table 7 and comparing this with Table 6 highlights the potential for a transition to electric cooking in Kenya, with strong GMA score, 89% renewable grid electricity and high proportions of its population using polluting fuels for cooking (others include Laos, Honduras, Montenegro, Guatemala and Ghana). Conversely, other high scoring countries with significant proportions using polluting fuels have carbon intensive grids; China (28% renewable), Malaysia (18%), India (21%), Thailand (19%) and Vietnam (28%), despite evidence that renewable generation is (and has been for some years) often cheaper than fossil fuels [26]–[29].

Table 7 - Countries (from top 50) with renewable energy share over 50%

| Rank | Country     | Renewable        |
|------|-------------|------------------|
|      | ,           | energy share (%) |
| 3    | Colombia    | 74.0             |
| 4    | Costa Rica  | 99.2             |
| 5    | Brazil      | 83.1             |
| 12   | Georgia     | 76.9             |
| 15   | Panama      | 82.1             |
| 16   | Laos        | 57.5             |
| 17   | Paraguay    | 100.0            |
| 19   | Kenya       | 89.2             |
| 25   | Peru        | 61.7             |
| 26   | El Salvador | 67.6             |
| 27   | Bhutan      | 100.0            |
| 28   | Tajikistan  | 93.1             |
| 29   | Ecuador     | 78.9             |
| 32   | Kyrgyzstan  | 92.4             |
| 35   | Honduras    | 74.9             |
| 37   | Albania     | 100.0            |
| 39   | Montenegro  | 63.0             |
| 44   | Belize      | 96.4             |
| 48   | Guatemala   | 59.4             |
| 49   | Ghana       | 50.2             |
|      |             |                  |









### 4.1.1. Notable countries in the top 20 (national grid scenario)

**Costa Rica** – has a strong market of clean fuel users (electricity primary fuel 48% (LB 38%, UB<sup>12</sup> 58%)) and LPG primary fuel 46% (LB 36%, UB 56%) and universal access to reliable electricity (SAIDI<sup>13</sup> 0.5hrs/yr) which is almost entirely renewable (99%). There are some using biomass for cooking (primary fuel 5% (LB 2%, UB 9%)) which could be targeted as a priority to achieve a complete transition to clean cooking fuels. Although not considered an emerging economy it also has good scores across several human indicators, including HDI, ICT/internet adoption and gender inequality.

**Georgia and Panama** – also have strong clean fuel markets (users of clean alternatives 93% and 97% respectively) and widespread access to reliable electricity (SAIDI 4.7 and 7.8hrs/yr respectively). Their renewable energy shares are high (77% and 82% respectively) which means a transition from the dominant fuel in the countries, LPG, would be environmentally beneficial. However, transitioning the significant proportion who still use biomass for cooking in the two countries (primary fuel: Georgia 19% (LB 7%, UB 38%), Panama 11% (LB 2%, UB 29%)) should be the main priority, particularly in Georgia which has the third highest number of HAP attributable deaths in the top 33 countries. As such, there is still a need for many to reduce their reliance on polluting fuels in Georgia and Panama and both countries are well positioned for this to be realised.

Laos – has almost universal access to electricity which is reliable (SAIDI 4hrs/yr) and relatively renewable (57%) and has some of the highest levels of investment in renewables both from public and international sources despite being a relatively small country. However, almost everyone in the country cooks with biomass (primary fuel 65% (LB 41%, UB 85%)) and/or charcoal (primary fuel 26% (LB 9%, UB 50%)), it has the highest levels of HAP attributable deaths in the top 33, and one of the highest levels of tree cover loss. This indicates that Laos has an urgent need to transition its population onto modern energy cooking, and also the opportunity to harness its strong electricity infrastructure in affecting this transition.

**Paraguay** – has a mixture of cooking fuels, with many using clean fuels such as LPG (primary fuel 52% (LB 41%, UB 64%)) and also electricity (primary fuel 15% (LB 7%, UB 25%)). Like many others at the top of the national grid GMA rankings, Paraguay has universal access to electricity, which is relatively reliable (SAIDI 21.9hrs/yr) and affordable. In addition, the national grid is 100% supplied by renewables. However, there are still many who rely on biomass (primary fuel 25% (LB 17%, UB 34%)) and/or charcoal (primary fuel 7% (LB 4%, UB 10%)) and tree cover loss is one of the highest of any country. As such, with its completely renewable national grid, Paraguay has huge potential to increase adoption levels of electric cooking by those using traditional fuels, as well as those using LPG.

**Serbia** – has the highest existing level of electricity use for cooking (primary fuel 47% (LB 30%, UB 66%)) of any country in the top 26, with the electricity being accessible to all, reliable (SAIDI 3.9hrs/yr) and relatively cheap. Serbia also has good scores for human indicators (e.g. HDI, gender inequality index and Ease of Doing Business), but makes relatively little investment in renewable energy and has a national grid which is just 32% renewable. Despite being what could perhaps be considered a more developed nation than many others in the GMA analysis, the use of biomass for cooking is still common (primary fuel 33% (LB 16%, UB 53%)). As such, there is the potential for significant health, environmental and gender impacts by encouraging more widespread adoption of modern energy cooking services which would be augmented by efforts to decarbonise electricity infrastructure more broadly.

**Kenya** – scores highly across all GMA scenarios (particularly off-grid (2<sup>nd</sup>)) but is also 19th for the national grid scenario with a highly renewable national grid (89%) which is reliable (SAIDI 12hrs/yr). The country has strong policy (2nd highest RISE score excluding emerging markets), strong Ease of Doing Business score and finance indicators (e.g. third highest for mobile money and high levels of investment in renewables). Kenya also has the second highest proportion of people using commercialised polluting fuels (primary fuel 22% (LB 9%, UB 44%)) in the top 46 of the national grid scenario and so has large numbers of people with the need, as well as ability to pay for, a transition to electric cooking which is strongly viable in all contexts.

<sup>&</sup>lt;sup>13</sup> System Average Interruption Duration Index (SAIDI) is the number of hours of electricity supply interruption the average customer experiences per year (as provided by Ease of Doing Business database)









<sup>&</sup>lt;sup>12</sup> GMA database uses UB (95% confidence interval upper bound of proportion of population with primary reliance on fuel) as proxy indicator for the proportion of households for whom the fuel is part of their 'fuel stack'; i.e. they cook with it but not necessarily as their primary fuel.

### 4.1.2. Other top 20 countries (national grid scenario)

**Kazakhstan and Morocco** – are similar to Costa Rica in that they have strong clean fuel markets (users of clean alternatives 100%, almost all LPG) widespread and reliable electricity infrastructure (SAIDI 1 and 0.5hrs/yr respectively) and high scores for most development indicators. Kazakhstan has particularly cheap electricity (\$0.04/kWh) and relatively high levels of electric cooking (primary fuel 22% (LB 7%, UB 42%)), but low renewable energy share (10%). Electricity is more expensive in Morocco (\$0.12/kWh), slightly more renewable (21%) and there have been high levels of public investment in renewables in recent years. As such, while Kazakhstan and Morocco have strong viability for the scale up of electric cooking, a transition away from LPG onto electric cooking needs to be supported by significant growth in the renewable share of electricity generation.

Table 8 – GMA rankings and scores for national grid scenario (emerging markets in dark blue, frontier<sup>14</sup> markets in light blue)

| Rank |                        | Score |
|------|------------------------|-------|
| 1    | China                  | 0.693 |
| 2    | Turkey                 | 0.677 |
| 3    | Colombia               | 0.650 |
| 4    | Costa Rica             | 0.640 |
| 5    | Brazil                 | 0.639 |
| 6    | Indonesia              | 0.637 |
| 7    | Malaysia               | 0.630 |
| 8    | Mexico                 | 0.628 |
| 9    | India                  | 0.623 |
| 10   | Kazakhstan             | 0.617 |
| 11   | Thailand               | 0.614 |
| 12   | Georgia                | 0.613 |
| 13   | Argentina              | 0.610 |
| 14   | Morocco                | 0.609 |
| 15   | Panama                 | 0.608 |
| 16   | Laos                   | 0.602 |
| 17   | Paraguay               | 0.602 |
| 18   | Serbia                 | 0.599 |
| 19   | Kenya                  | 0.598 |
| 20   | Egypt                  | 0.597 |
| 21   | Jordan                 | 0.597 |
| 22   | Bolivia                | 0.596 |
| 23   | Vietnam                | 0.596 |
| 24   | Ukraine                | 0.595 |
| 25   | Peru                   | 0.595 |
| 26   | El Salvador            | 0.591 |
| 27   | Bhutan                 | 0.588 |
| 28   | Tajikistan             | 0.587 |
| 29   | Ecuador                | 0.583 |
| 30   | South Africa           | 0.583 |
| 31   | Belarus                | 0.582 |
| 32   | Kyrgyzstan             | 0.582 |
| 33   | Iran                   | 0.575 |
| 34   | Bosnia and Herzegovina | 0.574 |
| 35   | Honduras               | 0.573 |
| 36   | Algeria                | 0.573 |
| 37   | Albania                | 0.573 |
| 38   | Sri Lanka              | 0.572 |
| 39   | Montenegro             | 0.571 |
| 40   | North Macedonia        | 0.570 |
| 41   | Mongolia               | 0.565 |
| 42   | Uzbekistan             | 0.564 |
| 43   | Armenia                | 0.559 |

| 44 | Belize                  | 0.559 |
|----|-------------------------|-------|
| 45 | Philippines             | 0.559 |
| 46 | Tunisia                 | 0.555 |
| 47 | Dominica                | 0.554 |
| 48 | Guatemala               | 0.554 |
| 49 | Ghana                   | 0.553 |
| 50 | Dominican Republic      | 0.552 |
| 51 | Suriname                | 0.552 |
| 52 | Azerbaijan              | 0.551 |
| 53 | Cambodia                | 0.548 |
| 54 | Nepal                   | 0.547 |
| 55 | Fiji                    | 0.545 |
| 56 | Côte d'Ivoire           | 0.544 |
| 57 | Mauritius               | 0.542 |
| 58 | Jamaica                 | 0.535 |
| 59 | Iraq                    | 0.535 |
| 60 | Grenada                 | 0.535 |
| 61 | Antigua and Barbuda     | 0.532 |
| 62 | Cameroon                | 0.530 |
| 63 | Moldova                 | 0.529 |
| 64 | St. Vinc. and the Gren. | 0.527 |
| 65 | Turkmenistan            | 0.522 |
| 66 | Saint Lucia             | 0.517 |
| 67 | Maldives                | 0.515 |
| 68 | Marshall Islands        | 0.510 |
| 69 | Lebanon                 | 0.510 |
| 70 | Namibia                 | 0.510 |
| 71 | Venezuela               | 0.510 |
| 72 | Nigeria                 | 0.510 |
| 73 | Eswatini                | 0.508 |
| 74 | Cabo Verde              | 0.508 |
| 75 | Gabon                   | 0.503 |
| 76 | Tonga                   | 0.497 |
| 77 | Bangladesh              | 0.496 |
| 78 | Samoa                   | 0.492 |
| 79 | Myanmar                 | 0.490 |
| 80 | Nicaragua               | 0.489 |
| 81 | Equatorial Guinea       | 0.489 |
| 82 | Senegal                 | 0.487 |
| 83 | Pakistan                | 0.487 |
| 84 | Zambia                  | 0.484 |
| 85 | Kiribati                | 0.477 |
| 86 | Botswana                | 0.476 |
| 87 | Palau                   | 0.476 |
|    |                         |       |

| 88         Uganda         0.470           89         Syrian Arab Republic         0.470           90         Afghanistan         0.470           91         Ethiopia         0.468           92         Timor-Leste         0.461           93         Comoros         0.456           94         Guyana         0.456           95         Sao Tome and Principe         0.452           96         Rwanda         0.4446           97         Angola         0.4433           100         Sudan         0.433           100         Sudan         0.433           101         Yemen         0.427           102         Djibouti         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.418           106         Micronesia         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388                                                          | í.  | 5                     |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------|-------|
| 90         Afghanistan         0.470           91         Ethiopia         0.468           92         Timor-Leste         0.461           93         Comoros         0.456           94         Guyana         0.456           95         Sao Tome and Principe         0.452           96         Rwanda         0.446           97         Angola         0.445           98         Guinea         0.433           100         Sudan         0.433           100         Sudan         0.433           100         Sudan         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.418           106         Micronesia         0.416           107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385                                                                    | 88  | Uganda                | 0.470 |
| 90         Afghanistan         0.470           91         Ethiopia         0.468           92         Timor-Leste         0.461           93         Comoros         0.456           94         Guyana         0.456           95         Sao Tome and Principe         0.452           96         Rwanda         0.446           97         Angola         0.445           98         Guinea         0.433           100         Sudan         0.433           100         Sudan         0.433           100         Sudan         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.418           106         Micronesia         0.416           107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385                                                                    | 89  | Syrian Arab Republic  | 0.470 |
| 91         Ethiopia         0.468           92         Timor-Leste         0.461           93         Comoros         0.456           94         Guyana         0.456           95         Sao Tome and Principe         0.452           96         Rwanda         0.446           97         Angola         0.445           98         Guinea         0.433           100         Sudan         0.433           100         Sudan         0.433           101         Yemen         0.427           102         Djibouti         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.418           106         Micronesia         0.416           107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385                                                                      | 90  | Afghanistan           | 0.470 |
| 92         Timor-Leste         0.461           93         Comoros         0.456           94         Guyana         0.456           95         Sao Tome and Principe         0.452           96         Rwanda         0.4446           97         Angola         0.4433           98         Guinea         0.433           100         Sudan         0.433           101         Yemen         0.427           102         Djibouti         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.410           108         Congo, Republic         0.400           109         Haiti         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.370           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.                                                | 91  |                       | 0.468 |
| 94         Guyana         0.456           95         Sao Tome and Principe         0.452           96         Rwanda         0.446           97         Angola         0.445           98         Guinea         0.433           100         Sudan         0.433           101         Yemen         0.427           102         Djibouti         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.416           107         Togo         0.410           108         Congo, Republic         0.420           109         Haiti         0.399           110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.370           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep. <t< th=""><th>92</th><th></th><th>0.461</th></t<>       | 92  |                       | 0.461 |
| 95         Sao Tome and Principe         0.452           96         Rwanda         0.446           97         Angola         0.445           98         Guinea         0.433           100         Sudan         0.433           101         Yemen         0.427           102         Djibouti         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.416           107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.370           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.3320           122         Central African Repu                                         | 93  | Comoros               | 0.456 |
| 96         Rwanda         0.446           97         Angola         0.445           98         Guinea         0.436           99         Lesotho         0.433           100         Sudan         0.433           101         Yemen         0.427           102         Djibouti         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.418           106         Micronesia         0.416           107         Togo         0.410           108         Congo, Republic         0.4400           109         Haiti         0.399           110         Benin         0.399           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.370           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.326<                                                  | 94  | Guyana                | 0.456 |
| 96         Rwanda         0.446           97         Angola         0.445           98         Guinea         0.436           99         Lesotho         0.433           100         Sudan         0.433           101         Yemen         0.427           102         Djibouti         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.416           107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.399           110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.370           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.3320                                                        | 95  | Sao Tome and Principe | 0.452 |
| 98         Guinea         0.436           99         Lesotho         0.433           100         Sudan         0.433           101         Yemen         0.427           102         Djibouti         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.418           106         Micronesia         0.416           107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.379           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.326           121         Somalia         0.320           122         Central African Republic         0.317           123         Eritrea </th <th>96</th> <th></th> <th>0.446</th> | 96  |                       | 0.446 |
| 99         Lesotho         0.433           100         Sudan         0.433           101         Yemen         0.427           102         Djibouti         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.418           106         Micronesia         0.416           107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.399           111         Vanuatu         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.379           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.330           120         Malawi         0.320           122         Central African Republic         0.317           123         Erit                                         | 97  | Angola                | 0.445 |
| 100         Sudan         0.433           101         Yemen         0.427           102         Djibouti         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.418           106         Micronesia         0.416           107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.390           111         Vanuatu         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.370           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.330           120         Malawi         0.320           121         Somalia         0.320           122         Central African Republic         0.317           123         Eri                                         | 98  | Guinea                | 0.436 |
| 101         Yemen         0.427           102         Djibouti         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.418           106         Micronesia         0.416           107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.379           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.330           120         Malawi         0.320           121         Somalia         0.320           122         Central African Republic         0.317           123         Eritrea         0.314           125         Buru                                         | 99  | Lesotho               | 0.433 |
| 101         Yemen         0.427           102         Djibouti         0.426           103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.418           106         Micronesia         0.416           107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.379           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.330           120         Malawi         0.320           121         Somalia         0.320           122         Central African Republic         0.317           123         Eritrea         0.314           125         Buru                                         | 100 | Sudan                 | 0.433 |
| 103         Mauritania         0.425           104         Tanzania         0.424           105         Zimbabwe         0.418           106         Micronesia         0.416           107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.379           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.330           120         Malawi         0.320           121         Somalia         0.320           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         <                                     | 101 | Yemen                 | 0.427 |
| 104       Tanzania       0.424         105       Zimbabwe       0.418         106       Micronesia       0.416         107       Togo       0.410         108       Congo, Republic       0.400         109       Haiti       0.399         110       Benin       0.390         111       Vanuatu       0.388         112       Mali       0.388         113       Solomon Islands       0.385         114       Gambia, The       0.379         115       Mozambique       0.374         116       Papua New Guinea       0.370         117       Sierra Leone       0.363         118       Congo, Dem. Rep.       0.353         119       Madagascar       0.330         120       Malawi       0.326         121       Somalia       0.320         122       Central African Republic       0.317         123       Eritrea       0.317         124       Guinea-Bissau       0.314         125       Burkina Faso       0.304         126       Burundi       0.293         127       Liberia       0.291     <                                                                                                           | 102 | Djibouti              | 0.426 |
| 105         Zimbabwe         0.418           106         Micronesia         0.416           107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.379           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.330           120         Malawi         0.326           121         Somalia         0.326           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127                                              | 103 | Mauritania            | 0.425 |
| 106         Micronesia         0.416           107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.379           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.330           120         Malawi         0.326           121         Somalia         0.326           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         <                                     | 104 | Tanzania              | 0.424 |
| 107         Togo         0.410           108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.379           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.330           120         Malawi         0.326           121         Somalia         0.326           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Ch                                         | 105 | Zimbabwe              | 0.418 |
| 108         Congo, Republic         0.400           109         Haiti         0.399           110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.379           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.330           120         Malawi         0.326           121         Somalia         0.326           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                  | 106 | Micronesia            | 0.416 |
| 109         Haiti         0.399           110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.379           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.330           120         Malawi         0.326           121         Somalia         0.326           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                      | 107 |                       | 0.410 |
| 110         Benin         0.390           111         Vanuatu         0.388           112         Mali         0.388           113         Solomon Islands         0.385           114         Gambia, The         0.379           115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.300           120         Malawi         0.326           121         Somalia         0.320           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                | 108 | Congo, Republic       | 0.400 |
| 111       Vanuatu       0.388         112       Mali       0.388         113       Solomon Islands       0.385         114       Gambia, The       0.379         115       Mozambique       0.374         116       Papua New Guinea       0.370         117       Sierra Leone       0.363         118       Congo, Dem. Rep.       0.353         119       Madagascar       0.330         120       Malawi       0.326         121       Somalia       0.320         122       Central African Republic       0.317         123       Eritrea       0.314         125       Burkina Faso       0.304         126       Burundi       0.293         127       Liberia       0.291         128       Niger       0.273         129       Chad       0.258                                                                                                                                                                                                                                                                                                                                                                      | 109 |                       | 0.399 |
| 112       Mali       0.388         113       Solomon Islands       0.385         114       Gambia, The       0.379         115       Mozambique       0.374         116       Papua New Guinea       0.370         117       Sierra Leone       0.363         118       Congo, Dem. Rep.       0.353         119       Madagascar       0.300         120       Malawi       0.326         121       Somalia       0.320         122       Central African Republic       0.317         123       Eritrea       0.314         125       Burkina Faso       0.304         126       Burundi       0.293         127       Liberia       0.291         128       Niger       0.273         129       Chad       0.258                                                                                                                                                                                                                                                                                                                                                                                                            | 110 | Benin                 | 0.390 |
| 113       Solomon Islands       0.385         114       Gambia, The       0.379         115       Mozambique       0.374         116       Papua New Guinea       0.370         117       Sierra Leone       0.363         118       Congo, Dem. Rep.       0.353         119       Madagascar       0.330         120       Malawi       0.326         121       Somalia       0.320         122       Central African Republic       0.317         123       Eritrea       0.317         124       Guinea-Bissau       0.314         125       Burkina Faso       0.304         126       Burundi       0.293         127       Liberia       0.291         128       Niger       0.273         129       Chad       0.258                                                                                                                                                                                                                                                                                                                                                                                                   | 111 | Vanuatu               | 0.388 |
| 114       Gambia, The       0.379         115       Mozambique       0.374         116       Papua New Guinea       0.370         117       Sierra Leone       0.363         118       Congo, Dem. Rep.       0.353         119       Madagascar       0.330         120       Malawi       0.326         121       Somalia       0.320         122       Central African Republic       0.317         123       Eritrea       0.317         124       Guinea-Bissau       0.314         125       Burkina Faso       0.304         126       Burundi       0.293         127       Liberia       0.291         128       Niger       0.273         129       Chad       0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112 | Mali                  | 0.388 |
| 115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.330           120         Malawi         0.326           121         Somalia         0.320           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                   | 113 |                       |       |
| 115         Mozambique         0.374           116         Papua New Guinea         0.370           117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.330           120         Malawi         0.326           121         Somalia         0.320           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                   | 114 | Gambia, The           | 0.379 |
| 117         Sierra Leone         0.363           118         Congo, Dem. Rep.         0.353           119         Madagascar         0.300           120         Malawi         0.326           121         Somalia         0.320           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115 |                       | 0.374 |
| 118         Congo, Dem. Rep.         0.353           119         Madagascar         0.330           120         Malawi         0.326           121         Somalia         0.320           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116 |                       |       |
| 119         Madagascar         0.330           120         Malawi         0.326           121         Somalia         0.320           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117 |                       | 0.363 |
| 120         Malawi         0.326           121         Somalia         0.320           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 118 | Congo, Dem. Rep.      | 0.353 |
| 121         Somalia         0.320           122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119 | Madagascar            |       |
| 122         Central African Republic         0.317           123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                       | 0.326 |
| 123         Eritrea         0.317           124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                       | 0.320 |
| 124         Guinea-Bissau         0.314           125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                       |       |
| 125         Burkina Faso         0.304           126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   |                       |       |
| 126         Burundi         0.293           127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                       |       |
| 127         Liberia         0.291           128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                       |       |
| 128         Niger         0.273           129         Chad         0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                       |       |
| <b>129</b> Chad 0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 127 |                       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                       |       |
| <b>130</b> South Sudan 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130 | South Sudan           | 0.250 |

