
A POLYNOMIAL EIGENVALUE DECOMPOSITION MUSIC APPROACH FOR
BROADBAND SOUND SOURCE LOCALIZATION

Aidan O. T. Hogg∗ , Vincent W. Neo∗, Stephan Weiss† , Christine Evers‡ and Patrick A. Naylor∗

∗Department of Electrical and Electronic Engineering, Imperial College London, UK
†Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, Scotland

‡Electronics and Computer Science, University of Southampton, UK

ABSTRACT

Direction of arrival (DoA) estimation for sound source localization
is increasingly prevalent in modern devices. In this paper, we
explore a polynomial extension to the multiple signal classification
(MUSIC) algorithm, spatio-spectral polynomial (SSP)-MUSIC,
and evaluate its performance when using speech sound sources.
In addition, we also propose three essential enhancements for
SSP-MUSIC to work with noisy reverberant audio data. This
paper includes an analysis of SSP-MUSIC using speech signals in a
simulated room for different noise and reverberation conditions and
the first task of the LOCATA challenge. We show that SSP-MUSIC
is more robust to noise and reverberation compared to independent
frequency bin (IFB) approaches and improvements can be seen for
single sound source localization at signal-to-noise ratios (SNRs)
below 5 dB and reverberation times (T60s) larger than 0.7 s.

Index Terms— Direction of arrival, polynomial eigenvalue
decomposition, MUSIC, localization, microphone arrays.

1. INTRODUCTION

Sound source localization is an important task for a multitude
of applications, including robot audition [1] and voice-controlled
smart devices. Direction of arrival (DoA) estimates are essential
in providing angular positional information for localization. In
real-world environments, DoA estimation is challenging because
of background noise, reverberation, interference and sound
source inactivity. DoA estimation approaches include time-delay
estimation (TDE)-based, beamformer-based and subspace-based
methods [2]. The TDE-based method [3] first computes the
time difference of arrival (TDoA) for different microphone pairs
and uses a priori information about the microphone positions
to compute the DoAs. However, TDE approaches such
as generalized cross-correlation (GCC)-phase-transform (PHAT)
cannot cope with multiple sources in reverberant environments [2].
Beamformer-based methods [4,5] scan the acoustic environment by
focusing the microphone array in the directions corresponding to
the highest sound intensities. However, beamformer-based methods
have been shown to perform poorly in low SNR regimes along with
having a higher computational complexity when compared against
common subspace-based approaches [6].
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In a subspace-based approach such as the multiple signal
classification (MUSIC) algorithm [7], the correlation matrix is
computed from the received signals. An eigenvalue decomposition
(EVD) is then used to decompose the correlation matrix into signal
and noise subspaces for DoA estimation. The MUSIC algorithm,
however, assumes that the source signals are narrowband and
uncorrelated. Consequently, its performance is limited in real-world
scenarios involving broadband signals such as speech and correlated
sources originating from reverberant environments.

A number of broadband extensions have been proposed for
MUSIC [8–10]. Most of these extensions rely on transforming the
broadband DoA problem into several narrowband problems. This
can be achieved by decomposing the broadband signal into several
independent frequency bins [11]. The resulting narrowband signals
for each frequency bin or filtered output can then be processed
independently, or incoherently. This approach, however, is based
on a narrowband signal model and ignores phase coherence across
different frequency bins [12] which can lead to errors [13].

When broadband signals such as speech signals are involved,
time delays cannot be modelled using phase shifts because
time delays between different microphones need to be explicitly
resolved. Consequently, an EVD cannot completely decorrelate the
signals and separate the signal and noise subspaces effectively [2].
Instead, the spatio-spectral polynomial (SSP)-MUSIC approach in
[14, 15] is based on a broadband signal model. The approach
uses polynomial matrices to model the correlations across different
microphones and temporal lags, and a polynomial eigenvalue
decomposition (PEVD) to generate the signal and noise subspaces.
SSP-MUSIC is shown to be robust and effective for temporally
uncorrelated sources in anechoic environments [14, 15].

In this paper, we extend [14, 15] to sound source localization
in noisy and reverberant environments. The novel contributions
are: (i) proposed enhancements to SSP-MUSIC for sound source
localization which include; incorporating a noisy reverberant signal
model in the subspace decomposition; modifying SSP-MUSIC
to only include the direct-path response in order to reduce
the impact of reverberation on localization performance; using
SSP-MUSIC to approximate spatial polynomial (SP)-MUSIC for
the frequency range of speech; (ii) an analysis on how diffuse
noise and reverberation affects the proposed approach; and
(iii) a comprehensive evaluation of the proposed method against
benchmark algorithms for simulated and real-world recordings.