<sup>14</sup> "Frontier markets" are the third tier of market classification given by MSCI, behind "emerging markets" and "developed markets", according to their criteria: economic development, size and liquidity, and accessibility to investment [25]









# 4.2. Mini-grid supported electric cooking

The top of the rankings for the viability of scale up of mini-grid supported electric cooking (Figure 8 and Table 10) is again dominated by emerging markets (e.g. China, India, Indonesia, Peru, Malaysia), although to a lesser extent than for the national grid scenario (top five classified as emerging markets and nine of the top 20). Countries which score well (particularly compared with the national grid scenario) are those with strong mini-grid infrastructure, (e.g. Algeria, Nepal, Myanmar, Philippines and Bangladesh) while the effect of having strong development indicators is less prevalent. Again, countries which score poorly are largely in sub-Saharan Africa (bottom 13 all from this region).

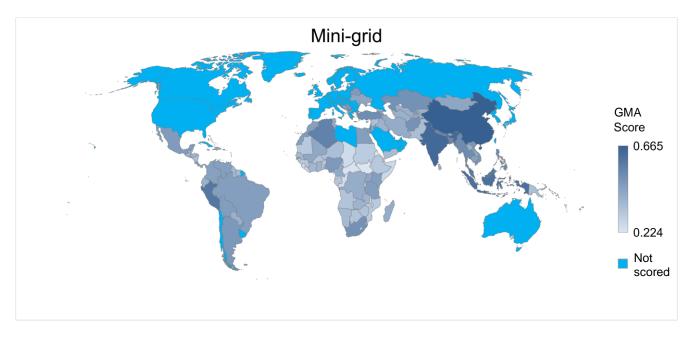



Figure 8 - Choropleth of GMA score for mini-grid scenario

Without mini-grid specific energy access and cooking fuels data (see section 3), analysis by cooking fuel (as shown for the national grid scenario) is problematic. Instead, Table 9 highlights the top countries based on mini-grid infrastructure (overcoming some limitations of mini-grid datasets also in section 3), showing countries with a GMA ranking inside the top 50 and in the top 10 for one or more of the mini-grid indicators. The top 10 countries for the mini-grid scenario remain, with all but Bangladesh having a "best mini-grid rank" of fifth or higher.

Therefore, by demonstrating strong development and electricity indicators with strong mini-grid infrastructure, **China**, **India**, **Indonesia**, **Peru and Malaysia are the countries with the best viability of a scale up of electric cooking on mini-grids**. These countries are closely followed by those for which the scenario score improves dramatically due to having much stronger mini-grid infrastructure than on the national grid; these include Nepal, Bangladesh, Myanmar, Afghanistan, Nigeria and Tanzania which are also strongly viable opportunities for growth in mini-grid supported electric cooking.









|      |             |           | <b>NI · · · ·</b> |           |                  |
|------|-------------|-----------|-------------------|-----------|------------------|
|      |             | Mini-grid |                   |           | Highest rank     |
| Rank | Country     | capacity  | developers        | connected | out of mini-grid |
|      |             | (rank)    | (rank)            | (rank)    | indicators       |
| 1    | China       | 3         | 17                | 14        | 3                |
| 2    | India       | 1         | 13                | 1         | 1                |
| 3    | Indonesia   | 2         | 19                | 9         | 2                |
| 4    | Peru        | 9         | 4                 | 19        | 4                |
| 5    | Malaysia    | 4         | 32                | 23        | 4                |
| 6    | Algeria     | 5         | -                 | 13        | 5                |
| 7    | Nepal       | 14        | 2                 | 10        | 2                |
| 8    | Bangladesh  | 10        | 14                | 22        | 10               |
| 9    | Philippines | 17        | 17                | 2         | 2                |
| 10   | Myanmar     | 19        | 1                 | 12        | 1                |
| 13   | Kazakhstan  | 7         | -                 | -         | 7                |
| 15   | Afghanistan | 20        | 8                 | 5         | 5                |
| 16   | Vietnam     | 6         | 54                | 85        | 6                |
| 18   | Nigeria     | 24        | 20                | 8         | 8                |
| 23   | Tanzania    | 16        | 7                 | 6         | 6                |
| 31   | Cambodia    | 69        | 6                 | 31        | 6                |
| 38   | Mali        | 18        | 3                 | 18        | 3                |

| Table 9 – | Top scoring | countries and | mini-grid indicators | s |
|-----------|-------------|---------------|----------------------|---|
|           |             |               |                      |   |

### 4.2.1. Notable top 20 countries (mini-grid scenario)

**Nepal** – has very strong mini-grid indicators which compensate for weak scores for finance and use of clean or commercialised polluting fuels (compared with other high scoring countries for this scenario). Nepal has the second highest number of mini-grid developers of any country and also high scores for number of people connected to mini-grids and off-grid (mini-grid) renewables capacity. The country also has a relatively high number of HAP attributable deaths but Nepal has relatively few households paying for cooking fuels and many use biomass (primary fuel 70% (LB 55%, UB 84%)) meaning that although a transition to cleaner cooking fuels is needed, ability to pay is a challenge.

**Bangladesh** – rises 69 places compared with the national grid scenario and has a similarly strong mini-grid sector alongside Myanmar and Nepal. Similarly to Nepal, in Bangladesh there is relatively little use of clean cooking fuels (electricity primary fuel 0% (LB 0%, UB 5%), gas primary fuel 22% (LB 13%, UB 32%)) while cooking with biomass is widespread (primary fuel 75% (LB 65%, UB 85%)) so again ability to pay for more modern cooking solutions will be a challenge. The country does however have relatively high levels of renewables investment and RISE score showing a propensity towards more modern energy use and renewable sources. This is particularly important given the environmental vulnerability of the country and its high tree cover loss. As such, in Bangladesh there is the urgent need as well as opportunity to transition to modern energy cooking through a growth in electric cooking on mini-grids.

**Myanmar** – also rises 69 places relative to the national grid scenario with similarly strong mini-grid infrastructure to Nepal and Bangladesh. The country has a strong proportion of people already cooking with electricity (primary fuel 25% (LB 9%, UB 46%)), and/or commercialised polluting fuels (primary fuel 12% (LB 4%, UB 29%)). This, coupled with the need to address high levels of HAP attributable deaths, make Myanmar an attractive market for scaling up electric cooking on mini-grids; particularly as it has the joint (with Nigeria) highest score of the top 20 countries for projected proportion of population accessing electricity from mini-grids in 2030 (30%).

**Afghanistan** – has very strong mini-grid indicators leading to a rise of 75 places compared with the national grid scenario. Similar to Nepal, Bangladesh and Myanmar, the country has relatively high numbers of HAP attributable deaths due to the widespread use of firewood, crop waste and dung as cooking fuels (biomass as primary fuel 53% (LB 43%, UB 69%)). However, the accessibility and growth potential of Afghanistan's market is hindered by having poor scores for most indicators in the human category including the lowest Ease of Doing Business in the top 27, lowest ICT/internet adoption in the top 51 and, and lowest RISE score in the top 78.









**Nigeria** – despite not being able to compete with countries at the very top of the ranking list in terms of existing electricity and mini-grid infrastructure, strong human and economics indicators mean the country is in the top 20 countries for electric cooking on mini-grids. The combination of a large proportion of people using commercialised cooking fuels (primary fuel 17% (LB 8%, UB 40%)) and high numbers of HAP attributable deaths (4<sup>th</sup> highest overall) show that there is a need for transition to cleaner cooking fuels and also ability to pay for them. Nigeria also has the highest renewable energy finance flows of any country, and joint (with Myanmar) highest score of the top 20 countries for projected proportion of population accessing electricity from mini-grids in 2030 (30%) so presents a strong opportunity in the short-medium term as mini-grid infrastructure grows particularly with its very large overall population.

**Tanzania** – although just outside the top 20 countries (similarly for the off-grid scenario), rises 81 places relative to the national grid scenario, has very strong mini-grid infrastructure and the highest proportion of people using commercialised polluting fuels in the top 50 (primary fuel 31% (LB 19%, UB 50%)) demonstrating a need to transition as well as an ability to pay for modern cooking fuels. Tanzania's ranking is restricted by having weaker development indicators than other high scoring countries for this scenario, and poorer access to electricity. However, the country presents a growing opportunity for scale up of transition towards electric cooking on mini-grids in particular and is the second highest scoring country in sub-Saharan Africa for this scenario (behind Nigeria).

### 4.2.2. Other top 20 countries (mini-grid scenario)

**Algeria** – although with a carbon intensive national grid (see national grid scenario for more information), has one of the highest off-grid (mini-grid) capacities and number of mini-grid customers giving it high mini-grid infrastructure scores. However, more sub-national information would be needed to identify whether those which are connected to mini-grids are the small proportion of people who already cook with electricity (primary fuel 2% (LB 0%, UB 12%)); rather than gas which is widespread.

**Philippines** – has strong development indicators and a fairly strong clean cooking market (gas primary fuel 44% (LB 28%, UB 61%) but also many who use biomass (primary fuel 41% (LB 26%, UB 56%) which is a likely cause for the highest HAP attributable deaths in the top 40 countries. It also has one of the highest numbers of mini-grid customers but (similar to Algeria) more contextual information is needed to know whether it is mini-grid customers who constitute the small proportion of people who already cook with electricity (primary fuel 2% (LB 0%, UB 7%).

**Kazakhstan, Vietnam, Belarus and Serbia** – have strong development indicators and overall electricity infrastructure (see national grid scenario for more information) but lack data on mini-grids which means that further investigation is needed to know whether this scenario truly represents a strong opportunity for scaling up electric cooking in the four countries.









Table 10 - GMA rankings and scores for mini-grid scenario (emerging markets in dark blue, frontier markets in light blue)

| Rank | Country                       | Score |
|------|-------------------------------|-------|
| 1    | China                         | 0.665 |
| 2    | India                         | 0.634 |
| 3    | Indonesia                     | 0.610 |
| 4    | Peru                          | 0.586 |
| 5    | Malaysia                      | 0.578 |
| 6    | Algeria                       | 0.553 |
| 7    | Nepal                         | 0.537 |
| 8    | Bangladesh                    | 0.528 |
| 9    | Philippines                   | 0.526 |
| 10   | Myanmar                       | 0.520 |
| 11   | Thailand                      | 0.518 |
| 12   | Turkey                        | 0.514 |
| 13   | Kazakhstan                    | 0.500 |
| 14   | South Africa                  | 0.500 |
| 15   | Afghanistan                   | 0.495 |
| 16   | Vietnam                       | 0.487 |
| 17   | Argentina                     | 0.480 |
| 18   | Nigeria                       | 0.478 |
| 19   | Serbia                        | 0.476 |
| 20   | Belarus                       | 0.473 |
| 21   | North Macedonia               | 0.472 |
| 22   | Mexico                        | 0.471 |
| 23   | Tanzania                      | 0.465 |
| 24   | Bolivia                       | 0.463 |
| 25   | Egypt                         | 0.462 |
| 26   | Brazil                        | 0.461 |
| 27   | Kenya                         | 0.461 |
| 28   | Venezuela                     | 0.459 |
| 29   | Morocco                       | 0.458 |
| 30   | Costa Rica                    | 0.458 |
| 31   | Cambodia                      | 0.451 |
| 32   | Colombia                      | 0.450 |
| 33   | <b>Bosnia and Herzegovina</b> |       |
| 34   | Maldives                      | 0.445 |
| 35   | Jordan                        | 0.444 |
| 36   | Ukraine                       | 0.435 |
| 37   | Mongolia                      | 0.434 |
| 38   | Mali                          | 0.429 |
| 39   | Uganda                        | 0.427 |
| 40   | Armenia                       | 0.426 |
| 41   | Tunisia                       | 0.425 |
| 42   | Panama                        | 0.422 |
| 43   | Cameroon                      | 0.422 |

| 44 | Dominican Republic      | 0.420 |
|----|-------------------------|-------|
| 45 | Montenegro              | 0.419 |
| 46 | Mauritius               | 0.419 |
| 47 | Bhutan                  | 0.418 |
| 48 | Azerbaijan              | 0.417 |
| 49 | Albania                 | 0.417 |
| 50 | Iran                    | 0.415 |
| 51 | Tajikistan              | 0.413 |
| 52 | Madagascar              | 0.411 |
| 53 | El Salvador             | 0.410 |
| 54 | Congo, Dem. Rep.        | 0.410 |
| 55 | Georgia                 | 0.407 |
| 56 | Dominica                | 0.405 |
| 57 | Antigua and Barbuda     | 0.405 |
| 58 | Uzbekistan              | 0.404 |
| 59 | Paraguay                | 0.404 |
| 60 | Grenada                 | 0.402 |
| 61 | Cabo Verde              | 0.402 |
| 62 | Turkmenistan            | 0.401 |
| 63 | Laos                    | 0.401 |
| 64 | Jamaica                 | 0.400 |
| 65 | Ecuador                 | 0.399 |
| 66 | Kyrgyzstan              | 0.396 |
| 67 | Sri Lanka               | 0.396 |
| 68 | Iraq                    | 0.394 |
| 69 | Ghana                   | 0.394 |
| 70 | Lebanon                 | 0.394 |
| 71 | Moldova                 | 0.393 |
| 72 | Honduras                | 0.390 |
| 73 | Guatemala               | 0.389 |
| 74 | Haiti                   | 0.388 |
| 75 | Saint Lucia             | 0.388 |
| 76 | St. Vinc. and the Gren. | 0.387 |
| 77 | Zambia                  | 0.385 |
| 78 | Côte d'Ivoire           | 0.382 |
| 79 | Palau                   | 0.380 |
| 80 | Guyana                  | 0.380 |
| 81 | Belize                  | 0.378 |
| 82 | Fiji                    | 0.376 |
| 83 | Senegal                 | 0.374 |
| 84 | Suriname                | 0.372 |
| 85 | Eswatini                | 0.371 |
| 86 | Namibia                 | 0.367 |
| 87 | Micronesia              | 0.366 |
|    |                         |       |

| 88  | Yemen                    | 0.366 |
|-----|--------------------------|-------|
| 89  | Marshall Islands         | 0.360 |
| 90  | Pakistan                 | 0.357 |
| 91  | Tonga                    | 0.354 |
| 92  | Niger                    | 0.354 |
| 93  | Papua New Guinea         | 0.353 |
| 94  | Nicaragua                | 0.353 |
| 95  | Samoa                    | 0.348 |
| 96  | Syrian Arab Republic     | 0.344 |
| 97  | Rwanda                   | 0.342 |
| 98  | Zimbabwe                 | 0.338 |
| 99  | Kiribati                 | 0.337 |
| 100 | Botswana                 | 0.337 |
| 101 | Angola                   | 0.334 |
| 102 | Burkina Faso             | 0.333 |
| 103 | Solomon Islands          | 0.331 |
| 104 | Gabon                    | 0.329 |
| 105 | Vanuatu                  | 0.325 |
| 106 | Lesotho                  | 0.322 |
| 107 | Mauritania               | 0.321 |
| 108 | Guinea                   | 0.321 |
| 109 | Ethiopia                 | 0.319 |
| 110 | Mozambique               | 0.317 |
| 111 | Benin                    | 0.315 |
| 112 | Comoros                  | 0.312 |
| 113 | Sudan                    | 0.308 |
| 114 | Timor-Leste              | 0.307 |
| 115 | Тодо                     | 0.297 |
| 116 | Djibouti                 | 0.286 |
| 117 | Sao Tome and Principe    | 0.284 |
| 118 | Gambia, The              | 0.283 |
| 119 | Malawi                   | 0.282 |
| 120 | Liberia                  | 0.278 |
| 121 | Somalia                  | 0.269 |
| 122 | Equatorial Guinea        | 0.267 |
| 123 | Chad                     | 0.261 |
| 124 | Guinea-Bissau            | 0.257 |
| 125 | Sierra Leone             | 0.257 |
| 126 | Congo, Republic          | 0.253 |
| 127 | Eritrea                  | 0.234 |
| 128 | Central African Republic | 0.233 |
| 129 | Burundi                  | 0.226 |
| 130 | South Sudan              | 0.224 |









# 4.3. Off-grid (standalone) supported electric cooking

India has the highest score for viability of scale up of off-grid electric cooking. While emerging economies still make up 10 of the top 20 countries, the top 10 is mostly made up of those with strong off-grid (standalone) sectors (e.g. Kenya, Morocco, Bangladesh, Nigeria and Uganda) which gain an average of 50 ranking places each compared with the national grid scenario.

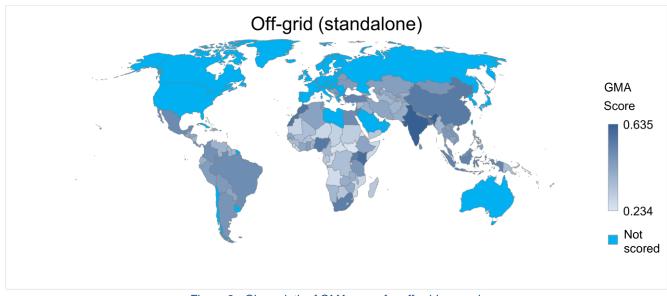



Figure 9 - Choropleth of GMA score for off-grid scenario

Table 11 shows the countries with a ranking inside the top 50 for the GMA's off-grid (standalone) scenario and inside the top 10 for one of the three off-grid (standalone) indicators: electricity access projections, off-grid renewables capacity and off-grid lighting/appliance customers. This sees Jordan removed from the top 20 alongside all other emerging economies (excluding India). By making these exclusions, according to available data India, Kenya, Morocco, Bangladesh, Nigeria and Uganda are the most viable countries for a scale up of electric cooking supported by off-grid (standalone) systems. Other countries with strong off-grid sectors perform well, but are restricted by development indicators, include Sri Lanka, Nepal, Rwanda and Tanzania which also present very strong opportunities.

| Scenario<br>rank | Country    | Elec. access<br>projections<br>(rank) | Off-grid<br>renewables<br>capacity (rank) | Off-grid<br>lighting/appliance<br>customers (rank) | Best off-grid<br>indicator<br>(rank) |
|------------------|------------|---------------------------------------|-------------------------------------------|----------------------------------------------------|--------------------------------------|
| 1                | India      | 64                                    | 2                                         | 1 , , ,                                            | 1                                    |
| 2                | Kenya      | 45                                    | 5                                         | 2                                                  | 2                                    |
| 3                | Morocco    | 76                                    | 4                                         | 26                                                 | 4                                    |
| 4                | Bangladesh | 61                                    | 1                                         | 3                                                  | 1                                    |
| 5                | Nigeria    | 40                                    | 9                                         | 7                                                  | 7                                    |
| 7                | Uganda     | 13                                    | 7                                         | 6                                                  | 6                                    |
| 15               | Sri Lanka  | 116                                   | 10                                        | 22                                                 | 10                                   |
| 16               | Nepal      | 55                                    | 8                                         | 10                                                 | 8                                    |
| 17               | Rwanda     | 18                                    | 6                                         | 8                                                  | 6                                    |
| 23               | Tanzania   | 22                                    | 3                                         | 5                                                  | 3                                    |
| 43               | Ethiopia   | 30                                    | 12                                        | 4                                                  | 4                                    |

| Table 11 | - Top scoring | countries and | off-grid indicators |
|----------|---------------|---------------|---------------------|
|----------|---------------|---------------|---------------------|









### 4.3.1. Notable top 20 countries (off-grid scenario)

**Kenya** – (see national grid scenario for more information), is 19<sup>th</sup> for the national grid scenario and also has a strong off-grid sector (2nd highest number of off-grid lighting/appliance customers and 5th highest off-grid renewables capacity) and as such has the second highest score for the off-grid scenario.

**Bangladesh** – (see mini-grid scenario section for more information), is in the top 10 for the mini-grid scenario but also has the third highest number of off-grid lighting/appliance customers (behind India and Kenya) and highest off-grid renewables capacity, meaning it comes 4<sup>th</sup> for the viability of scale up of off-grid electric cooking.

**Nigeria and Uganda** – similarly to Kenya, both have strong markets for off-grid lighting/appliances, causing both to rise significantly in the rankings relative to the national grid scenario in particular (Nigeria +67, Uganda +81). As for Nigeria in the mini-grid scenario (see previous section), Uganda also has both a need for a transition to cleaner fuels (with high HAP attributable deaths and tree cover loss) and many using commercialised cooking fuels (primary fuel 26% (LB 17%, UB 38%)) and so an existing ability to pay for cooking fuels. Policy and business environments in both countries are also relatively strong but would benefit from further development, while in Uganda 56% are projected to have access to electricity via off-grid systems in 2030, the highest of the top 54.

**Sri Lanka and Nepal** – have strong off-grid (standalone) sectors in addition to growing clean cooking sectors dominated by the use of LPG (primary fuel Sri Lanka 32% (LB 16%, UB 48%), Nepal 28% (LB 9%, UB 44%)). However, biomass use is still high (primary fuel Sri Lanka 67% (LB 49%, UB 83%), Nepal 70% (LB 50%, UB 84%)) and a contributing factor towards high levels of HAP attributable deaths. A major challenge for these two countries is the lack of household expenditures for cooking fuels (for more information see mini-grid scenario section for Nepal and All round high scoring countries section for Sri Lanka).

**Rwanda** – has a strong off-grid sector (8th highest off-grid customers and 6th highest off-grid renewables capacity) and despite relatively low public investment in renewables and many using commercialised polluting fuels (primary fuel 17% (LB 9%, UB 32%). The country has the highest RISE score of any country excluding emerging markets and 2nd highest Ease of Doing Business score in the top 18 making it attractive to investors. Therefore, Rwanda presents a strong opportunity for scaling up off-grid electric cooking.

### 4.3.1. Other top 20 countries (off-grid scenario)

**Morocco and Jordan** – both score well due to having a strong clean cooking sector, electricity infrastructure and development indicators (see national grid scenario for Morocco and Costa Rica) as well as some existing activity in the off-grid sector. Both countries have very low biomass use (and low HAP attributable deaths) so the opportunities for this scenario may be scaling up existing off-grid systems to support a transition away from LPG in the medium term.

**Costa Rica** – (see national grid scenario) similarly to Morocco and Jordan has a strong clean cooking sector, energy and development indicators, but has very little activity in the off-grid sector due to having universal access to reliable electricity, so although has a high score for the off-grid scenario does not have strong potential for off-grid supported electric cooking.









Table 12 - GMA rankings and scores for off-grid scenario (emerging markets in dark blue, frontier markets in light blue)

| Rank | Country         | Score |
|------|-----------------|-------|
| 1    | India           | 0.635 |
| 2    | Kenya           | 0.595 |
| 3    | Morocco         | 0.575 |
| 4    | Bangladesh      | 0.574 |
| 5    | Nigeria         | 0.557 |
| 6    | China           | 0.555 |
| 7    | Uganda          | 0.551 |
| 8    | South Africa    | 0.546 |
| 9    | Jordan          | 0.531 |
| 10   | Indonesia       | 0.527 |
| 11   | Turkey          | 0.527 |
| 12   | Egypt           | 0.506 |
| 13   | Mexico          | 0.505 |
| 14   | Brazil          | 0.501 |
| 15   | Sri Lanka       | 0.497 |
| 16   | Nepal           | 0.497 |
| 17   | Rwanda          | 0.491 |
| 18   | Colombia        | 0.490 |
| 19   | Malaysia        | 0.489 |
| 20   | Costa Rica      | 0.477 |
| 21   | Mongolia        | 0.477 |
| 22   | Argentina       | 0.476 |
| 23   | Tanzania        | 0.471 |
| 24   | Thailand        | 0.467 |
| 25   | Tunisia         | 0.466 |
| 26   | Bolivia         | 0.462 |
| 27   | Ukraine         | 0.457 |
| 28   | Belarus         | 0.454 |
| 29   | Laos            | 0.454 |
| 30   | Serbia          | 0.454 |
| 31   | Peru            | 0.453 |
| 32   | Vietnam         | 0.452 |
| 33   | Ghana           | 0.450 |
| 34   | Kazakhstan      | 0.447 |
| 35   | North Macedonia | 0.440 |
| 36   | El Salvador     | 0.439 |
| 37   | Algeria         | 0.436 |
| 38   | Panama          | 0.434 |
| 39   | Mauritius       | 0.432 |
| 40   | Philippines     | 0.432 |
| 41   | Paraguay        | 0.431 |
| 42   | Cambodia        | 0.430 |
| 43   | Ethiopia        | 0.428 |

| 44 | Senegal                 | 0.427 |
|----|-------------------------|-------|
| 45 | Dominican Republic      | 0.424 |
| 46 | Iran                    | 0.424 |
| 47 | Dominica                | 0.423 |
| 48 | Côte d'Ivoire           | 0.423 |
| 49 | Montenegro              | 0.422 |
| 50 | Georgia                 | 0.421 |
| 51 | Honduras                | 0.420 |
| 52 | Bosnia and Herzegovina  | 0.417 |
| 53 | Antigua and Barbuda     | 0.417 |
| 54 | Uzbekistan              | 0.416 |
| 55 | Zimbabwe                | 0.415 |
| 56 | Grenada                 | 0.409 |
| 57 | Guatemala               | 0.408 |
| 58 | Tajikistan              | 0.406 |
| 59 | Jamaica                 | 0.404 |
| 60 | Moldova                 | 0.403 |
| 61 | Armenia                 | 0.403 |
| 62 | Zambia                  | 0.402 |
| 63 | Pakistan                | 0.401 |
| 64 | Lebanon                 | 0.399 |
| 65 | Saint Lucia             | 0.398 |
| 66 | Iraq                    | 0.398 |
| 67 | Belize                  | 0.397 |
| 68 | Ecuador                 | 0.396 |
| 69 | Kyrgyzstan              | 0.396 |
| 70 | Bhutan                  | 0.395 |
| 71 | Albania                 | 0.393 |
| 72 | St. Vinc. and the Gren. | 0.391 |
| 73 | Azerbaijan              | 0.391 |
| 74 | Venezuela               | 0.384 |
| 75 | Eswatini                | 0.384 |
| 76 | Palau                   | 0.383 |
| 77 | Afghanistan             | 0.383 |
| 78 | Nicaragua               | 0.382 |
| 79 | Myanmar                 | 0.381 |
| 80 | Suriname                | 0.379 |
| 81 | Fiji                    | 0.377 |
| 82 | Turkmenistan            | 0.377 |
| 83 | Micronesia              | 0.377 |
| 84 | Maldives                | 0.375 |
| 85 | Namibia                 | 0.374 |
| 86 | Guyana                  | 0.374 |
| 87 | Benin                   | 0.372 |

| 88  |                          |       |
|-----|--------------------------|-------|
|     | Cameroon                 | 0.370 |
|     | Cabo Verde               | 0.361 |
|     | Marshall Islands         | 0.361 |
|     | Tonga                    | 0.361 |
| 92  | Syrian Arab Republic     | 0.361 |
|     | Malawi                   | 0.359 |
|     | Papua New Guinea         | 0.357 |
| ~~  | Guinea                   | 0.357 |
| 96  | Samoa                    | 0.356 |
| 97  | Kiribati                 | 0.355 |
| 98  | Mali                     | 0.351 |
|     | Congo, Dem. Rep.         | 0.351 |
| 100 | Solomon Islands          | 0.348 |
|     | Burkina Faso             | 0.340 |
| 102 | Lesotho                  | 0.336 |
| 103 | Vanuatu                  | 0.332 |
|     | Botswana                 | 0.332 |
| 105 | Comoros                  | 0.326 |
| 106 | Madagascar               | 0.325 |
| 107 | Gabon                    | 0.324 |
| 108 | Yemen                    | 0.324 |
| 109 | Timor-Leste              | 0.322 |
|     | Тодо                     | 0.313 |
|     | Sudan                    | 0.307 |
|     | Gambia, The              | 0.299 |
|     | Djibouti                 | 0.297 |
|     | Sierra Leone             | 0.295 |
| 115 | Chad                     | 0.295 |
|     | Sao Tome and Principe    | 0.288 |
| 117 | Mauritania               | 0.287 |
| 118 | Guinea-Bissau            | 0.285 |
|     | Haiti                    | 0.283 |
|     | Niger                    | 0.280 |
|     | Mozambique               | 0.279 |
|     | Somalia                  | 0.275 |
|     | Equatorial Guinea        | 0.271 |
|     | Liberia                  | 0.267 |
|     | Angola                   | 0.264 |
| 126 | Congo, Republic          | 0.257 |
| 127 | Central African Republic | 0.251 |
|     | Burundi                  | 0.242 |
|     | South Sudan              | 0.237 |
| 130 | Eritrea                  | 0.234 |









# 4.4. All round high scoring countries

Computing all round GMA scores (sum of the scores across all indicators for the three scenarios using an average where required to avoid double counting) highlights countries with opportunities for a scale up of electric cooking more generally (as shown below in Table 13). This highlights many of the countries already mentioned (particularly "emerging markets" and those with top 20 scores for one or more of the scenarios).

| Overall | _                      | -     | Nat. Grid | Mini-arid | Off-grid |
|---------|------------------------|-------|-----------|-----------|----------|
| (rank)  | Country                | Score | (rank)    | (rank)    | (rank)   |
| 1       | India                  | 1.256 | 9         |           | 1        |
| 2       | Nepal                  | 1.168 | 54        | 2<br>7    | 16       |
| 3       | China                  | 1.144 | 1         | 1         | 6        |
| 4       | Indonesia              | 1.133 | 6         | 3         | 10       |
| 5       | Peru                   | 1.076 | 25        | 4         | 31       |
| 6       | Algeria                | 1.070 | 36        | 6         | 37       |
| 7       | Malaysia               | 1.063 | 7         | 5         | 19       |
| 8       | Kenya                  | 1.058 | 19        | 27        | 2        |
| 9       | Bangladesh             | 1.039 | 77        | 8         | 4        |
| 10      | Turkey                 | 1.026 | 2         | 12        | 11       |
| 11      | Afghanistan            | 1.019 | 90        | 15        | 77       |
| 12      | Cambodia               | 0.993 | 53        | 31        | 42       |
| 13      | Philippines            | 0.991 | 45        | 9         | 40       |
| 14      | Kazakhstan             | 0.988 | 10        | 13        | 34       |
| 15      | Thailand               | 0.987 | 11        | 11        | 24       |
| 16      | Vietnam                | 0.980 | 23        | 16        | 32       |
| 17      | Sri Lanka              | 0.975 | 38        | 67        | 15       |
| 18      | Argentina              | 0.969 | 13        | 17        | 22       |
| 19      | Brazil                 | 0.968 | 5         | 26        | 14       |
| 20      | Iran                   | 0.965 | 33        | 50        | 46       |
| 21      | Egypt                  | 0.961 | 20        | 25        | 12       |
| 22      | Belarus                | 0.954 | 31        | 20        | 28       |
| 23      | Morocco                | 0.954 | 14        | 29        | 3        |
| 24      | Tunisia                | 0.950 | 46        | 41        | 25       |
| 25      | Jordan                 | 0.949 | 21        | 35        | 9        |
| 26      | Nigeria                | 0.945 | 72        | 18        | 5        |
| 27      | Mongolia               | 0.938 | 41        | 37        | 21       |
| 28      | Azerbaijan             | 0.928 | 52        | 48        | 73       |
| 29      | Uganda                 | 0.928 | 88        | 39        | 7        |
| 30      | Costa Rica             | 0.922 | 4         | 30        | 20       |
| 31      | Colombia               | 0.921 | 3         | 32        | 18       |
| 32      | Panama                 | 0.918 | 15        | 42        | 38       |
| 33      | Myanmar                | 0.914 | 79        | 10        | 79       |
| 34      | Maldives               | 0.905 | 67        | 34        | 84       |
| 35      | Georgia                | 0.904 | 12        | 55        | 50       |
| 36      | Uzbekistan             | 0.903 | 42        | 58        | 54       |
| 37      | Tanzania               | 0.901 | 104       | 23        | 23       |
| 38      | Dominican Republic     | 0.900 | 50        | 44        | 45       |
| 39      | Serbia                 | 0.899 | 18        | 19        | 30       |
| 40      | South Africa           | 0.899 | 30        | 14        | 8        |
| 41      | Mexico                 | 0.899 | 8         | 22        | 13       |
| 41      | Ukraine                | 0.896 | 24        | 36        | 27       |
| 42      | Bosnia and Herzegovina | 0.895 | 34        | 33        | 52       |
| 43      | Bolivia                | 0.889 | 22        | 24        | 26       |
| 44      | Bhutan                 | 0.888 | 27        | 47        | 70       |
| 45      | Tajikistan             | 0.884 | 28        | 51        | 58       |
| 40      | El Salvador            | 0.869 | 26        | 53        | 36       |
| 47      |                        | 0.869 | 17        |           | <u> </u> |
| 48      | Paraguay               |       |           | 59<br>28  | 74       |
| _       | Venezuela              | 0.861 | 71        |           |          |
| 50      | North Macedonia        | 0.835 | 40        | 21        | 35       |

 Table 13 - All round GMA ranks and scores (top 50) (emerging economies in dark blue, frontier markets in light blue)
 [colour scale: green = high rank, red = low rank]











**Cambodia** – has good scores across the three scenarios (ranked 12th overall) owing to its high levels of electricity access (urban 100%, rural 89%), relatively high renewable generation mix (54%) and national grid reliability (SAIDI 20.8hrs/yr). Some in Cambodia use LPG for cooking (primary fuel 19% (LB 10%, UB 29%)) and/or charcoal (primary fuel 7% (LB 4%, UB 13%)), but the majority of its population cook predominantly with biomass (primary fuel 70% (LB 60%, UB 79%)). As such, it has relatively high numbers of household air pollution attributable dealths and is in need of a transition towards modern cooking fuels but ability to pay may be a challenge; it also has one of the highest levels of tree cover loss in the global south. Mini-grids are also an opportunity for electric cooking in Cambodia; it has one of the highest numbers of mini-grid developers in the Global South.

**Philippines –** is in the top 10 for the mini-grid scenario (see mini-grid section) as well as scoring well for the national grid (45th) and off-grid (40th) scenarios. The country has strong human indicators and widespread access to reliable electricity (3.6hrs/yr) in all areas (urban 98%, rural 93%). Despite this, many still cook with biomass (primary fuel 41% (LB 26%, UB 56%)) and the Philippines has high levels of household air pollution attributable deaths relative to many high scoring countries, while a similar portion of the population cook with LPG (primary fuel 44% (LB 28%, UB 61%)). As such, there is significant need and potential for a transition onto electric cooking in the country while transitioning LPG users towards electric cooking would need to be coupled with decarbonisation of the national grid which is only 21% powered by renewable sources.

**Sri Lanka** – as well as scoring highly for the off-grid scenario, is 17th overall due to its widespread access to electricity (99.6%) which is reliable (SAIDI 4hrs/yr), and high unrealised potential for electric cooking as many use LPG (primary fuel 32%, UB 48%) and/or biomass (primary fuel 67%, UB 83%). Large amounts of biomass cooking likely contributes to its high HAP deaths so ability/willingness to pay is likely to be a challenge for those most in need of a transition to modern cooking services but with many already with access to electricity there is significant potential for a scaled up transition to electric cooking. Although the grid is already somewhat decarbonised (renewable energy share 46%) a transition would be more impactful with an increased share of renewables, an area which is being heavily invested in according to the GMA's financial indicators.