2. METHOD

In [16], the noisy and reverberant signal, xm(n), at the m-th
microphone for discrete-time sample n = 0, 1, . . . , N , is
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xm(n) = hTms0(n) + vm(n)

xm(n) = h̃Tm,dps0(n) + h̃Tm,ers0(n) + h̃Tm,lrs0(n) + vm(n)

= s̃m(n) + ṽm(n), m = 1, 2, . . . ,M, (1)

where hm = [hm,0, hm,1, . . . , hm,J ]T is the m-th acoustic
channel, which is modelled as a J-th order finite impulse
response filter and decomposed into the direct-path, h̃m,dp,
early reflections, h̃m,er, and the late reflections, h̃m,lr [17],
s0(n) = [s0(n), s0(n− 1), . . . , s0(n− J)]T is the anechoic
speech signal, vm(n) is additive noise and [·]T denotes
the transpose operator. The noise signals are assumed to
be zero-mean, not perfectly coherent with each other and
uncorrelated with the source signals [18]. By exploiting the
lack of correlation between the late reflections and anechoic
speech signal [19] s̃m(n) = h̃Tm,dps0(n) + h̃Tm,ers0(n) and
ṽm(n) = h̃Tm,lrs0(n) + vm(n), can be decomposed into the
speech and noise components respectively.

2.1. Review of Polynomial MUSIC
Assuming direct-path-only propagation in the far-field and a
noise-free environment, vm(n) = 0, such that (1) simplifies to

xm(n) = fτm(n) ∗ x0(n) (2)

where * denotes a linear convolution and fτm(n) is a fractional
delay filter [20, 21]. This is required since the m-th relative delay
can be fractional, such that

fτm(n) =
sin(π(n−∆τm))

π(n−∆τm)
. (3)

In the narrowband case, ∆τm is represented by a simple phase shift
and those phase shifts are exploited in the MUSIC algorithm. For
broadband sources, however, the delays are frequency-dependent
phase shifts corresponding to different time lags.

To capture the temporal correlations of the speech signals at
different microphones, the space-time covariance matrix [19] is
computed using (1),

Rxx(τ) = E{x(n)xT (n− τ)}, (4)

where the (p, q)th element, rpq(τ) = E{xp(n)xq(n − τ)},
is the cross-correlation sequence between microphone p and q
for discrete-time shift τ . Concatenating the covariance matrix,
Rxx(τ), for all choices of τ ∈ {−N, . . . , N}, results in a tensor
of dimension M × M × (2N + 1). The z-transform of (4) is
a polynomial matrix, Rxx(z) =

∑∞
τ=−∞Rxx(τ)z−τ , which can

be decomposed by an iterative PEVD algorithm [22–26] to give

Rxx(z) ≈ U(z)Λ(z)UP (z), (5)

where the columns of U(z) are the eigenvectors and the
diagonal elements of Λ(z) are the eigenvalues. Furthermore,
UP (z) = UH(1/z∗), where [·]∗, [·]H and [·]P are respectively, the
complex-conjugate, Hermitian and para-Hermitian operators.

Thresholding the eigenvalues enables the partitioning of the
polynomial matrix into orthogonal signal and noise subspaces,
which are associated with Us(z) and Uv(z), respectively. The
nullspace of Uv(z) is probed by the broadband steering vector,
which implements fractional delays and is defined as [14]

aθ(z) =
[
A0(z) · · · AM−1(z)

]T
, (6)

where θ is the look direction, A`(z) =
∑∞
n=−∞ a`(n)z−n,

a`(n) = sinc((n−∆τ`)Ts) and Ts is the sampling period.

Generalised from MUSIC, the following quantity,

Γθ(z) = aPθ (z)Uv(z)UP
v (z)aθ(z), (7)

is used to compute the pseudo-spectrogram for SSP-MUSIC [14],

PSSP−MU(θ,Ω) =
1

Γθ(z)

∣∣∣∣
z=e−jΩ

, (8)

where frequency Ω is obtained by evaluating z on the unit
circle. Therefore, the pseudo-spectrogram can localize sources by
exploiting the DoAs in the active range of frequencies.