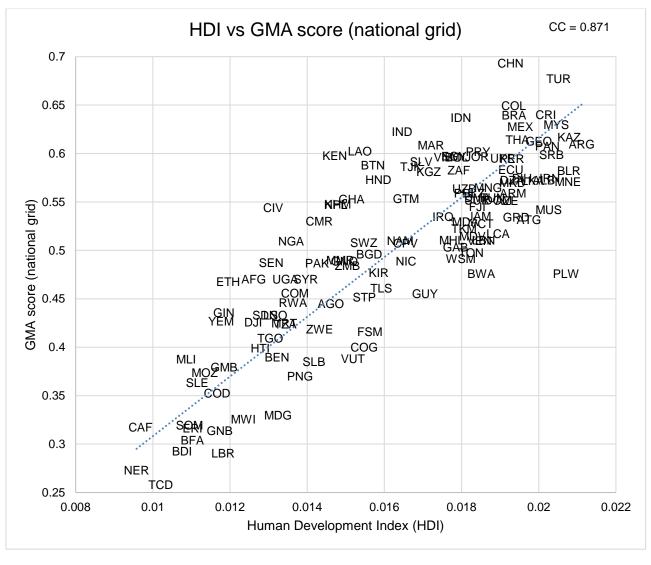
## Summary of results and findings

This section has shown the GMA results for national grid, mini-grid and off-grid scenarios. Analysis has indicated that there are a number of countries where a scale up of electric cooking is both viable and urgently needed, including: China, Malaysia, Thailand, Laos, Kenya, Indonesia, Peru, Malaysia, Nepal, Bangladesh, Myanmar, Afghanistan, Nigeria, Tanzania, Uganda, Sri Lanka and Rwanda. These countries have high GMA scores and large numbers of people cooking with polluting fuels meaning that pivoting to electric cooking is of huge importance and highly viable. With high GMA scores and very large absolute numbers of people paying for polluting cooking fuels, China, India and Nigeria present opportunities for transition on a huge scale.

In addition, it has been found that in many cases a national grid supported scale up of electric cooking needs to be coupled with decarbonisation of generation infrastructure. Many countries with a high GMA score for the national grid scenario have low renewable energy shares. This means that for a transition to electric cooking to have the most positive impact in terms of reducing air pollution and CO<sub>2</sub> emissions, it needs to be supported by increased investment in and focus on renewable electricity generation which is already often cheaper than generation from fossil fuels. **On this basis, Kenya has particularly strong potential for a transition to electric cooking, with its strong GMA score, 89% renewable grid electricity and high proportions of its population paying for polluting fuels for cooking (others include Laos, Honduras, Montenegro, Guatemala and Ghana)**.










# 5. Further analysis

A number of key trends were identified through reviewing the results and ranking lists. The first of which is an apparent link between strong development indicators and a high score. Particularly for the national grid scenario, countries with high GMA scores appear to have high development indicators (e.g. HDI, GII, Ease of Doing Business, RISE and ICT/internet adoption) while, others more obviously related to electric cooking such as users of clean alternatives and access to electricity also appear to have a similar relationship. Such trends suggest that one or more sub-groups of indicators could represent a core sub-set or "enabling environment" for a scale up of electric cooking.

Development is perhaps most commonly represented by HDI, and so is shown below (Figure 10) against the GMA score for the national grid scenario. It is clear from the plot shown that a strong positive linear relationship is evident between the variables. This relationship is also present between access to electricity and GMA score, and between HDI and access to electricity demonstrating that development, electricity access/infrastructure and the viability of electric cooking are all strongly interlinked (see Appendix 6).



#### Figure 10 – HDI plot against GMA score for national grid scenario

Opposite trends, where high indicator scores appear to be related to low GMA scores, are also apparent for indicators such as renewable energy share, HAP attributable deaths and users of commercialised polluting fuels. These positive and negative correlations are investigated in detail in the following sections.











### 5.1. Correlation of indicators and GMA score

Each indicator was compared with the final GMA scores and the correlation coefficient<sup>15</sup> (degree to which the trends in the datasets match) were calculated. The strongest trends between indicators and the GMA score were found in the national grid scenario, with eight indicators having "strong correlation" (often said to be represented by a correlation coefficient (CC) greater than 0.7 or less than -0.7) while many more indicators have "moderate correlation (CC>0.5, CC<-0.5). Table 14 shows the correlation coefficients for all indicators compared with the GMA scores.

The national grid scenario GMA score was strongly correlated with: users of clean alternatives, ICT/internet adoption, GII, HDI, DPs using clean cooking fuels, access to electricity (all, urban areas), electricity access projections (grid) and grid reliability. It was moderately correlated with: unrealised potential for electric cooking, affordability of electricity, credit rating, Ease of Doing Business, RISE, HAP attributable deaths (negative), urban population growth (negative) and LPI. In either the mini-grid or off-grid scenario just one indicator was strongly correlated with a high score (RISE when compared with off-grid GMA score) but two almost identical groups of indicators were moderately correlated: users of clean alternatives (mini-grid only), users of commercialised polluting fuels (negative), credit rating, OECD aid and renewable energy finance flows (off-grid only), ICT/internet adoption, Ease of Doing Business, RISE, GII, HDI, LPI, access to electricity (all areas and rural), electricity access projections (negative), off-grid renewables capacity and number of people connected to mini-grids (mini-grid only).

Table 14 - Correlation between indicators and GMA scores

[coloured by CC strength: orange = moderate negative, light green = moderate positive, dark green = strong positive correlation]

|                                                                                 | Correlation coefficient (CC) |                    |                    |
|---------------------------------------------------------------------------------|------------------------------|--------------------|--------------------|
| Indicator                                                                       | Grid                         | Mini-grid          | Off-grid           |
| Users of electric cooking                                                       | 0.34                         | 0.24               | 0.19               |
| Users of clean alternatives (e.g. LPG, biogas)                                  | 0.76                         | 0.51               | 0.41               |
| Users of commercialised polluting fuels (e.g. charcoal)                         | -0.55                        | -0.50              | -0.48              |
| Unrealised potential for electric cooking                                       | 0.69                         |                    |                    |
| Affordability of electricity (grid only)                                        | 0.55                         |                    |                    |
| Credit rating                                                                   | 0.58                         | 0.50               | 0.48               |
| Mobile money                                                                    | 0.48                         | 0.35               | 0.42               |
| OECD aid flows                                                                  | 0.44                         | 0.46               | 0.64               |
| Renewable energy finance flows                                                  | 0.48                         | 0.47               | 0.64               |
| Photovoltaic power potential                                                    | -0.20                        | -0.11              | -0.05              |
| Tree cover loss                                                                 | -0.03                        | 0.08               | 0.15               |
| ICT/internet adoption                                                           | 0.80                         | 0.63               | 0.58               |
| Ease of Doing Business index                                                    | 0.67                         | 0.55               | 0.63               |
| Regulatory Indicators for Sustainable Energy (RISE)                             | 0.61                         | 0.63               | 0.78               |
| Indoor Air Pollution attributable deaths                                        | -0.57                        | -0.33              | -0.36              |
| Gender Inequality Index (GII)                                                   | 0.72                         | 0.54               | 0.49               |
| Urban population growth                                                         | -0.51                        |                    |                    |
| Human Development Index (HDI)                                                   | 0.83                         | 0.59               | 0.55               |
| Number of displaced persons (DPs) per 1000 population                           | -0.11                        | -0.08              | -0.08              |
| DPs using clean cooking fuels ( <i>agrid, boff-/mini-grid</i> )                 | <sup>a</sup> 0.72            | <sup>b</sup> 0.38  | <sup>b</sup> 0.37  |
| DPs with unrealised potential for eCook                                         | -0.25                        |                    |                    |
| Logistics Performance Index                                                     | 0.64                         | 0.60               | 0.64               |
| Manufacturing, value added                                                      | 0.40                         | 0.47               | 0.37               |
| Access to electricity (all areas)                                               | 0.86                         | 0.59               | 0.54               |
| Access to electricity ( <i>curban, drural</i> )                                 | °0.83                        | <sup>d</sup> 0.60  | <sup>d</sup> 0.58  |
| Electricity access projections (egrid, fmini-grid, goff-grid)                   | €0.79                        | <sup>f</sup> -0.54 | <sup>g</sup> -0.49 |
| <sup>h</sup> Renewable energy share / <sup>i</sup> Off-grid renewables capacity | <sup><i>h</i></sup> 0.14     | <sup>i</sup> 0.64  | <sup>i</sup> 0.58  |
| Grid reliability (SAIDI * SAIFI)                                                | 0.74                         |                    |                    |
| Number of mini-grid developers                                                  |                              | 0.34               |                    |
| Number of people connected to mini-grids                                        |                              | 0.48               |                    |
| Off-grid lighting/appliance customers                                           |                              |                    | 0.40               |

<sup>&</sup>lt;sup>15</sup> Correlation coefficients (CC) represent the strength and direction of agreement between two datasets as a number between -1 and 1. CC of 1 represents perfect agreement (high value in one dataset = high value in the other) while a CC of -1 represents perfect disagreement (high value in one = lower value in the other). As the CC approaches 0, the correlation between the datasets weakens to the point that the two datasets show no relationship at all if CC=0.









In addition, four indicators show moderate negative correlation for at least one of the scenarios. Users of commercialised polluting fuels is consistently negatively correlated with the GMA score, while (perhaps unsurprisingly) HAP attributable deaths has a similar (although weaker) behaviour. Furthermore, urban population growth is negatively correlated with the GMA score for the national grid scenario, as are electricity access projections for mini-grids and off-grid (standalone) systems with their respective scenarios.

## 5.2. Enabling environment indicators

As shown in the previous section, several indicators are at least moderately positively correlated with the GMA score and through calculating the correlation coefficients between these indicators they can be grouped according to their characteristics. Carrying out this analysis (see appendix A for more detailed information) allows them to be separated into three groups: an "energy" group, a "development" group and a small number of indicators which are neither correlated with the indicators in the energy/development groups nor are correlated with each other (see Table 15).

| National grid                            | Mini-grid                                | Off-grid                          |  |
|------------------------------------------|------------------------------------------|-----------------------------------|--|
| Energy                                   |                                          |                                   |  |
| Access to electricity (all areas)        | Access to electricity (all areas)        | Access to electricity (all areas) |  |
| Access to electricity (urban)            | Access to electricity (rural)            | Access to electricity (rural)     |  |
| Users of clean alternatives              | Users of clean alternatives              |                                   |  |
| Unrealised potential for electric cook.  |                                          |                                   |  |
| DPs using clean cooking fuels (grid)     |                                          |                                   |  |
| Electricity access projections (grid)    |                                          |                                   |  |
| Grid reliability (SAIDI * SAIFI)         |                                          |                                   |  |
|                                          |                                          |                                   |  |
| Development                              |                                          |                                   |  |
| Human Development Index (HDI)            | Human Development Index (HDI)            | Human Development Index (HDI)     |  |
| ICT/internet adoption                    | ICT/internet adoption                    | ICT/internet adoption             |  |
| Gender Inequality Index                  | Gender Inequality Index                  | Gender Inequality Index           |  |
| Ease of Doing Business index             | Ease of Doing Business index             | Ease of Doing Business index      |  |
| Logistics Performance Index              | Logistics Performance Index              | Logistics Performance Index       |  |
| Credit rating                            | Credit rating                            | Credit rating                     |  |
| Affordability of electricity (grid only) |                                          |                                   |  |
|                                          |                                          |                                   |  |
| Independent of other indicators          |                                          |                                   |  |
| RISE                                     | RISE                                     | RISE                              |  |
|                                          | Off-grid renewables capacity (MG)        | Off-grid renewables capacity (S)  |  |
|                                          | Number of people connected to mini-grids |                                   |  |
|                                          |                                          | OECD aid flows                    |  |
|                                          |                                          | Renewable energy finance flows    |  |

#### Table 15 - Enabling environment indicators grouped

Through comparing rankings and scores before and after removing these groups of indicators from the analysis (by setting their weights to zero) their effect on the rankings and scores can be seen. The charts below (Figure 11) show the ranking difference between GMA scores before and after the groups of enabling indicators are removed.











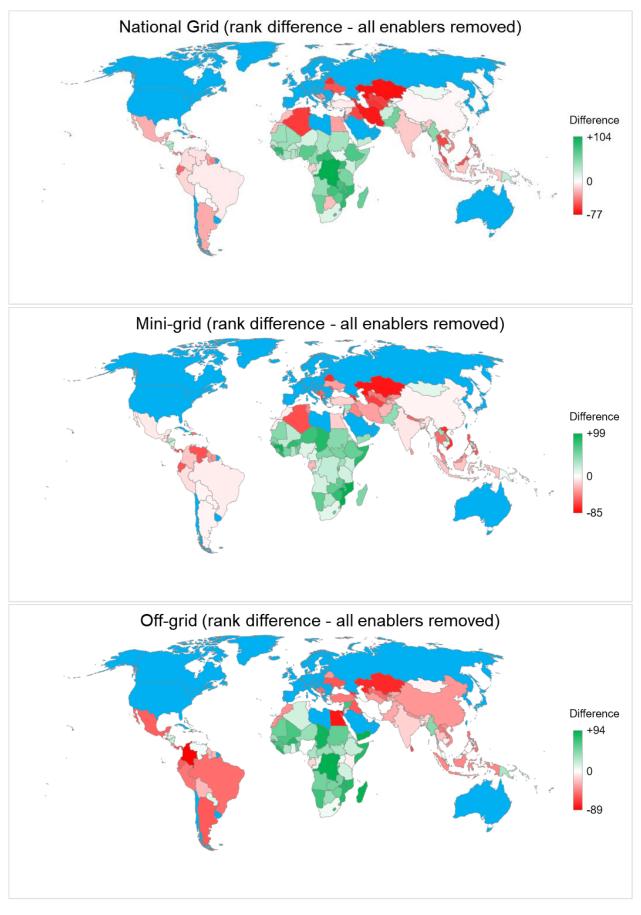



Figure 11 - Choropleths showing difference between GMA ranking with and without enabling environment indicators removed











Table 16 shows the countries in the top 65 for each scenario (with enabling indicators removed) which increase their ranking by more than 20 places.

By reviewing this data, it is clear that the viability of a scale up of electric cooking is most significantly hindered by poor enabling indicator scores in countries across sub-Saharan Africa. Other countries are similarly affected, including several from Central America/Caribbean (Honduras, Haiti, Dominica, Guatemala and Nicaragua), South/South-East Asia (Bangladesh, Pakistan, Mongolia, Laos and Myanmar), Pacific islands (Micronesia, Solomon Islands and Vanuatu) and North Africa (Syrian Arab Republic and Yemen).

There are, some exceptions to this where countries in sub-Saharan Africa already have high GMA scores: Kenya is relatively less affected by the removal of enabling indicators for the national grid scenario, the same can be said for Nigeria and Tanzania for the mini-grid scenario while this effect is less prevalent for the off-grid scenario.

Mini-grid (adjusted rank) Off-grid (adjusted rank) National grid (adjusted rank) Rank Country Score Diff. Rank Country Score Diff. Rank Country Score Diff. Uganda 0.544 +86 Uganda 0.496 +38 Zimbabwe 0.576 +54 1 2 5 Nigeria 0.487 +67 2 Madagascar 0.471 +50 Congo, Dem. Rep. 0.502 +94 5 Malawi 0.469 +78 0.443 +20 8 0.476 6 Zambia 7 Kenya +85 9 9 Namibia 0.464 +61 Haiti 0.438 +65 9 Senegal 0.466 +350.456 10 Guinea 0.463 +88 11 Mozambique 0.426 +9911 Zambia +510.458 12 13 0 4 4 7 12 Honduras +23Mali 0 4 1 9 +26Namibia +7214 Congo, Dem. Rep. 0.453 +10413 Guinea 0.417 +9514 Madagascar 0.439 +920.432 +9315 Cameroon 0.449 +47 14 Zambia 0.409 15 +63Yemen Ghana 0.439 +32 16 0.391 18 Burkina Faso 0.422 +83 17 Niger +76 0.429 17 0.391 19 19 Ethiopia +72 Zimbabwe Côte d'Ivoire 0.418 +29 +81Côte d'Ivoire 0.416 +33 19 Burkina Faso 0.389 +83 21 Eswatini 0.412 23 +54 +57 26 Pakistan 0.404 23 Namibia 0.374 +63 22 Ethiopia 0.409 +21 Eswatini 0.386 +46 24 Côte d'Ivoire 0.374 +54 23 Syrian Arab Republic 0.409 +69 27 Mozambique 0.385 25 0.370 0.402 +87Laos +3826 Chad +8928 30 Congo, Dem. Rep 0.397 30 Lesotho 0.380 +69 0.351 +2428 Guinea +67 31 Myanmar 0.379 +48 33 Se<u>negal</u> 0.342 +50 31 Mali 0.383 +67 Central African Republic 36 0.362 +86 34 Liberia 0.340 +86 32 Guinea-Bissau 0.382 +86 Zimbabwe 0.336 0.382 39 0.357 +66 36 Somalia +85 33 Sierra Leone +81 40 Malawi 0.357 +8037 Chad 0.332 +86 34 0.370 +68 Lesotho 0.332 41 Sierra Leone 0.353 +76 38 Ghana +31 35 Myanmar 0.366 +44 0.329 0.365 Equatorial Guinea 0.348 +32 40 +5143 +38 Honduras 36 Benin 44 Nicaragua 0.343 +36 42 Eswatini 0.326 +4339 Mozambique 0.363 +82 0.342 +32 43 0.323 +44 40 0.362 +82 45 Bangladesh Micronesia Somalia 50 Tanzania 0.339 +54 46 Malawi 0.319 +73 41 Liberia 0.355 +83 0.339 47 0.316 44 0.352 51 Burundi +75 Pakistan +43Micronesia +39 53 Angola 0.338 +44 48 Yemen 0.313 +40 50 Haiti 0.345 +69 Guinea-Bissau 54 Senegal 0.338 +28 49 0.313 +75 53 Sudan 0.340 +58 0.310 0.333 57 Madagascar 0.330 +62 50 Ethiopia +59 56 Nicaragua +22 62 Mauritania 0.322 +41 53 Benin 0.307 +58 57 Cameroon 0.332 +31 Sudan 0.321 +36 0.306 0.328 +50 64 54 Lesotho +52 60 Togo 0.304 55 Rwanda +42 62 Mauritania 0.325 +55 Solomon Islands Papua New Guinea 57 0.293 +4663 0.325 +31 0.286 59 Sierra Leone +66 60 0.286 Mauritania +47

Table 16 – Countries inside top 65 which increase rank by more than 20 places when enabling environment indicators are removed

Comparing between the charts where enabling environment indicators for energy and development are removed independently (while also removing the independent indicators), shows that the effect of removing the development indicators is less significant than removing the energy indicators as shown in the charts below (Figure 12). Countries move an average of 8 places when the development enablers are removed, whereas they move an average of 19 places when the energy enablers are removed. The difference is particularly large between the national grid scenario with development indicators removed (average movement five places) and energy indicators removed (23 places). This does not appear to be due to weightings differences between energy and development indicators, as the average weightings of the enablers across the three scenarios are similar (41% for energy and 39% for development).

Syrian Arab Republic

Burundi

0.283

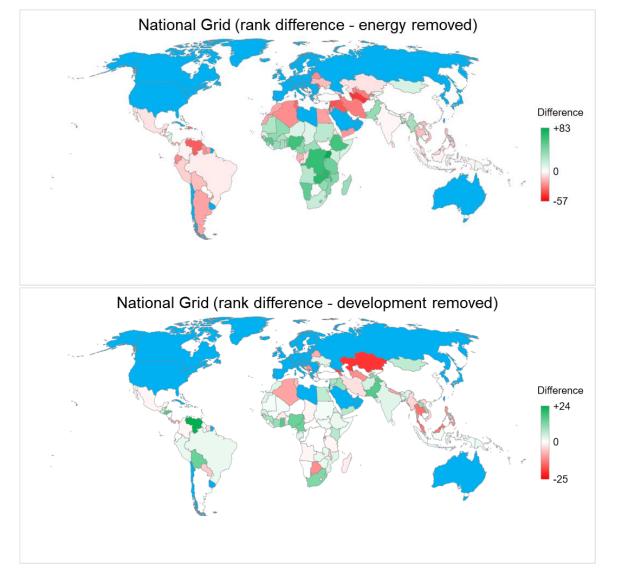
0.280

+34

+65

62

64













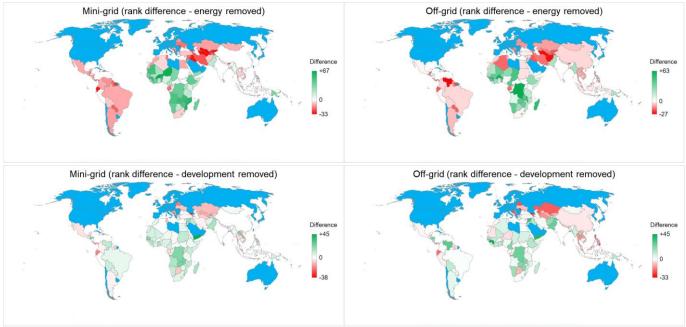




Figure 12 - Choropleths showing difference in GMA ranking for removal of development indicators and energy indicators









#### 5.3. Negatively correlated indicators

As previously mentioned, four indicators are negatively correlated with a high GMA score. These include two key, and interrelated indicators: users of commercialised polluting fuels and HAP attributable deaths. Reducing the number of HAP attributable deaths is a strong driver for a transition towards cleaner cooking fuels; WHO estimates that 3.8 million deaths per year can be attributed to HAP [30]. The GMA score also incorporates users of commercialised polluting fuels (summing users of kerosene, charcoal and coal) as households using these fuels are exposed to the adverse health effects of cooking with them, while also paying a significant amount for them; providing some evidence of ability to pay for electricity for cooking.

#### 5.3.1. HAP attributable deaths

As shown earlier, the GMA score was negatively correlated with HAP attributable deaths, particularly for the national grid scenario (CC of -0.58 (national grid), -0.33 (mini-grid), -0.36 (off-grid)). Therefore, although they appear to be related, there are countries where a scale up of electric cooking is viable, as well as there being a strong need for action to combat the negative effects of using cooking fuels which are damaging to human health. These countries are those furthest into the top right corner of the chart below (Figure 13) and include (across the three scenarios): Côte d'Ivoire, Nigeria, China, India, Myanmar, Nepal, Bangladesh, Laos, Bosnia and Herzegovina, Georgia and the Philippines. Countries in the bottom right corner are those with high HAP deaths and so have a pressing need for a transition to cleaner cooking fuels, but low GMA scores, so are poorly equipped to address it, these countries include (across the three scenarios): Chad, Central African Republic, Niger, Comoros, Sierra Leone, Guinea, Guinea-Bissau and Haiti.

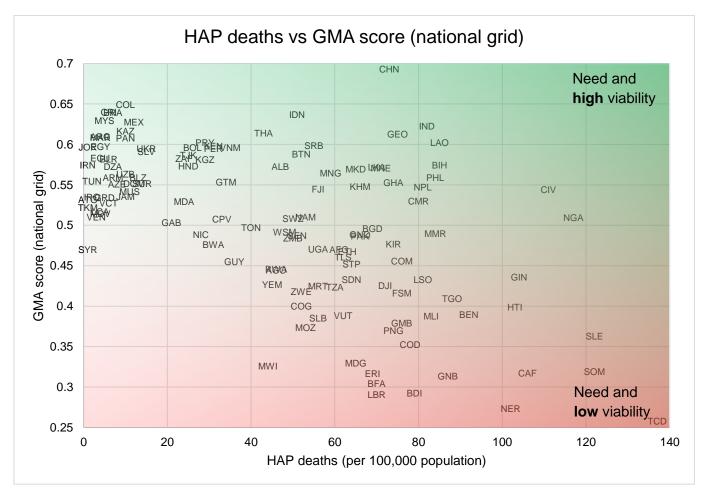



Figure 13 – Household air pollution (HAP) attributable deaths against GMA score (national grid scenario)











#### 5.3.2. GMA scores vs cooking fuels

In countries where the use of solid fuels (defined by WHO as including charcoal, coal and biomass (wood, crop waste and dung)) is high, a transition to cleaner cooking fuels is most urgently needed, however, in the same way that HAP attributable deaths are negatively correlated with GMA score, so is users of solid fuels.

Again, there is some correlation between the GMA score and users of solid fuels (CC of -0.68 (national grid), -0.46 (minigrid), -0.40 (off-grid)) and as such some countries present good opportunities for scale up of electric cooking, as well as having a pressing need due to large numbers of people cooking on solid fuels (see Figure 14), these include: Kenya, Laos, India, China, Sri Lanka, Ghana, Nepal, Cambodia, Côte d'Ivoire, Cameroon, Nigeria, Myanmar, Bangladesh, Tanzania, Uganda and Rwanda. However, those in pressing need of a transition, but most in need of efforts to improve its viability include: Eritrea, Burundi, Liberia, South Sudan, Central African Republic, Sierra Leone, The Gambia, Guinea-Bissau, Haiti, Chad, Somalia, Mozambique, Niger, Malawi and Burkina Faso.

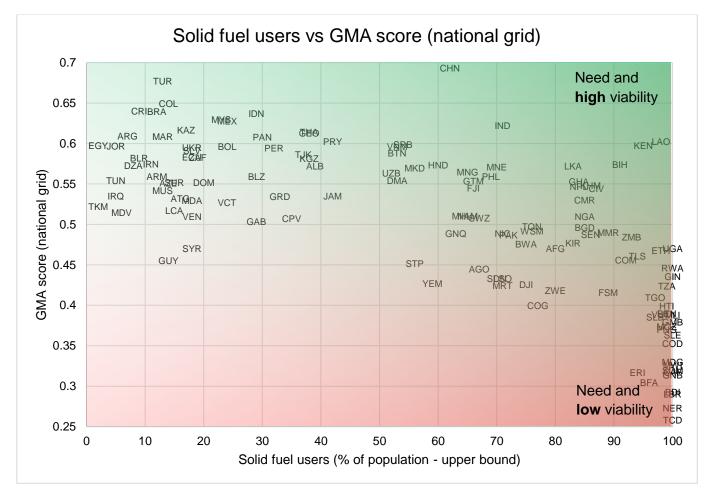



Figure 14 – Proportion of population using solid fuels against GMA score (national grid scenario)











Although to achieve universal access to clean cooking technologies as part of SDG 7, all who cook with biomass would need to transition to clean fuels. The "lowest hanging fruits" are the people who already have significant expenditures on cooking fuels (as opposed to those who gather wood, crop waste or dung for free), represented by the users of commercialised polluting fuels indicator (also moderately negatively correlated with GMA score: CC of 0.55 (national grid), 0.50 (mini-grid), 0.48 (off-grid)). Countries towards the top of the rankings with a relatively large proportion of their population using these fuels (see Figure 15) include: China, Malaysia, Thailand, Kenya, Laos, Ghana, Dominica, Grenada, Tanzania, Myanmar, Nigeria, Tanzania, Uganda and Laos.

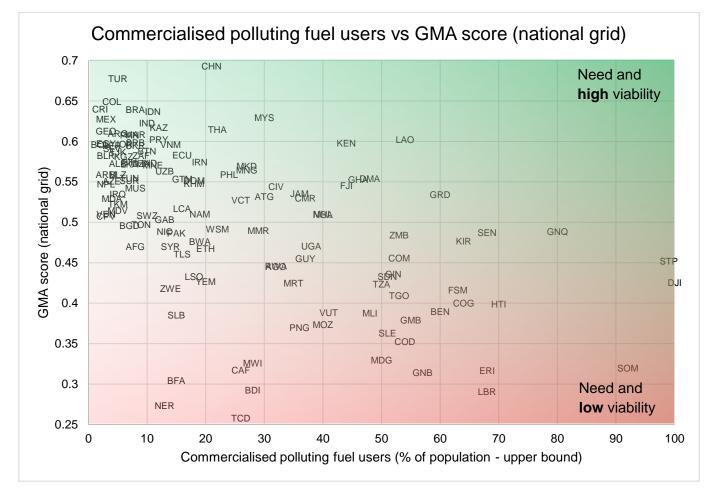



Figure 15 – Users of commercialised polluting fuels against GMA score (national grid scenario)









## 6. Discussion

Through bringing together a range of multi-dimensional datasets and incorporating stakeholder judgement on their relative importances, this study has created three scores and corresponding ranking lists to represent the viability of a scale up of electric cooking in the Global South. The study has also shown that energy infrastructure (in particular) and human development are key enabling factors in the viability of a scale up of electric cooking and that the countries most in need of a transition away from biomass cooking are often lacking in these areas. However, several notable exceptions have strong potential for scale up of electric cooking, as well as a pressing need to transition away from traditional fuels and as such present strong opportunities for impact by private, public and third sector actors alike.

The GMA score for the viability of scale up of national grid supported electric cooking is highest for countries with the highest levels of "development"; also described as "emerging markets", with strong electrical infrastructure and clean fuel markets where large proportions of people are already using modern cooking fuels (including LPG and electricity). These include China, Turkey, Colombia, Brazil, Indonesia, Malaysia, Mexico, India, Thailand and Argentina. A number of other countries such as Costa Rica, Georgia, Panama, Laos, Paraguay, Serbia and Kenya also have strong viability for scale up on the national grid.

Despite many high scoring countries having strong clean cooking markets and electrical infrastructure, some of these still have large numbers of people doing some, or all their cooking on polluting fuels. Through comparing national grid GMA scores and the proportion of people cooking with biomass, the top countries with not only an opportunity but also a need for scaled up transition on national grids can be shortlisted to China, Malaysia, India, Thailand, Laos, Serbia and Kenya. These countries are where continued efforts to transition to electric cooking on the national grid is not only most viable, but also pressingly needed.

On mini-grids, the viability of a scale up of electric cooking is again topped by emerging markets with strong development indicators and electrical infrastructure including China, India, Indonesia, Peru, Malaysia, Thailand, Turkey, South Africa and Argentina. However, other countries with particularly strong mini-grid infrastructure also perform well including Nepal, Bangladesh, Myanmar, Afghanistan, Nigeria and Tanzania. However, the accuracy of the scores for the mini-grid scenario is restricted due to the available data on mini-grids only covering two thirds of countries, lacking detail on energy access tier and fuels used for cooking specifically for those connected to mini-grids.

The off-grid scenario also highlights India, Kenya, Bangladesh, Nigeria, China, Uganda, Indonesia, Sri Lanka, Nepal, Rwanda, Malaysia and Tanzania as the highest scoring, as they have strong off-grid renewables sectors and consistent development indicators. Again, the accuracy of the scores for the off-grid scenario are particularly affected by a lack of datasets on off-grid markets which adequately cover the Global South (currently available datasets only cover half of the countries in this study).

Analysis has also shown that the countries which are most in need of a transition towards modern cooking fuels – due to having large proportions of people cooking on solid fuels and/or high numbers of HAP attributable deaths – are often those where a transition to electric cooking is least viable. However, there are a number of exceptions, where countries with high GMA scores also have large proportions of people who are likely to be paying significant amounts for biomass fuels (e.g. China, Malaysia, Thailand, Laos, Kenya, Myanmar, Philippines, Nigeria, Tanzania, Uganda and Rwanda) and also where countries have high GMA scores but many who are likely to pay little or nothing for biomass (e.g. China, India, Laos, Bangladesh, Nepal, Kenya, Myanmar, Afghanistan, Vietnam, Nigeria, Serbia, Uganda, Sri Lanka, Rwanda and the Philippines) and as such will find a transition more difficult due to a lack of existing expenditure on cooking fuels.

Alongside highlighting the countries in which a scale up of electric cooking is most viable, analysis has shown that there is a group of key indicators which enable a strong GMA score which are broadly similar across the three scenarios. These enabling indicators can be organised into two sub-groups: "energy" enablers (including indicators on the strength of electricity infrastructure and clean cooking market) and "development" enablers (including human development, gender inequality, ICT adoption, logistics and business indices). For all scenarios, the Regulatory Indicators for Sustainable Energy (RISE) was also an enabler but did not fit into the energy or development sub-groups, while for the mini-grid and off-grid scenarios market size and strength as well as finance flows (aid and renewable energy related) were also enablers.









Removing these enabling indicators from the analysis shows that the viability of a scale up of electric cooking, particularly on the national grid, is most significantly restricted by having poor electricity infrastructure and weak clean fuel markets, while lower levels of development are also a hindrance but to a lesser extent. This indicates that improvements in electricity infrastructure (including access and reliability) as well as growth in clean cooking markets are key enablers in improving the viability of a scale up of electric cooking. These improvements are needed particularly in much of sub-Saharan Africa. For example, improvements in energy indicators would significantly improve the viability of scaling up electric cooking in countries such as: Uganda, Zambia and Namibia (on national grids); Madagascar, Democratic Republic of Congo and Niger (on mini-grids); Zambia and Malawi (on off-grid (standalone) systems).

Through analysis of the GMA score results it is possible to indicate relationships, trends and correlations between overall scores, groups and sub-groups of data. It is recognised that in practice the datasets are interrelated via a complex network of cause, influence and effect that are only partially captured in the measured data. For example, although the enabling indicators are separated into energy and development groups according to apparent correlations between them, they are far from independent groupings. Furthermore, a significant limitation when constructing the GMA database was the need for datasets with adequate coverage across the majority of countries in the Global South, which are particularly lacking regarding mini-grid and off-grid markets. Finally, there are a variety of important factors for which adequate datasets are not available (e.g. global cooking fuel prices) and which are particularly difficult to quantify (e.g. cultural aspects such as food preferences, device suitability and cooking practices) which could not be included, and can only be appreciated via detailed study from the national down to the individual household level.









# 7. Recommendations

# A national grid supported transition to electric cooking (particularly when transitioning from fossil fuels e.g. LPG) needs to be coupled with decarbonisation of electricity grids.

Almost all countries with a high GMA score for the national grid scenario have very low renewable energy shares and so are likely to have carbon intensive electricity supplies. This means that for a transition to electric cooking to have the most positive impact (particularly regarding climate and the environment), it needs to be supported by increased investment in, and focus on, renewable electricity generation; often already cheaper than generation from fossil fuels.

# Efforts to improve access, reliability and strength of national grid, mini-grid and off-grid electrical infrastructure must accelerate and integrate electric cooking where possible.

Some of the most influential factors as to the viability of electric cooking concern access to, and reliability of, electricity infrastructure. Although progress is being made towards universal electrification in many countries, electric cooking needs to be integrated into the planning and implementation for it to most effectively enable accelerated adoption of modern energy cooking services. Innovative solutions to cooking with electricity on mini-grid and off-grid (standalone) systems are already cost effective in some contexts and need to be developed into robust technical and business cases for electric cooking supported by these technologies. Meanwhile, continued investigation around the interface between cooking culture and the use of low-powered, efficient cooking devices such as electric pressure cookers is also essential.

**Electrification needs to be coupled with accurate, up-to-date datasets on tier of access, cooking fuels and costs.** Existing data on access to electricity and cooking fuel use, which varies hugely across the Global South and strongly influences the viability of a scale up of electric cooking, still largely does not account for tiers of access (as highlighted by ESMAP [3]). Worse still is the availability of data on the size and strength of mini-grid and off-grid markets (many countries have little or no data), and there is currently minimal integration between these areas (e.g. which cooking fuels are used by mini-grid connected households vs those connected to the national grid). Given the current growth of the mini-grid and off-grid markets, and its expected acceleration in the future, improvements in such resources are needed which would provide more insight than current datasets which focus on the arbitrary rural vs urban disaggregation.

# More globally complete data is needed around other cooking fuels (e.g. cooking fuel prices for charcoal, LPG and kerosene) to provide comparison with electric cooking.

The GMA does not incorporate information on other cooking fuels beyond the proportion of those using clean alternatives or commercialised polluting fuels due to a lack of datasets with adequate global coverage. For example, there is no global dataset for the cost of the other main cooking fuels (e.g. LPG, kerosene and charcoal) which has prevented the inclusion of an indicator comparing the cost of cooking with electricity and other fuels; an important factor in understanding the viability of electric cooking. Collecting such data is challenging (as experienced by this study) but a globally complete database of information on cooking fuels (as well as cooking practices and fuel stacking as below) would be hugely beneficial for actors in the clean cooking sector, as well as for future revisions to this GMA.

# Contextual understanding – food preferences, cooking practices, fuel/device stacking – is an essential component around which further work is needed to most effectively accelerate the scale up electric cooking.

There is still much to be learned about the differences in energy required to cook foods on different devices, and how this varies according to the different cooking processes involved in cooking 'typical daily/weekly' menus across the world. Furthermore, important behaviours like fuel stacking are not represented by any cooking fuel datasets which cover a large number of countries, and so many still rely on collecting information on the 'main household cooking fuel'. Like the recommendations above, data gathering methodologies such as the MTF or better formulated household census questions around cooking are needed to provide more contextual understanding and better advise the sector.

#### Expansion of data gathering around electric cooking for RISE and others would improve opportunities.

Understanding and tracking policy developments on a global scale is challenging, but tools such as ESMAP's RISE score and BloombergNEF's Climatescope score are hugely useful in providing global insights. However, currently only RISE incorporates cooking-specific policies (a functionality available for the first time this year). Modern cooking actors would benefit from more countries being included in databases (RISE and Climatescope cover around three quarters of countries on the DAC list) and a cross-cutting policy indicator specifically for electric cooking (incorporating relevant aspects from the electricity access, renewable energy, energy-efficiency and clean cooking pillars) would be ideal.