2.2. Proposed Enhancements for Sound Source Localization
Similar to [19], but unlike [14, 15] which only focuses on
non-speech sources in anechoic environments, we incorporate the
noisy reverberant signal model in the subspace decomposition. The
work in [19] is designed for speech enhancement and incorporates
the early reflections that may improve speech intelligibility in some
conditions [27, 28] whereas this paper focuses on sound source
localization which only requires the direct-path component with
the greatest amplitude and shortest time delay. Consequently, the
largest delay,W , corresponding to the first maximum peak between
every microphone pair is computed and, therefore, the z-transform
of (4) is approximated by

R̂xx(z) ≈
∑W

τ=−W
Rxx(τ)z−τ , (9)

using the windowed space-time covariance matrix with dimensions
M ×M × (2W + 1). Furthermore, the introduction of W reduces
the number of elements used in PEVD and offers computational
improvement. While this window choice includes the largest
direct-path propagation delay, some reflections are also inevitably
captured by microphones that are near the sound sources.

Consequently, the PEVD of (4) gives [19]

Rxx(z) ≈
[
U s̃(z) U ṽ(z)

] [Λs̃(z) 0

0 Λṽ(z)

][
UP
s̃ (z)

UP
ṽ (z)

]
,

where {.}s̃ and {.}ṽ represent the orthogonal signal and
noise subspace components. The speech subspace comprise
predominantly of anechoic speech convolved with the direct-path
and some ‘leaked’ early reflections while the noise subspace
contains ambient noise, both early and late reflections associated
with the reverberant channel.

To cope with the infinite temporal support of the sinc function
in (6), tapered windows have been proposed for truncation [21]. In
this paper, the Hamming window defined by

wL,Hamm(n) = (0.54− 0.46 cos
(πn

2L

)
)wL,rect(n),

where wL,rect(n) =

{
1, |n| ≤ L
0, |n| > L

, (10)

is used and L is the length of the truncated sinc function.
To compute the DoAs only, the pseudo-spectrogram in (8) is

integrated over Ω. ForK discrete points evaluated on the unit circle,
the spatial-only pseudo-spectrum is approximated by

P̂SSP−MU(θ) =
1

K

∑K−1

k=0
PSSP−MU(θ,Ωk), (11)

where Ωk = 2π
K
k is the k-th frequency bin. The whole frequency

range is considered in SP-MUSIC [14]. However, in this work, only
Ωk in the frequency range of speech (100 Hz to 4000 Hz) [29] are
used in (11). A peak detection algorithm [30] is used to estimate the
DoAs from (11).
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Task Exp-1 Exp-2
Algorithm SSP-MUSIC IFB-MUSIC SSP-MUSIC IFB-MUSIC
Metric HR FAR HR FAR HR FAR HR FAR

SNR
[dB]

-15 85.0 15.0 55.0 45.0 56.9 43.1 35.4 64.6
-10 95.0 5.0 55.0 45.0 60.0 40.0 52.3 46.9
-5 95.0 5.0 85.0 15.0 64.6 35.4 61.5 38.5
0 95.0 5.0 85.0 15.0 72.3 27.7 73.8 26.2
5 100.0 0.0 95.0 5.0 70.8 29.2 84.6 15.4
10 95.0 5.0 100.0 0.0 73.8 26.2 93.8 6.2
15 95.0 5.0 95.0 5.0 70.8 29.2 93.8 6.2
20 95.0 5.0 100.0 0.0 70.8 29.2 93.8 6.2
25 95.0 5.0 100.0 0.0 76.9 23.1 92.3 7.7

T60
[s]

0.1 100.0 0.0 100.0 0.0 86.2 13.8 96.9 3.1
0.3 95.0 5.0 95.0 5.0 70.8 29.2 89.2 10.8
0.5 95.0 5.0 95.0 5.0 67.7 32.3 86.2 13.8
0.7 95.0 5.0 80.0 20.0 60.0 40.0 73.8 26.2
0.9 95.0 5.0 85.0 15.0 58.5 41.5 72.3 27.7
1.1 95.0 5.0 85.0 15.0 60.0 40.0 72.3 27.7
1.3 95.0 5.0 80.0 20.0 53.8 46.2 70.8 29.2
1.5 95.0 5.0 75.0 25.0 52.3 47.7 73.8 26.2
1.7 95.0 5.0 75.0 25.0 56.9 43.1 70.8 29.2

Table 1: Comparison of HR and FAR for Exp-1 and Exp-2.