### 8. References

- [1] ESMAP, "2021 Tracking SDG 7 Report," 2021. https://trackingsdg7.esmap.org/downloads (accessed Jul. 19, 2021).
- [2] IEA, "Access to electricity SDG7: Data and Projections Analysis IEA," 2020. https://www.iea.org/reports/sdg7-data-and-projections/access-to-electricity (accessed Mar. 17, 2021).
- [3] ESMAP, "The State of Access to Modern Energy Cooking Services," 2020. https://documents.worldbank.org/en/publication/documentsreports/documentdetail/937141600195758792/the-state-of-access-to-modern-energy-cookingservices (accessed Mar. 17, 2021).
- [4] R. Bailis, R. Drigo, A. Ghilardi, and O. Masera, "The carbon footprint of traditional woodfuels," *Nat. Clim. Chang.*, vol. 5, no. 3, pp. 266–272, Feb. 2015, doi: 10.1038/nclimate2491.
- [5] WHO, "Household air pollution and health," 2018. https://www.who.int/en/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed Apr. 21, 2020).
- [6] ESMAP, "Cooking with Electricity | A Cost Perspective | ESMAP," 2020. https://esmap.org/cooking\_with\_electricity\_a\_cost\_perspective (accessed Mar. 17, 2021).
- [7] J. Leary, S. Batchelor, M. Leach, and E. Brown, "(PDF) eCook Global Market Assessment Where will the transition take place first?," 2018. Accessed: Mar. 17, 2021. [Online]. Available: https://www.researchgate.net/publication/326489706\_eCook\_Global\_Market\_Assessment\_Where\_w ill\_the\_transition\_take\_place\_first.
- [8] MECS, "Publications Modern Energy Cooking Services," 2021. https://mecs.org.uk/publications/ (accessed Mar. 17, 2021).
- [9] OECD, "DAC List of ODA Recipients OECD," 2021. http://www.oecd.org/dac/financing-sustainabledevelopment/development-finance-standards/daclist.htm (accessed Mar. 17, 2021).
- [10] Investopedia, "Delphi Method Definition," 2020. https://www.investopedia.com/terms/d/delphimethod.asp (accessed Mar. 17, 2021).
- [11] M. Bruhn and S. Leleur, "Multi-criteria decision analysis for use in transport decision making," DTU Transport, 2014. Accessed: Mar. 17, 2021. [Online]. Available: https://orbit.dtu.dk/en/publications/multi-criteria-decision-analysis-for-use-in-transport-decision-ma.
- [12] World Bank, "World Bank Country and Lending Groups World Bank Data Help Desk," 2021. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lendinggroups (accessed Mar. 17, 2021).
- [13] World Bank, "Heavily Indebted Poor Country (HIPC) Initiative," 2018. https://www.worldbank.org/en/topic/debt/brief/hipc (accessed Mar. 17, 2021).
- [14] World Bank, "Small States Overview," 2020. https://www.worldbank.org/en/country/smallstates/overview (accessed Mar. 17, 2021).
- [15] World Bank, "Classification of Fragile and Conflict-Affected Situations," 2020. https://www.worldbank.org/en/topic/fragilityconflictviolence/brief/harmonized-list-of-fragile-situations (accessed Mar. 17, 2021).
- [16] European Comission, "What are the pros and cons of composite indicators? | EU Science Hub," 2015. https://ec.europa.eu/jrc/en/faq/what-are-pros-and-cons-composite-indicators-32104 (accessed Mar. 17, 2021).
- [17] OECD and JRC, "Handbook on constructing composite indicators: methodology and user guide OECD," 2008.









http://www.oecd.org/els/soc/handbookonconstructingcompositeindicatorsmethodologyanduserguide. htm (accessed Mar. 17, 2021).

- [18] S. Greco, A. Ishizaka, M. Tasiou, and G. Torrisi, "On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness," *Social Indicators Research*, vol. 141, no. 1. Springer Netherlands, pp. 61–94, Jan. 15, 2019, doi: 10.1007/s11205-017-1832-9.
- [19] World Health Organisation, "WHO Household energy database," 2021. https://www.who.int/airpollution/data/household-energy-database/en/ (accessed Jun. 07, 2021).
- [20] World Bank, "World Bank Open Data," 2021. https://data.worldbank.org/ (accessed Jun. 07, 2021).
- [21] ESMAP, "Multi Tier Framework | Tracking progress toward sustainable energy goals," 2021. https://mtfenergyaccess.esmap.org/ (accessed Mar. 17, 2021).
- [22] IEA, "Energy Access Outlook 2017," *Energy Procedia*, vol. 94, no. March, p. 144, 2017, doi: 10.1787/9789264285569-en.
- [23] CLUB-ER, "Electrified mini-grid localities in Africa CLUB-ER," 2019. https://www.cluber.org/library/techno-economic-databases-324.html (accessed Mar. 17, 2021).
- [24] GOGLA, "Global Off-Grid Solar Market Report | GOGLA," 2020. https://www.gogla.org/global-off-gridsolar-market-report (accessed Mar. 17, 2021).
- [25] MSCI, "Market classification MSCI," 2020. https://www.msci.com/market-classification (accessed Mar. 17, 2021).
- [26] BNEF, "BloombergNEF 2021 Executive Factbook | BloombergNEF," 2021. https://about.bnef.com/blog/bloombergnef-2021-executive-factbook/ (accessed Apr. 26, 2021).
- [27] LAZARD, "Lazard.com | Levelized Cost of Energy and of Storage," 2020. https://www.lazard.com/perspective/levelized-cost-of-energy-and-levelized-cost-of-storage-2020/ (accessed Apr. 26, 2021).
- [28] Our World in Data, "Why did renewables become so cheap so fast? And what can we do to use this global opportunity for green growth? Our World in Data," 2020. https://ourworldindata.org/cheap-renewables-growth (accessed Apr. 26, 2021).
- [29] IRENA, "Renewable Power Generation Costs in 2019," 2019, Accessed: Apr. 26, 2021. [Online]. Available: https://irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019.
- [30] WHO, "Household air pollution and health," *Fact Sheets*, 2018. http://www.who.int/en/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed Jul. 17, 2018).
- [31] ESMAP, "RISE," 2021. https://rise.esmap.org/ (accessed Mar. 17, 2021).
- [32] BloombergNEF, "Climatescope 2020," 2021. https://global-climatescope.org/ (accessed Mar. 17, 2021).
- [33] World Bank, "Ease of Doing Business Index," 2021. https://www.doingbusiness.org/en/rankings (accessed Mar. 17, 2021).









# 9. Appendices

## Appendix 1

#### GMA indicators and sources

| Indicator                                                        | Summary                                                                                                                                              | Source                                                                                                                                                                          |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Users of electric                                                | % of population using electricity as primary                                                                                                         | WHO Household Energy Database                                                                                                                                                   |
| cooking                                                          | cooking fuel (upper bound)                                                                                                                           | (available via email from WHO)                                                                                                                                                  |
| Users of clean<br>alternatives (e.g. LPG,<br>biogas)             | % of population using clean alternatives as primary cooking fuel (LPG, biogas, ethanol etc) (upper bound)                                            | WHO Household Energy Database<br>(available via email from WHO)                                                                                                                 |
| Users of<br>commercialised<br>polluting fuels (e.g.<br>charcoal) | % of population using kerosene, charcoal or coal<br>(upper bound)                                                                                    | WHO Household Energy Database<br>(available via email from WHO)                                                                                                                 |
| Unrealised potential for electric cooking                        | % access to electricity - % primarily cooking with electricity                                                                                       | WHO Household Energy Database (available via email)<br>World Bank DataBank<br>(https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS)                                             |
| Affordability of electricity (grid only)                         | Wealth adjusted price of electricity<br>(GNI per capita PPP / electricity price (USD))                                                               | Electricity price from Ease of Doing Business Database<br>GNI per capita PPP from World Bank DataBank<br>(https://data.worldbank.org/indicator/NY.GNP.PCAP.PP.<br>CD)           |
| Credit rating                                                    | Sovereign Wikirating Index is a framework which<br>evaluates the credit rating of sovereign<br>countries/territories based on economic indicators    | Wikirating<br>(https://www.wikirating.org/wiki/List_of_countries_by_cre<br>dit_rating)                                                                                          |
| Mobile money                                                     | % who used mobile money, a debit or credit card,<br>or a mobile phone to make or receive a payment<br>from a digital account in the past year.       | World Bank Global Findex Database<br>(https://globalfindex.worldbank.org/)                                                                                                      |
| International RE finance flows                                   | International financial flows to developing<br>countries in support of clean energy research and<br>development and production                       | ESMAP Tracking SDG 7 Energy Progress Report<br>(https://trackingsdg7.esmap.org/downloads)                                                                                       |
| Public investment in renewables                                  | Investment transactions for renewable energies<br>from public financial institutions based on the<br>project level information as collated by IRENA. | IRENA Renewable Energy Statistics<br>https://irena.org/publications/2020/Jul/Renewable-<br>energy-statistics-2020                                                               |
| Photovoltaic power potential                                     | Takes into account solar irradiation, air<br>temperature, terrain horizon, albedo, module tilt,<br>configuration, shading, soiling and other factors | World Bank Global Solar Atlas<br>(https://globalsolaratlas.info/global-pv-potential-study)                                                                                      |
| Tree cover loss                                                  | Loss of tree cover between 2017 and 2019 as % of total tree cover in 2010                                                                            | Global Forest Watch<br>(https://www.globalforestwatch.org/dashboards/global/)                                                                                                   |
| ICT/internet adoption                                            | Score based on levels of internet use and mobile<br>and broadband (wired and wireless) subscriptions.                                                | UN E-Government Knowledgebase<br>(https://publicadministration.un.org/egovkb/Data-Center)                                                                                       |
| Ease of Doing<br>Business index                                  | Quality of environment for starting and operating a local firm                                                                                       | World Bank Ease of Doing Business Index (https://www.doingbusiness.org/en/data)                                                                                                 |
| Regulatory Indicators<br>for Sustainable Energy<br>(RISE)        | Strength of renewable energy favouring policies                                                                                                      | ESMAP RISE<br>(https://rise.esmap.org/)                                                                                                                                         |
| Indoor Air Pollution attributable deaths                         | Deaths/100,000 people attributable to indoor air pollution related illnesses / causes.                                                               | WHO Global Health Observatory data repository<br>(https://apps.who.int/gho/data/node.main.BODHOUSEH<br>OLDAIRDTHS?lang=en)                                                      |
| Gender Inequality<br>Index                                       | Loss in potential human development due to<br>disparity reproductive health, empowerment and<br>the labour market.                                   | UNDP Human Development Reports<br>(http://hdr.undp.org/en/content/gender-inequality-index-<br>gii)                                                                              |
| Urban population growth                                          | % growth in urban population compared with<br>previous year                                                                                          | World Bank DataBank<br>(https://data.worldbank.org/indicator/SP.URB.GROW)                                                                                                       |
| Human Development<br>Index (HDI)                                 | Combines health, education and income discounting average value according to inequality                                                              | UNDP Human Development Reports<br>(http://hdr.undp.org/en/content/inequality-adjusted-<br>human-development-index-ihdi)                                                         |
| Number of displaced<br>persons (DPs) per<br>1000 population      | Including internally displaced, refugees etc both due to conflict and disaster                                                                       | UNHCR Global Trends: Forced Displacement<br>(https://data.humdata.org/m/dataset/unhcr-global-trends-<br>forced-displacement-in-2019-data)                                       |
| DPs using clean<br>cooking fuels (grid)                          | % DPs not using biomass from "urban" and "slum" groups                                                                                               | Moving Energy Initiative - Energy Consumption of<br>refugees and displaced people<br>(https://data.humdata.org/dataset/energy-consumption-<br>of-refugees-and-displaced-people) |
| DPs using clean<br>cooking fuels (off/mini<br>grid)              | % DPs not using biomass from "rural" and "camps" groups                                                                                              | Moving Energy Initiative - Energy Consumption of<br>refugees and displaced people<br>(https://data.humdata.org/dataset/energy-consumption-<br>of-refugees-and-displaced-people) |
| DPs with unrealised potential for eCook                          | % DPs connected to grid - % not cooking with<br>biomass                                                                                              | Moving Energy Initiative - Energy Consumption of<br>refugees and displaced people<br>(https://data.humdata.org/dataset/energy-consumption-<br>of-refugees-and-displaced-people) |











#### www.mecs.org.uk

## DRAFT FOR REVIEW

| Logistics Performance                           | Score includes: efficiency, infrastructure quality, ease, competence, track and trace, successful                                               | World Bank Logistics Performance Index                                                                                                                                                                                                                                                                   |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Index                                           | delivery freq.                                                                                                                                  | (https://lpi.worldbank.org/about)                                                                                                                                                                                                                                                                        |
| Manufacturing, value added                      | Net output of manufacturing sector after adding up<br>all outputs and subtracting intermediate inputs<br>(industries in ISIC divisions 15-37)   | World Bank DataBank<br>(https://data.worldbank.org/indicator/NV.IND.MANF.ZS)                                                                                                                                                                                                                             |
| Access to electricity (all areas)               | % of population with access to electricity (grid)                                                                                               | World Bank DataBank<br>(https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS)                                                                                                                                                                                                                             |
| Access to electricity (urban)                   | % of urban population with access to electricity                                                                                                | World Bank DataBank<br>(https://data.worldbank.org/indicator/EG.ELC.ACCS.UR.<br>ZS)                                                                                                                                                                                                                      |
| Electricity access<br>projections (grid)        | Projected population connected to national grid in 2030                                                                                         | Global Electrification Platform<br>(https://electrifynow.energydata.info/)                                                                                                                                                                                                                               |
| Renewable energy share                          | % of electricity generated from renewable sources                                                                                               | Our World in Data<br>(https://ourworldindata.org/grapher/share-electricity-<br>renewables)                                                                                                                                                                                                               |
| Grid reliability (SAIDI * SAIFI)                | Total (per year) duration of outages (in hours) / frequency of outages experienced by customers                                                 | World Bank Ease of Doing Business Database<br>(https://www.doingbusiness.org/en/data)                                                                                                                                                                                                                    |
| Access to electricity<br>(all areas)            | % of population with access to electricity (mini-<br>grid)                                                                                      | World Bank DataBank<br>(https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS)                                                                                                                                                                                                                             |
| Access to electricity<br>(rural)                | % of rural population with access to electricity                                                                                                | World Bank DataBank<br>(https://data.worldbank.org/indicator/EG.ELC.ACCS.RU.<br>ZS)                                                                                                                                                                                                                      |
| Electricity access<br>projections (mini-grid)   | Projected population connected to mini-grids in 2030 (according to Global Electrification Platform)                                             | Global Electrification Platform (https://electrifynow.energydata.info/)                                                                                                                                                                                                                                  |
| Off-grid renewables capacity (mini-grid)        | Total capacity of generation of electricity from off-<br>grid renewable sources (including mini-grids and<br>standalone off-grid)               | IRENA Renewables Capacity Statistics<br>(https://irena.org/publications/2020/Mar/Renewable-<br>Capacity-Statistics-2020)                                                                                                                                                                                 |
| Number of mini-grid<br>developers               | Number of mini-grid developers in the country<br>(planned and installed mini-grids) according to<br>World Bank Global mini-grid Market Survey   | Combined sources: ESMAP Mini-grid Database<br>(available via email from World Bank),<br>BNEF mini-grid asset database<br>(https://minigrids.org/market-report-2020/),<br>IRENA Off-grid Energy Statistics<br>(https://www.irena.org/publications/2019/Dec/Off-grid-<br>renewable-energy-statistics-2019) |
| Number of people<br>connected to mini-<br>grids | Number of people connected to mini-grids<br>(planned and installed mini-grids) according to<br>World Bank Global mini-grid Market Survey        | Combined sources: ESMAP Mini-grid Database<br>(available via email from World Bank),<br>BNEF mini-grid asset database<br>(https://minigrids.org/market-report-2020/),<br>IRENA Off-grid Energy Statistics<br>(https://www.irena.org/publications/2019/Dec/Off-grid-<br>renewable-energy-statistics-2019) |
| Access to electricity<br>(all areas)            | % of population with access to electricity (off-grid)                                                                                           | World Bank DataBank<br>(https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS)                                                                                                                                                                                                                             |
| Access to electricity (rural)                   | % of rural population with access to electricity                                                                                                | World Bank DataBank<br>(https://data.worldbank.org/indicator/EG.ELC.ACCS.RU.<br>ZS)                                                                                                                                                                                                                      |
| Electricity access<br>projections (off-grid)    | Projected population to standalone off-grid<br>systems in 2030 (according to Global<br>Electrification Platform)                                | Global Electrification Platform<br>(https://electrifynow.energydata.info/)                                                                                                                                                                                                                               |
| Off-grid renewables capacity (off-grid)         | Total capacity of generation of electricity from off-<br>grid solar sources (solar lights and solar home<br>systems)                            | IRENA Off-grid Renewable Capacity Statistics<br>(https://www.irena.org/publications/2019/Dec/Off-grid-<br>renewable-energy-statistics-2019)                                                                                                                                                              |
| Off-grid<br>lighting/appliance<br>customers     | Off-grid solar lighting/appliances reported sold by<br>GOGLA members, those who meet Lighting Global<br>Quality Standards, Global LEAP or LEIA. | Combined sources: IRENA Off-grid Energy Statistics<br>(https://www.irena.org/publications/2019/Dec/Off-grid-<br>renewable-energy-statistics-2019)<br>GOGLA Off-grid solar market report<br>(https://www.gogla.org/resources/global-off-grid-solar-<br>market-report-h2-2019-sales-and-impact-data)       |









Bounds applied to indicators

| Indicator                                           | Lower<br>bound | Upper<br>bound | Reason for bounds                                                   | Other comments                                       |
|-----------------------------------------------------|----------------|----------------|---------------------------------------------------------------------|------------------------------------------------------|
| Users of electric cooking                           | 0              | 100            | Percentage                                                          |                                                      |
| Users of clean alternatives                         | 0              | 100            | Percentage                                                          |                                                      |
| Users of commercialised polluting fuels             | 0              | 100            | Percentage                                                          |                                                      |
| Unrealised potential for electric cooking           | 0              | 100            | Percentage                                                          |                                                      |
| Affordability of electricity (grid only)            | 0              | 4126           | Upper limit set at 90th percentile of global max due to outliers    |                                                      |
| Credit rating                                       | 0              | 100            | Percentage                                                          |                                                      |
| Mobile money                                        | 0              | 1              | Percentage                                                          |                                                      |
| OECD aid flows                                      | 0              | 3241           | Upper limit set at 90th percentile<br>of global max due to outliers |                                                      |
| Renewable energy finance flows                      | 0              | 404            | Upper limit set at 90th percentile of global max due to outliers    |                                                      |
| Photovoltaic power potential                        | 2.51           | 5.38           | Global max and min                                                  |                                                      |
| Tree cover loss                                     | 0              | 0.0150         | Upper limit set at 90th percentile of global max due to outliers    |                                                      |
| ICT/internet adoption                               | 0              | 1              | Percentage                                                          |                                                      |
| Ease of Doing Business index                        | 0              | 100            | Percentage                                                          |                                                      |
| Regulatory Indicators for Sustainable Energy (RISE) | 0              | 100            | Percentage                                                          |                                                      |
| Indoor Air Pollution attributable deaths            | 0              | 173            | Global max and min                                                  |                                                      |
| Gender Inequality Index                             | 0              | 1              | Percentage                                                          |                                                      |
| Urban population growth                             | -1.58          | 6.00           | Global max and min                                                  |                                                      |
| Human Development Index (HDI)                       | 0              | 1              | Percentage                                                          |                                                      |
| Number of displaced persons (DPs) per 1000          | 0              | 60.4           | Upper limit set at 90th percentile of global max due to outliers    |                                                      |
| DPs using clean cooking fuels (grid)                | 0              | 1              | Percentage                                                          |                                                      |
| DPs using clean cooking fuels (off/mini grid)       | 0              | 1              | Percentage                                                          |                                                      |
| DPs with unrealised potential for eCook             | -0.370         | 1              | Percentage                                                          | (negative means LPG use % higher than grid access %) |
| Logistics Performance Index                         | 0              | 5              | LPI defined max and min                                             |                                                      |
| Manufacturing, value added                          | 0              | 39.4           | Global max for manufact %                                           |                                                      |
| Access to electricity (all areas)                   | 0              | 100            | Percentage                                                          |                                                      |
| Access to electricity (urban)                       | 0              | 100            | Percentage                                                          |                                                      |
| Electricity access projections (grid)               | 0              | 100            | Percentage                                                          |                                                      |
| Renewable energy share                              | 0              | 100            | Percentage                                                          |                                                      |
| Grid reliability (SAIDI * SAIFI)                    | 0              | 4673           | Upper limit set at 90th percentile of global max due to outliers    |                                                      |
| Access to electricity (all areas)                   | 0              | 100            | Percentage                                                          |                                                      |
| Access to electricity (rural)                       | 0              | 100            | Percentage                                                          |                                                      |
| Electricity access projections (mini-grid)          | 0              | 100            | Percentage                                                          |                                                      |
| Off-grid renewables capacity (mini-grid)            | 0              | 153            | Upper limit set at 90th percentile of global max due to outliers    |                                                      |
| Number of mini-grid developers                      | 0              | 58             | Upper limit set at 90th percentile<br>of global max due to outliers | na values assumed to be 0 due to lack of coverage    |
| Number of people connected to mini-grids            | 0              | 354490         | Upper limit set at 90th percentile of global max due to outliers    | <u> </u>                                             |
| Access to electricity (all areas)                   | 0              | 100            | Percentage                                                          |                                                      |
| Access to electricity (rural)                       | 0              | 100            | Percentage                                                          |                                                      |
| Electricity access projections (off-grid)           | 0              | 100            | Percentage                                                          |                                                      |
| Off-grid renewables capacity (off-grid)             | 0              | 10.4           | Upper limit set at 90th percentile of global max due to outliers    | na values assumed to be 0 due to lack of coverage    |
| Off-grid lighting/appliance customers               | 0              | 1907200        | Upper limit set at 90th percentile of global max due to outliers    | na values assumed to be 0 due to lack of coverage    |









Full list of country scores and rankings for national grid, mini-grid and off-grid (standalone scenarios)

|    | National Grid                      |       |
|----|------------------------------------|-------|
|    | Country                            | Score |
|    | China                              | 0.693 |
|    | Turkey                             | 0.677 |
|    | Colombia                           | 0.650 |
|    | Costa Rica                         | 0.640 |
| -  | Brazil                             | 0.639 |
| -  | Indonesia                          | 0.637 |
|    | Malaysia<br>Mexico                 | 0.630 |
| -  | India                              | 0.628 |
|    | Kazakhstan                         | 0.623 |
|    | Thailand                           | 0.614 |
|    | Georgia                            | 0.613 |
|    | Argentina                          | 0.610 |
|    | Morocco                            | 0.609 |
|    | Panama                             | 0.608 |
|    | Laos                               | 0.602 |
| 17 | Paraguay                           | 0.602 |
| 18 | Serbia                             | 0.599 |
| 19 | Kenya                              | 0.598 |
| 20 | Egypt                              | 0.597 |
|    | Jordan                             | 0.597 |
|    | Bolivia                            | 0.596 |
| 23 | Vietnam                            | 0.596 |
|    | Ukraine                            | 0.595 |
|    | Peru                               | 0.595 |
|    | El Salvador                        | 0.591 |
|    | Bhutan                             | 0.588 |
|    | Tajikistan                         | 0.587 |
|    | Ecuador                            | 0.583 |
|    | South Africa                       | 0.583 |
|    | Belarus                            | 0.582 |
|    | Kyrgyzstan                         | 0.582 |
|    | Iran<br>Reapie and Harzagovina     | 0.575 |
|    | Bosnia and Herzegovina<br>Honduras | 0.574 |
|    | Algeria                            | 0.573 |
|    | Albania                            | 0.573 |
|    | Sri Lanka                          | 0.572 |
|    | Montenegro                         | 0.571 |
|    | North Macedonia                    | 0.570 |
| 41 | Mongolia                           | 0.565 |
| 42 | Uzbekistan                         | 0.564 |
| 43 | Armenia                            | 0.559 |
| 44 | Belize                             | 0.559 |
|    | Philippines                        | 0.559 |
| 46 | Tunisia                            | 0.555 |
|    | Dominica                           | 0.554 |
|    | Guatemala                          | 0.554 |
|    | Ghana                              | 0.553 |
| 50 | Dominican Republic                 | 0.552 |
|    | Suriname                           | 0.552 |
|    | Azerbaijan                         | 0.551 |
|    | Cambodia                           | 0.548 |
|    | Nepal                              | 0.547 |
|    | Fiji<br>Câte d'Iveire              | 0.545 |
| 56 | Côte d'Ivoire                      | 0.544 |
|    | Mauritius<br>Jamaica               | 0.542 |
|    | Iraq                               | 0.535 |
|    | Grenada                            | 0.535 |
|    | Antigua and Barbuda                | 0.535 |
|    | Cameroon                           | 0.532 |
|    | Moldova                            | 0.529 |
|    | St. Vinc. and the Gren.            | 0.529 |
| 65 | Turkmenistan                       | 0.522 |
|    | Saint Lucia                        | 0.517 |
|    | Maldives                           | 0.515 |
|    |                                    |       |

|                     | Mini-grid           |                |
|---------------------|---------------------|----------------|
| Rank Cou            | ntry                | Score          |
| 1 Chin              |                     | 0.665          |
| 2 India             |                     | 0.634          |
| 3 Indo<br>4 Peru    |                     | 0.586          |
| 5 Mala              |                     | 0.578          |
| 6 Alge              |                     | 0.553          |
| 7 Nepa              |                     | 0.537          |
|                     | ladesh              | 0.528          |
| 9 Philij<br>10 Myai |                     | 0.526          |
| 11 Thai             |                     | 0.520          |
| 12 Turk             |                     | 0.514          |
| 13 Kaza             |                     | 0.500          |
| 14 Sout             |                     | 0.500          |
| 15 Afgh             |                     | 0.495          |
| 16 Vietr            |                     | 0.487          |
| 17 Arge<br>18 Nige  |                     | 0.480          |
| 19 Serb             |                     | 0.476          |
| 20 Bela             |                     | 0.473          |
| 21 North            | n Macedonia         | 0.472          |
| 22 Mexi             |                     | 0.471          |
| 23 Tanz             |                     | 0.465          |
| 24 Boliv            |                     | 0.463          |
| 25 Egyp<br>26 Braz  |                     | 0.462          |
| 27 Keny             |                     | 0.461          |
| 28 Vene             |                     | 0.459          |
| 29 Moro             | 0000                | 0.458          |
| 30 Cost             |                     | 0.458          |
| 31 Cam              |                     | 0.451          |
| 32 Colo             |                     | 0.450          |
| 33 Bosr<br>34 Mald  | hia and Herzegovina | 0.445<br>0.445 |
| 35 Jorda            |                     | 0.444          |
| 36 Ukra             |                     | 0.435          |
| 37 Mon              | golia               | 0.434          |
| 38 Mali             |                     | 0.429          |
| 39 Ugar             |                     | 0.427          |
| 40 Arme<br>41 Tunis |                     | 0.426          |
| 41 Turna<br>42 Pana |                     | 0.423          |
| 43 Cam              |                     | 0.422          |
| 44 Dom              | inican Republic     | 0.420          |
| 45 Mon              |                     | 0.419          |
| 46 Mau              |                     | 0.419          |
| 47 Bhut             |                     | 0.418          |
| 48 Azer<br>49 Alba  |                     | 0.417<br>0.417 |
| 50 Iran             | IIIa                | 0.417          |
| 51 Tajik            | istan               | 0.413          |
| 52 Mad              | 0                   | 0.411          |
| 53 El Sa            |                     | 0.410          |
|                     | go, Dem. Rep.       | 0.410          |
| 55 Geor             |                     | 0.407          |
| 56 Dom<br>57 Antic  | jua and Barbuda     | 0.405<br>0.405 |
| 58 Uzbe             |                     | 0.403          |
| 59 Para             |                     | 0.404          |
| 60 Gren             | ada                 | 0.402          |
| 61 Cabo             |                     | 0.402          |
|                     | menistan            | 0.401          |
| 63 Laos             |                     | 0.401          |
| 64 Jama<br>65 Ecua  |                     | 0.400 0.399    |
| 66 Kyrg             |                     | 0.399          |
| 67 Sri L            |                     | 0.396          |
|                     |                     |                |

|    | Off-grid (standalone)  |       |
|----|------------------------|-------|
|    | Country                | Score |
| 1  | India                  | 0.635 |
| 2  | Kenya                  | 0.595 |
| 3  | Morocco                | 0.575 |
|    | Bangladesh             | 0.574 |
|    | Nigeria                | 0.557 |
|    | China                  | 0.555 |
|    |                        |       |
|    | Uganda                 | 0.551 |
|    | South Africa           | 0.546 |
| -  | Jordan                 | 0.531 |
|    | Indonesia              | 0.527 |
| 11 | Turkey                 | 0.527 |
| 12 | Egypt                  | 0.506 |
|    | Mexico                 | 0.505 |
|    | Brazil                 | 0.501 |
|    | Sri Lanka              | 0.497 |
|    | Nepal                  | 0.497 |
|    |                        |       |
|    | Rwanda                 | 0.491 |
|    | Colombia               | 0.490 |
| 19 | Malaysia               | 0.489 |
| 20 | Costa Rica             | 0.477 |
| 21 | Mongolia               | 0.477 |
|    | Argentina              | 0.476 |
|    | Tanzania               | 0.471 |
|    | Thailand               | 0.467 |
|    | Tunisia                |       |
|    |                        | 0.466 |
|    | Bolivia                | 0.462 |
|    | Ukraine                | 0.457 |
| 28 | Belarus                | 0.454 |
| 29 | Laos                   | 0.454 |
| 30 | Serbia                 | 0.454 |
| 31 | Peru                   | 0.453 |
|    | Vietnam                | 0.452 |
|    | Ghana                  | 0.450 |
|    |                        |       |
|    | Kazakhstan             | 0.447 |
|    | North Macedonia        | 0.440 |
|    | El Salvador            | 0.439 |
| 37 | Algeria                | 0.436 |
| 38 | Panama                 | 0.434 |
| 39 | Mauritius              | 0.432 |
|    | Philippines            | 0.432 |
|    | Paraguay               | 0.431 |
|    | Cambodia               | 0.430 |
|    |                        |       |
|    | Ethiopia               | 0.428 |
|    | Senegal                | 0.427 |
|    | Dominican Republic     | 0.424 |
|    | Iran                   | 0.424 |
| 47 | Dominica               | 0.423 |
|    | Côte d'Ivoire          | 0.423 |
|    | Montenegro             | 0.422 |
|    | Georgia                | 0.421 |
|    | Honduras               | 0.420 |
|    |                        |       |
|    | Bosnia and Herzegovina | 0.417 |
|    | Antigua and Barbuda    | 0.417 |
|    | Uzbekistan             | 0.416 |
| 55 | Zimbabwe               | 0.415 |
|    | Grenada                | 0.409 |
| 57 | Guatemala              | 0.408 |
|    | Tajikistan             | 0.406 |
|    | Jamaica                | 0.404 |
|    | Moldova                | 0.404 |
|    |                        |       |
|    | Armenia                | 0.403 |
|    | Zambia                 | 0.402 |
|    | Pakistan               | 0.401 |
| 64 | Lebanon                | 0.399 |
| 65 | Saint Lucia            | 0.398 |
| 66 | Iraq                   | 0.398 |
|    | Belize                 | 0.397 |
|    |                        |       |









#### www.mecs.org.uk

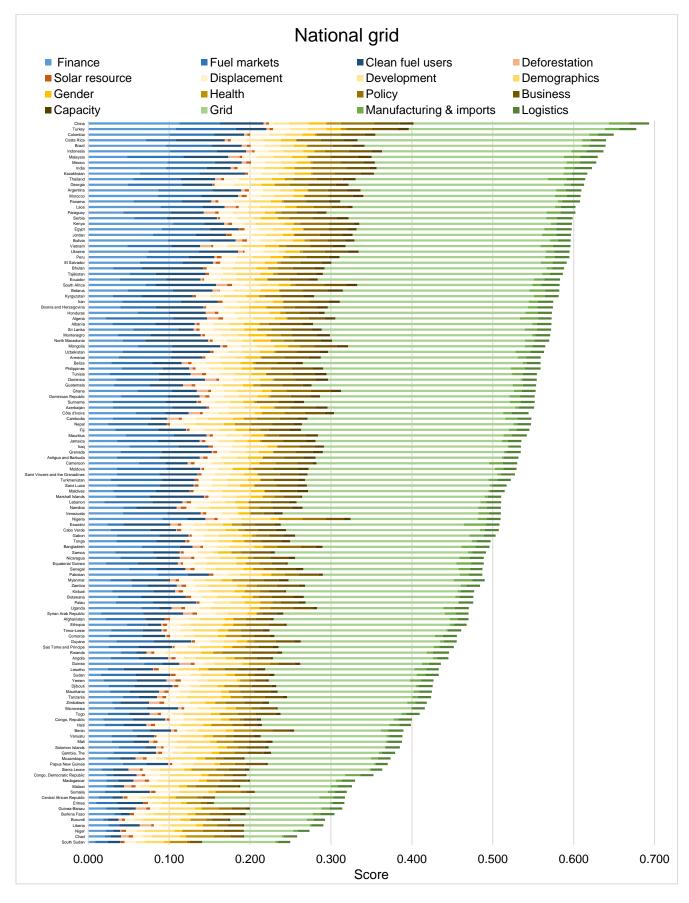
### DRAFT FOR REVIEW

| 68 Marshall Islands          | 0.510 |
|------------------------------|-------|
| 69 Lebanon                   | 0.510 |
| 70 Namibia                   | 0.510 |
| 71 Venezuela                 | 0.510 |
| 72 Nigeria                   | 0.510 |
| 73 Eswatini                  | 0.508 |
| 74 Cabo Verde                | 0.508 |
| 75 Gabon                     | 0.503 |
| 76 Tonga                     | 0.497 |
| 77 Bangladesh                | 0.496 |
| 78 Samoa                     | 0.492 |
| 79 Myanmar                   | 0.490 |
| 80 Nicaragua                 | 0.489 |
| 81 Equatorial Guinea         | 0.489 |
| 82 Senegal                   | 0.487 |
| 83 Pakistan                  | 0.487 |
| 84 Zambia                    | 0.484 |
| 85 Kiribati                  | 0.477 |
| 86 Botswana                  | 0.476 |
| 87 Palau                     | 0.476 |
| 88 Uganda                    | 0.470 |
| 89 Syrian Arab Republic      | 0.470 |
| 90 Afghanistan               | 0.470 |
| 91 Ethiopia                  | 0.468 |
| 92 Timor-Leste               | 0.460 |
| 93 Comoros                   | 0.456 |
| 94 Guyana                    | 0.456 |
| 95 Sao Tome and Principe     | 0.452 |
| 96 Rwanda                    | 0.432 |
|                              | 0.445 |
| 97 Angola                    |       |
| 98 Guinea                    | 0.436 |
| 99 Lesotho                   | 0.433 |
| 100 Sudan                    | 0.433 |
| 101 Yemen                    | 0.427 |
| 102 Djibouti                 | 0.426 |
| 103 Mauritania               | 0.425 |
| 104 Tanzania                 | 0.424 |
| 105 Zimbabwe                 | 0.418 |
| 106 Micronesia               | 0.416 |
| 107 Togo                     | 0.410 |
| 108 Congo, Republic          | 0.400 |
| 109 Haiti                    | 0.399 |
| 110 Benin                    | 0.390 |
| 111 Vanuatu                  | 0.388 |
| 112 Mali                     | 0.388 |
| 113 Solomon Islands          | 0.385 |
| 114 Gambia, The              | 0.379 |
| 115 Mozambique               | 0.374 |
| 116 Papua New Guinea         | 0.370 |
| 117 Sierra Leone             | 0.363 |
| 118 Congo, Dem. Rep.         | 0.353 |
| 119 Madagascar               | 0.330 |
| 120 Malawi                   | 0.326 |
| 121 Somalia                  | 0.320 |
| 122 Central African Republic |       |
| 123 Eritrea                  | 0.317 |
| 124 Guinea-Bissau            | 0.314 |
| 125 Burkina Faso             | 0.304 |
| 126 Burundi                  | 0.293 |
|                              | 0.293 |
|                              | 0.201 |
| 127 Liberia                  | 0.291 |
| 127 Liberia<br>128 Niger     | 0.273 |
| 127 Liberia                  |       |

| 68 Iraq                                 | 0.394    |
|-----------------------------------------|----------|
| 69 Ghana                                | 0.394    |
| 70 Lebanon                              | 0.394    |
| 71 Moldova                              | 0.393    |
| 72 Honduras                             | 0.390    |
| 73 Guatemala                            | 0.389    |
| 74 Haiti                                | 0.388    |
| 75 Saint Lucia                          | 0.388    |
| 76 St. Vinc. and the Gre                | n. 0.387 |
| 77 Zambia                               | 0.385    |
| 78 Côte d'Ivoire                        | 0.382    |
| 79 Palau                                | 0.380    |
| 80 Guyana                               | 0.380    |
| 81 Belize                               | 0.378    |
| 82 Fiji                                 | 0.376    |
| 83 Senegal                              | 0.374    |
| 84 Suriname                             | 0.374    |
| 85 Eswatini                             | 0.372    |
|                                         |          |
| 86 Namibia                              | 0.367    |
| 87 Micronesia                           | 0.366    |
| 88 Yemen                                | 0.366    |
| 89 Marshall Islands                     | 0.360    |
| 90 Pakistan                             | 0.357    |
| 91 Tonga                                | 0.354    |
| 92 Niger                                | 0.354    |
| 93 Papua New Guinea                     | 0.353    |
| 94 Nicaragua                            | 0.353    |
| 95 Samoa                                | 0.348    |
| 96 Syrian Arab Republic                 | 0.344    |
| 97 Rwanda                               | 0.342    |
| 98 Zimbabwe                             | 0.338    |
| 99 Kiribati                             | 0.337    |
| 100 Botswana                            | 0.337    |
| 101 Angola                              | 0.334    |
| 102 Burkina Faso                        | 0.333    |
| 102 Bulkina Faso<br>103 Solomon Islands | 0.333    |
| 104 Gabon                               | 0.329    |
|                                         |          |
| 105 Vanuatu                             | 0.325    |
| 106 Lesotho                             | 0.322    |
| 107 Mauritania                          | 0.321    |
| 108 Guinea                              | 0.321    |
| 109 Ethiopia                            | 0.319    |
| 110 Mozambique                          | 0.317    |
| 111 Benin                               | 0.315    |
| 112 Comoros                             | 0.312    |
| 113 Sudan                               | 0.308    |
| 114 Timor-Leste                         | 0.307    |
| 115 Togo                                | 0.297    |
| 116 Djibouti                            | 0.286    |
| 117 Sao Tome and Princ                  |          |
| 118 Gambia, The                         | 0.283    |
| 119 Malawi                              | 0.282    |
| 120 Liberia                             | 0.202    |
| 121 Somalia                             | 0.270    |
| 121 Somalia<br>122 Equatorial Guinea    | 0.269    |
| •                                       |          |
| 123 Chad                                | 0.261    |
| 124 Guinea-Bissau                       | 0.257    |
| 125 Sierra Leone                        | 0.257    |
| 126 Congo, Republic                     | 0.253    |
| 127 Eritrea                             | 0.234    |
| 128 Central African Repu                |          |
| 129 Burundi                             | 0.226    |
| 130 South Sudan                         | 0.224    |
|                                         |          |

|     | Ecuador                  | 0.396 |
|-----|--------------------------|-------|
|     | Kyrgyzstan               | 0.396 |
|     | Bhutan                   | 0.395 |
|     | Albania                  | 0.393 |
|     | St. Vinc. and the Gren.  | 0.391 |
|     | Azerbaijan               | 0.391 |
|     | Venezuela                | 0.384 |
|     | Eswatini                 | 0.384 |
|     | Palau                    | 0.383 |
| 77  | Afghanistan              | 0.383 |
|     | Nicaragua                | 0.382 |
|     | Myanmar                  | 0.381 |
|     | Suriname                 | 0.379 |
|     | Fiji                     | 0.377 |
|     | Turkmenistan             | 0.377 |
|     | Micronesia               | 0.377 |
|     | Maldives                 | 0.375 |
|     | Namibia                  | 0.374 |
|     | Guyana                   | 0.374 |
|     | Benin                    | 0.372 |
|     | Cameroon                 | 0.370 |
|     | Cabo Verde               | 0.361 |
|     | Marshall Islands         | 0.361 |
|     | Tonga                    | 0.361 |
|     | Syrian Arab Republic     | 0.361 |
|     | Malawi                   | 0.359 |
|     | Papua New Guinea         | 0.357 |
|     | Guinea                   | 0.357 |
|     | Samoa                    | 0.356 |
|     | Kiribati                 | 0.355 |
|     | Mali                     | 0.351 |
|     | Congo, Dem. Rep.         | 0.351 |
|     | Solomon Islands          | 0.348 |
|     | Burkina Faso             | 0.340 |
|     | Lesotho                  | 0.336 |
|     | Vanuatu                  | 0.332 |
|     | Botswana                 | 0.332 |
|     | Comoros                  | 0.326 |
|     | Madagascar               | 0.325 |
|     | Gabon                    | 0.324 |
|     | Yemen                    | 0.324 |
|     | Timor-Leste              | 0.322 |
|     | Togo                     | 0.313 |
|     | Sudan                    | 0.307 |
| 112 | Gambia, The              | 0.299 |
|     | Djibouti                 | 0.297 |
|     | Sierra Leone             | 0.295 |
|     | Chad                     | 0.295 |
|     | Sao Tome and Principe    | 0.288 |
|     | Mauritania               | 0.287 |
|     | Guinea-Bissau            | 0.285 |
|     | Haiti                    | 0.283 |
|     | Niger                    | 0.280 |
|     | Mozambique               | 0.279 |
|     | Somalia                  | 0.275 |
|     | Equatorial Guinea        | 0.271 |
|     | Liberia                  | 0.267 |
| 125 | Angola                   | 0.264 |
| 126 | Congo, Republic          | 0.257 |
|     | Central African Republic | 0.251 |
|     | Burundi                  | 0.242 |
|     | South Sudan              | 0.237 |
| 130 | Eritrea                  | 0.234 |
|     |                          |       |