3. EXPERIMENTAL SETUP

We used sequential matrix diagonalisation (SMD) [31] to perform
an iterative PEVD as it has been shown to give a higher resolution
for SSP-MUSIC than sequential best rotation algorithm (SBR2)
[15]. The proposed approach is benchmarked against independent
frequency bin (IFB)-MUSIC [30], with MUSIC applied to each
frequency bin independently to estimate the DoAs. A frame size
of 100 ms was used for all the experiments so that SSP-MUSIC
could take advantage of temporal correlations. This allows for the
exploitation of the strong decorrelation of the PEVD approach, i.e.
the extracted subspaces are not just decorrelated in isolated IFBs
but coherently separated across all lag values τ .

3.1. Evaluation Metrics
The performance of SSP-MUSIC and IFB-MUSIC is evaluated
using the following metrics. A ‘HIT’ is when a sound source
(speaker) has been detected once within a± ξ collar applied around
the ground-truth azimuth. A ‘MISS’ is when a sound source has
not been detected within this collar and a false alarm (FA) is when
a detection falls outside of a ground-truth azimuth collar. The HIT
rate (HR) and false alarm rate (FAR) are, therefore, defined as,

HR =
HITs

HITs + MISSs
%, FAR =

FAs
HITs + FAs

% (12)

respectively wherein this work the collar ξ is set to 15◦. To further
evaluate the accuracy of the DoA estimates, the absolute errors for
all the HITs are shown in the form of boxplots.

3.2. Simulated Data Generation
In this work, the performance of SSP-MUSIC is first evaluated on
data generated using a simulated room of dimensions 3 × 3 × 2 m
generated using [30]. A uniform circular array of 8 microphones,
with a diameter of 4.2 cm, is positioned at the centre of the
room. Since the microphone array geometry is known, the largest
direct-path delay can inform the choice of the temporal lag support
W (see Section 2.2). This largest delay is 5.87 samples in our
array configuration and, therefore, we have set W = 10. Two
experiments are run using this scenario. Exp-1 evaluates the
performance when a single active speaker is placed at a distance
of 1.5 m from the centre of the array at an angle of 50◦ where the
anechoic speech used was a 3 s recording taken from the LOCATA
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Figure 1: Comparison of absolute errors of all HITs. (a) Exp-1
performance when the T60 is 0.25 s and the SNR is varied. (b)
same as (a) for Exp-2. (c) Exp-1 performance when the SNR is
15 dB and the T60 is varied. (d) same as (c) for Exp-2.
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Figure 2: Illustrative example of 2 active sources in a simulated
room where the SNR is -15 dB and the T60 is 0.25 s.

corpus [2] (Task 1, Recording 1). Exp-2 evaluates the performance
for two speakers where the anechoic speech is taken from LOCATA
(Task 2, Recording 1) and the sources are placed at the same
distance as Exp-1 but at angles of 70◦ and 230◦.

It should be noted that, in this work, we only evaluate the DoA
estimates for frames that are known to contain speech activity. This
information is provided by an oracle voice activity detection (VAD)
given in LOCATA. The oracle VAD is also used to determine the
number of active speakers for both IFB-MUSIC and SSP-MUSIC.

4. RESULTS

To evaluate the performance of SSP-MUSIC, it is compared against
the pyroomacoustics implementation of IFB-MUSIC [30].

4.1. Exp-1: One Static Speaker

In this experiment, we carried out a comparison for when only 1
static talker is active. Table 1 shows the impact of diffuse white
Gaussian noise on the accuracy of the DoA estimates. While a
rank-1 decomposition is expected for a single speaker, the PEVD
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Figure 3: Illustrative example of a 100 ms frame from Exp-2 (SNR:
-10 dB, T60: 0.25 s). (a) pseudo-spectrogram of SSP-MUSIC,
(b) pseudo-spectrum of SSP-MUSIC, (c) pseudo-spectrogram of
IFB-MUSIC, (d) pseudo-spectrum of IFB-MUSIC.