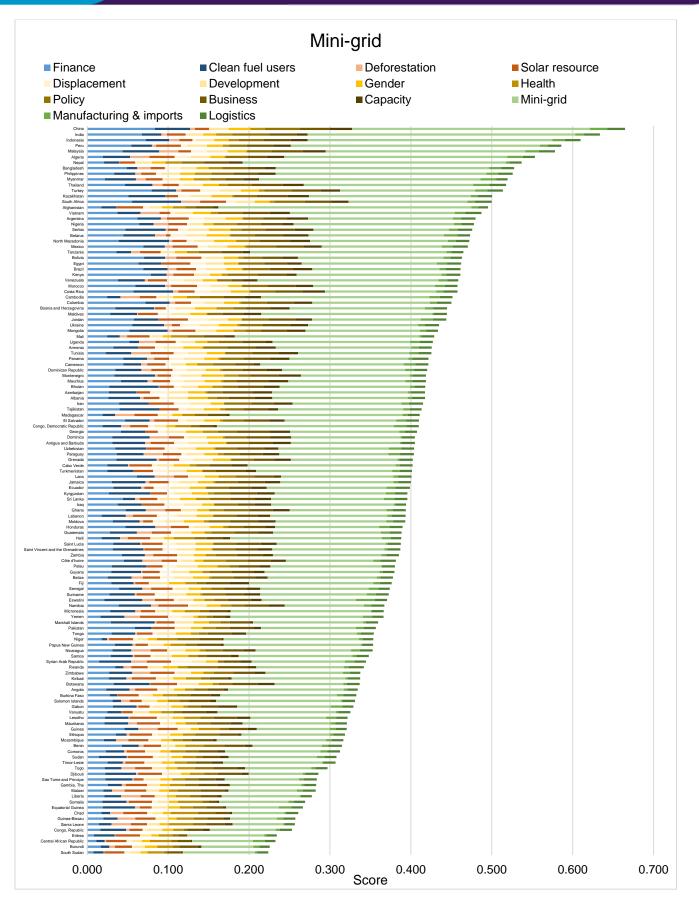







Charts showing sub-indicator scores for each scenario.





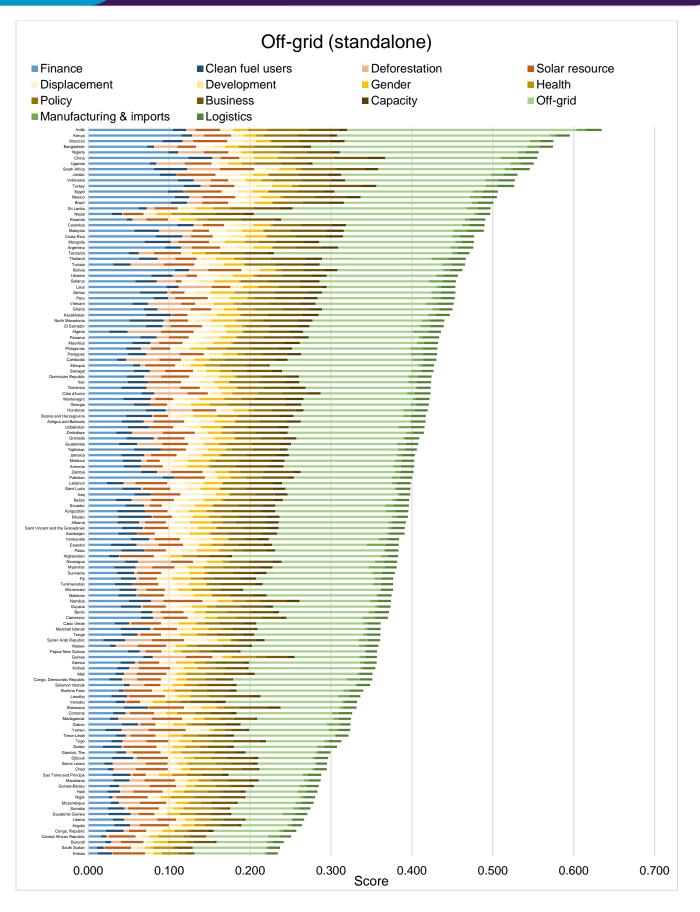




























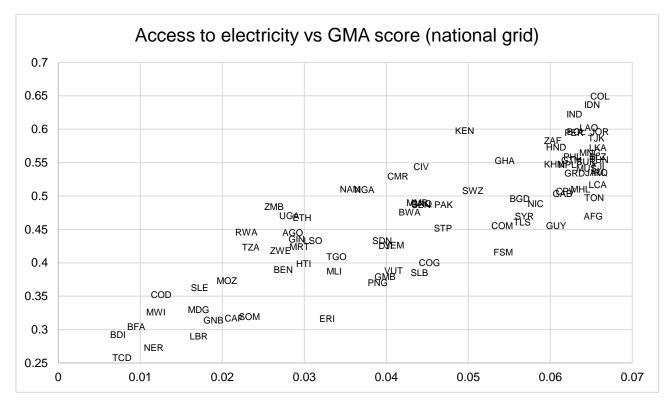

Inter-indicator correlation analysis.

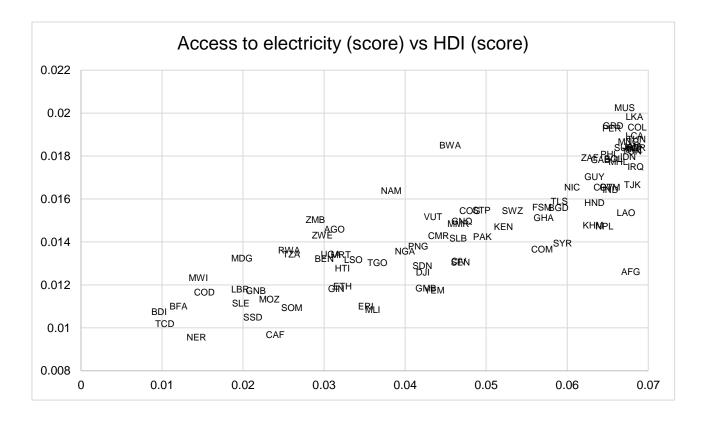
| Na | tional grid scenario                                |      |      |      |      |      |      |         |      |      |      |      |      |      |      |      |      |
|----|-----------------------------------------------------|------|------|------|------|------|------|---------|------|------|------|------|------|------|------|------|------|
| ID | Indicator                                           |      |      |      |      |      |      | rrelati |      |      |      |      |      |      |      |      |      |
| 1  | Unrealised potential for electric cooking           |      |      |      |      |      |      |         |      |      |      |      |      |      |      | 0.34 |      |
| 2  |                                                     |      |      |      |      |      |      |         |      |      |      |      |      |      |      | 0.35 |      |
| 3  |                                                     |      |      |      |      |      |      |         |      |      |      |      |      |      |      | 0.33 |      |
| 4  | Electricity access projections (grid)               | 0.66 | 0.74 | 0.72 | 1.00 | 0.72 | 0.81 | 0.51    | 0.43 | 0.43 | 0.42 | 0.69 | 0.62 | 0.75 | 0.46 | 0.40 | 0.79 |
| 5  | Access to electricity (urban)                       | 0.77 | 0.73 | 0.68 | 0.72 | 1.00 | 0.90 | 0.63    | 0.52 | 0.47 | 0.41 | 0.67 | 0.65 | 0.77 | 0.43 | 0.35 | 0.83 |
| 6  | Access to electricity (all areas (G))               | 0.85 | 0.82 | 0.76 | 0.81 | 0.90 | 1.00 | 0.66    | 0.58 | 0.50 | 0.45 | 0.73 | 0.72 | 0.87 | 0.49 | 0.35 | 0.86 |
| 7  | Grid reliability (SAIDI * SAIFI)                    | 0.53 | 0.59 | 0.57 | 0.51 | 0.63 | 0.66 | 1.00    | 0.47 | 0.53 | 0.44 | 0.63 | 0.59 | 0.66 | 0.43 | 0.38 | 0.74 |
| 8  | Credit rating                                       | 0.48 | 0.40 | 0.38 | 0.43 | 0.52 | 0.58 | 0.47    | 1.00 | 0.64 | 0.54 | 0.56 | 0.60 | 0.65 | 0.24 | 0.34 | 0.58 |
| 9  | Ease of Doing Business index                        | 0.32 | 0.48 | 0.49 | 0.43 | 0.47 | 0.50 | 0.53    | 0.64 | 1.00 | 0.61 | 0.69 | 0.69 | 0.63 | 0.42 | 0.55 | 0.67 |
| 10 | Logistics Performance Index                         | 0.37 | 0.40 | 0.30 | 0.42 | 0.41 | 0.45 | 0.44    | 0.54 | 0.61 | 1.00 | 0.57 | 0.50 | 0.56 | 0.32 | 0.62 | 0.64 |
| 11 | ICT/internet adoption                               |      |      |      |      |      |      |         |      |      |      |      |      |      |      | 0.49 |      |
| 12 | Gender Inequality Index                             | 0.49 | 0.69 | 0.59 | 0.62 | 0.65 | 0.72 | 0.59    | 0.60 | 0.69 | 0.50 | 0.77 | 1.00 | 0.86 | 0.52 | 0.37 | 0.72 |
| 13 | Human Development Index (HDI)                       | 0.70 | 0.84 | 0.77 | 0.75 | 0.77 | 0.87 | 0.66    | 0.65 | 0.63 | 0.56 | 0.83 | 0.86 | 1.00 | 0.61 | 0.42 | 0.83 |
| 14 | Affordability of electricity (grid only)            | 0.34 | 0.61 | 0.54 | 0.46 | 0.43 | 0.49 | 0.43    | 0.24 | 0.42 | 0.32 | 0.58 | 0.52 | 0.61 | 1.00 | 0.25 | 0.55 |
| 15 | Regulatory Indicators for Sustainable Energy (RISE) | 0.34 | 0.35 | 0.33 | 0.40 | 0.35 | 0.35 | 0.38    | 0.34 | 0.55 | 0.62 | 0.49 | 0.37 | 0.42 | 0.25 | 1.00 | 0.61 |
| 16 | National grid scenario score                        | 0.69 | 0.76 | 0.72 | 0.79 | 0.83 | 0.86 | 0.74    | 0.58 | 0.67 | 0.64 | 0.80 | 0.72 | 0.83 | 0.55 | 0.61 | 1.00 |
|    | ID:                                                 | 1    | 2    | 3    | 4    | 5    | 6    | 7       | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   |

| Mi | ni-grid scenario                                    |       |                              |       |       |       |       |       |       |       |      |      |       |      |
|----|-----------------------------------------------------|-------|------------------------------|-------|-------|-------|-------|-------|-------|-------|------|------|-------|------|
| ID | Indicator                                           |       | Correlation coefficient (CC) |       |       |       |       |       |       |       |      |      |       |      |
| 1  | Users of clean alternatives (e.g. LPG, biogas)      | 1.00  | 0.82                         | 0.79  | 0.48  | 0.40  | 0.40  | 0.75  | 0.69  | 0.84  | 0.35 | 0.16 | -0.18 | 0.51 |
| 2  | Access to electricity (all areas (MG))              | 0.82  | 1.00                         | 0.96  | 0.50  | 0.45  | 0.58  | 0.73  | 0.72  | 0.87  | 0.35 | 0.14 | -0.17 | 0.59 |
| 3  | Access to electricity (rural (MG))                  | 0.79  | 0.96                         | 1.00  | 0.52  | 0.47  | 0.60  | 0.71  | 0.74  | 0.84  | 0.37 | 0.18 | -0.19 | 0.60 |
| 4  | Ease of Doing Business index                        | 0.48  | 0.50                         | 0.52  | 1.00  | 0.61  | 0.64  | 0.69  | 0.69  | 0.63  | 0.55 | 0.22 | -0.14 | 0.55 |
| 5  | Logistics Performance Index                         | 0.40  | 0.45                         | 0.47  | 0.61  | 1.00  | 0.54  | 0.57  | 0.50  | 0.56  | 0.62 | 0.31 | -0.02 | 0.60 |
| 6  | Credit rating                                       | 0.40  | 0.58                         | 0.60  | 0.64  | 0.54  | 1.00  | 0.56  | 0.60  | 0.65  | 0.34 | 0.21 | -0.06 | 0.50 |
| 7  | ICT/internet adoption                               | 0.75  | 0.73                         | 0.71  | 0.69  | 0.57  | 0.56  | 1.00  | 0.77  | 0.83  | 0.49 | 0.19 | -0.11 | 0.63 |
| 8  | Gender Inequality Index                             | 0.69  | 0.72                         | 0.74  | 0.69  | 0.50  | 0.60  | 0.77  | 1.00  | 0.86  | 0.37 | 0.14 | -0.16 | 0.54 |
| 9  | Human Development Index (HDI)                       | 0.84  | 0.87                         | 0.84  | 0.63  | 0.56  | 0.65  | 0.83  | 0.86  | 1.00  | 0.42 | 0.16 | -0.17 | 0.59 |
| 10 | Regulatory Indicators for Sustainable Energy (RISE) | 0.35  | 0.35                         | 0.37  | 0.55  | 0.62  | 0.34  | 0.49  | 0.37  | 0.42  | 1.00 | 0.25 | 0.14  | 0.63 |
| 11 | Off-grid renewables capacity (MG)                   | 0.16  | 0.14                         | 0.18  | 0.22  | 0.31  | 0.21  | 0.19  | 0.14  | 0.16  | 0.25 | 1.00 | 0.42  | 0.64 |
| 12 | Number of people connected to mini-grids            | -0.18 | -0.17                        | -0.19 | -0.14 | -0.02 | -0.06 | -0.11 | -0.16 | -0.17 | 0.14 | 0.42 | 1.00  | 0.48 |
| 13 | Mini-grid scenario score                            | 0.51  | 0.59                         | 0.60  | 0.55  | 0.60  | 0.50  | 0.63  | 0.54  | 0.59  | 0.63 | 0.64 | 0.48  | 1.00 |
|    | ID:                                                 | 1     | 2                            | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10   | 11   | 12    | 13   |

| Of | ff-grid standalone scenario                         |                              |       |      |      |       |       |       |      |       |      |      |      |      |
|----|-----------------------------------------------------|------------------------------|-------|------|------|-------|-------|-------|------|-------|------|------|------|------|
| ID | Indicator                                           | Correlation coefficient (CC) |       |      |      |       |       |       |      |       |      |      |      |      |
| 1  | Access to electricity (all areas (S))               | 1.00                         | 0.96  | 0.50 | 0.45 | 0.73  | 0.72  | 0.87  | 0.35 | -0.08 | 0.58 | 0.16 | 0.20 | 0.54 |
| 2  |                                                     |                              | 1.00  |      |      |       |       |       |      |       |      |      |      |      |
| 3  | Ease of Doing Business index                        | 0.50                         | 0.52  | 1.00 | 0.61 | 0.69  | 0.69  | 0.63  | 0.55 | 0.13  | 0.64 | 0.25 | 0.26 | 0.63 |
| 4  | Logistics Performance Index                         | 0.45                         | 0.47  | 0.61 | 1.00 | 0.57  | 0.50  | 0.56  | 0.62 | 0.11  | 0.54 | 0.39 | 0.41 | 0.64 |
| 5  | ICT/internet adoption                               | 0.73                         | 0.71  | 0.69 | 0.57 | 1.00  | 0.77  | 0.83  | 0.49 | -0.07 | 0.56 | 0.16 | 0.18 | 0.58 |
| 6  | Gender Inequality Index                             | 0.72                         | 0.74  | 0.69 | 0.50 | 0.77  | 1.00  | 0.86  | 0.37 | -0.09 | 0.60 | 0.07 | 0.07 | 0.49 |
| 7  | Human Development Index (HDI)                       | 0.87                         | 0.84  | 0.63 | 0.56 | 0.83  | 0.86  | 1.00  | 0.42 | -0.11 | 0.65 | 0.15 | 0.16 | 0.55 |
| 8  | Regulatory Indicators for Sustainable Energy (RISE) |                              |       |      |      |       |       |       |      |       |      |      |      |      |
| 9  | Off-grid renewables capacity (S)                    | -0.08                        | -0.05 | 0.13 | 0.11 | -0.07 | -0.09 | -0.11 | 0.40 | 1.00  | 0.05 | 0.35 | 0.36 | 0.58 |
| 10 | Credit rating                                       | 0.58                         | 0.60  | 0.64 | 0.54 | 0.56  | 0.60  | 0.65  | 0.34 | 0.05  | 1.00 | 0.07 | 0.12 | 0.48 |
| 11 | OECD aid flows                                      | 0.16                         | 0.15  | 0.25 | 0.39 | 0.16  | 0.07  | 0.15  | 0.52 | 0.35  | 0.07 | 1.00 | 0.86 | 0.64 |
| 12 | Renewable energy finance flows                      |                              | 0.18  |      |      |       |       |       |      |       |      |      |      |      |
| 13 | Off-grid (standalone) scenario score                | 0.54                         | 0.58  | 0.63 | 0.64 | 0.58  | 0.49  | 0.55  | 0.78 | 0.58  | 0.48 | 0.64 | 0.64 | 1.00 |
|    | ID:                                                 | 1                            | 2     | 3    | 4    | 5     | 6     | 7     | 8    | 9     | 10   | 11   | 12   | 13   |










Charts showing the relationship between Access to electricity, HDI and GMA score (in addition to chart in section 4.4)