instead produced a rank-2 matrix decomposition, also observed in
[19]. The first and second principal eigenvectors capture roughly
the direct-path and the early and late reflections, respectively, for
reasons given in Section 2.2. In terms of performance, it can clearly
be seen that at signal-to-noise ratio (SNR) conditions lower than
5 dB, the performance of IFB-MUSIC has lower HR and a higher
FAR when compared to SSP-MUSIC. This is expected as it is
well known that subspace methods, such as MUSIC, suffer from
the so-called ‘threshold effect’, which results in a degradation both
in terms of resolution and precision at low SNR values [32]. Table 1
goes on to show the degradation that occurs when the reverberation
time (T60) is increased. It can be seen that SSP-MUSIC performs
better than IFB-MUSIC when the T60 value is larger than 0.5 s.
This robustness to reverberation is likely a result of (9) which
is one of the proposed enhancements and forces SSP-MUSIC to
mainly consider the direct-path component and only allowing a few
reflections to be additionally captured. Fig. 1(a) and (c) show the
estimates’ accuracy by highlighting the absolute errors of all the
estimates considered to be HITs.

4.2. Exp-2: Two Static Speakers

In this second experiment, we carried out a comparison of 2 active
talkers. In a similar manner to Exp-1, Table 1 shows that as
the diffuse white Gaussian noise increases so do the errors in the
DoA estimates where IFB-MUSIC is more adversely affected. An
illustrative example, when the SNR is -15 dB and the T60 is 0.25 s,
is also given in Fig. 2 to highlight the performance improvement of
SSP-MUSIC at low SNR values.

Fig. 3(a) and (c) compare the two pseudo-spectrograms of
both SSP-MUSIC and IFB-MUSIC for a single 100 ms frame.
The final DoA estimates have an average absolute error of 4.5◦

and 3◦ for SSP-MUSIC and IFB-MUSIC respectively, but the
SSP-MUSIC spectrogram has far more accurate components across

Method SSP-MUSIC IFB-MUSIC
Metric HR FAR HR FAR

Recording
1 90.0 10.0 95.0 5.0
2 64.7 35.3 67.6 32.4
3 95.1 4.9 75.6 24.4

Table 2: Comparison of HR and FAR for both SSP-MUSIC against
IFB-MUSIC on the first 3 LOCATA recordings for Task 1.
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Figure 4: Performance comparison of IFB-MUSIC against
SSP-MUSIC across Task 1 LOCATA recordings.

frequencies when compared with IFB-MUSIC. The dynamic
range of IFB-MUSIC is also much smaller than SSP-MUSIC
which could lead to numerical issues with the peak detection
algorithm when applied to the pseudo-spectra of IFB-MUSIC.
It can also be observed in Fig. 3(b) and (d) that the resolution
of the pseudo-spectrum for SSP-MUSIC was not as sharp as
IFB-MUSIC. This is likely due to the fact that fractional delay
filters implementing the time delays associated with different angles
are not accurate across the entire frequency range [20].

4.3. Exp-3: LOCATA Task 1
To validate SSP-MUSIC as a good alternative to IFB-MUSIC, we
compared both algorithms for 3 recordings from Task 1 of the
LOCATA challenge. In LOCATA, the ground truth DoAs are
given by an optical tracking system, OptiTrac. In this experiment,
real-world audio signals that were captured from an 8 microphone
non-uniform circular array, selected from an Eigenmike, were used
for the evaluation. The largest path delay is 5.87 samples and we
have chosen W = 10. The recordings, measured in a real room
with T60 ≈ 0.5 s, also contained low-level background noise.

Table 2 shows that on average a 3.9% better HR and a 3.9%
lower FAR can be achieved by SSP-MUSIC when compared against
IFB-MUSIC on the 3 recordings studied. Fig. 4 shows that the
accuracy of the DoA estimates given by SSP-MUSIC is better or
the same in terms of mean absolute error when compared against
IFB-MUSIC. It should be noted that, as the SNR values are high
and T60 values are low (0.5 s) across all these recordings, we do not
expect to see great improvements in the performance. This result,
however, still illustrates the benefits of incorporating a broadband
signal model for reverberant speech in the subspace decomposition.

5. CONCLUSION

In this paper, we have developed and explored the potential of
SSP-MUSIC which is a polynomial extension of MUSIC. In
addition, we have proposed some enhancements for sound source
localization. This paper has highlighted the benefits of using
SSP-MUSIC for localization of a single sound source at SNR values
lower than 5 dB or T60 values larger than 0.7 s as it is more robust
to noise and reverberation. An evaluation was also carried out on
real data, taken from the LOCATA corpus, which has shown that
SSP-MUSIC can outperform IFB-MUSIC on real-world signals.
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