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A molecular-statistical theory of the orientational elasticity of nematic liquid crystals has been developed
employing the orientational deformation tensor which describes the rotation of the director. An explicit expres-
sion for the general elasticity tensor of the nematic phase has been obtained and the Frank elastic constants
are expressed in terms of the three independent parameters of this tensor. Explicit expressions for the Frank
elastic constants have been derived in the molecular field approximation in terms of the orientational order
parameters and the corresponding coefficients of expansion of the intermolecular potential in spherical invariants.
Frank elastic constants have been calculated numerically for nematic liquid crystals composed of both polar
and nonpolar molecules together with the orientational order parameters using the classical Gay-Berne model
interaction potential and the two of its popular modifications. The polarity of the uniaxial molecular shape
has been directly introduced into the model potential by modifying the distance of closest approach. The
elastic constants are presented as functions of temperature for different values of the molecular elongation, the
anisotropy of the potential well and the molecular shape polarity. It has been shown that the elastic constants are
much more sensitive to the details of the intermolecular interaction potential in comparison with the orientational
order parameters. In particular, a relatively weak polarity of the molecular shape may result in an unusual
decrease of the splay constant K11 which may vanish at some temperature leading to the instability of the
homogeneous nematic phase. This may represent a mechanism of the formation of the splay-bend phase.
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I. INTRODUCTION

In nematic liquid crystals (LCs) primary axes of
anisotropic molecules are partially ordered along the local
symmetry axis specified by the director (a unit vector) n
or, more precisely, along the principal axis of the uniaxial
tensor nαnβ − δαβ/3. The equilibrium distribution of the di-
rector may be inhomogeneous under the action of external
fields or boundary condition and in such cases the inhomoge-
neous nematic LC possesses orientational deformation energy
specified by three elastic constants K11, K22, and K33 which
correspond to the splay, twist, and bend deformations, respec-
tively [1,2]. The elastic constants of nematic LCs are very
important material parameters as they determine the response
of the LC to external fields which is crucial for LC display de-
vices and numerous other LC applications. On the other hand,
the elastic constants are very sensitive to the microscopic state
of a nematic LC and to the intermolecular interaction potential
which is determined by the structure of mesogenic molecules.

Since the later 2000s, the orientational elasticity of nematic
LCs has attracted a renewed attention mainly due to the dis-
covery of the anomalous behavior of Frank elastic constants
in bent-core LCs. A dramatic reduction of the bend elastic
constant has been observed in many bent-core nematics and
in particular close to the transition into the twist-bend nematic

phase [3–5]. The twist elastic constant is also significantly
reduced in some flexible bent-core materials [6]. A number
of attempts have been made to explain such an anomalous
behavior by using a continuum theory [7] and a molecular
theory of nematic elasticity generalized to the case of biaxial
and polar molecules [8,9], although the existing theory is far
from being complete.

One notes that the continuum theory of nematic elasticity is
very well established and the corresponding molecular theory
for LCs composed of uniaxial molecules has been developed
in the past by many authors (see Refs. [10–20] and a review
[21]). In a number of theories, only steric repulsion between
hard spherocylinders or hard ellipsoids of revolution has
been taken into account using the Onsager theory [11,12,19],
density-functional approach [17,22] or the reference system
of parallel hard ellipsoids [13,15]. The elastic constants have
been expressed in terms of the geometrical parameters of the
model molecular shape. Priest [11] has obtained rather general
expressions for the elastic constants in terms of the second-
and fourth-order orientational order parameters employing the
spherical harmonics expansion of the general pair interaction
potential and the pair correlation function. In other molecular
theories, both intermolecular repulsion and attraction have
been taken into consideration including the dispersion in-
teraction between molecules with anisotropic polarizability
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[10,16,17,23] and electrostatic interactions between perma-
nent molecular dipoles and quadrupoles [20].

In this paper, we propose a general approach to deriving
the free energy density of distorted nematic LCs based on the
so-called orientational deformation tensor γi j which explicitly
describes the director rotation. In this approach, the elasticity
tensor is explicitly expressed as a finite sum of simple terms,
and all elastic constants are presented in terms of the three
relevant coefficients of such a representation. Employing the
molecular field approximation together with the expansion of
pair interaction potential in terms of the so-called spherical in-
variants [24,25], we derive general expressions for the elastic
constants. In contrast to the general expressions for the elastic
constants derived by Poniewierski and Stecki [22], the expres-
sions presented in this paper are independent of the derivatives
of the single-molecule distribution function and are presented
as the ensemble averages of the corresponding quantities.
Thus the theory establishes a direct relationship between the
intermolecular potential and Frank elastic constants. The cor-
responding general theory of elasticity in nematic LCs is
presented in Secs. II and III. In Sec. IV, for illustration, we
expand both the classical Gay-Berne (G-B) model intermolec-
ular interaction potential and the two popular modifications
in spherical invariants and employ the expansion coefficients
to numerically evaluate the orientational order parameters and
Frank elastic constants for nonpolar molecules. The calculated
elastic constants are presented as functions of the temperature
for different values of molecular anisometry and anisotropy of
the potential well parametrizing the G-B potentials. In Sec. VI
we generalize the theory of nematic elasticity to the case of
polar molecules and numerically calculate the corrections to
the splay and bend elastic constants which are determined
by polar molecular shape. Finally in Sec. VII we discuss the
results of this study.

II. FREE ENERGY OF THE DISTORTED NEMATIC PHASE

The distortion free energy is traditionally derived in terms
of the derivatives of the director ∇in j (see, for example,
Refs. [1,26]). This method, however, has a number of com-
plications as one has to take into consideration that n is a unit
vector and that all expressions must be invariant under sign
inversion of n. The alternative approach employs the so called
orientational deformation tensor γi j = εilknl∇ jnk where εi jk

is the unitary antisymmetric Levi-Civita tensor.
The deformation tensor of the nematic phase can be de-

rived, for example, in the following way. Let us consider an
inhomogeneous nematic phase where n(r1) and n(r2) are the
directors at the points r1 and r2, respectively. If the distance
r12 = |r2 − r1| is sufficiently small, then the rotation of the
director from the point r1 to the point r2 is characterized by the
small angle δθi = εi jkn j (r1)nk (r2). Performing the gradient
expansion of n(r2) around n(r1)

n(r2) = n(r1) + (r12 · ∇)n(r1) + . . . ,

one obtains

δθi ≈ r12, jγi j . (1)

where only the terms linear in gradients are taken into account.

The free energy density of the distorted nematic phase can
now be expanded in terms of γi j keeping the quadratic terms:

Fd = �i jγi j + Ki j pqγi jγpq, (2)

where the material tensors �i j and Ki j pq are defined in the
homogeneous nematic state.

The first term in Eq. (2) is nonzero only in the chiral
nematic phase. Indeed, γi j is a pseudotensor while the free-
energy density Fd is a scalar and hence the material tensor �i j

must also be a pseudotensor vanishing in the achiral nematic
phase. Hence from the symmetry point of view, the tensor �i j

can be expressed in the following general form:

�i j = λ0δi j + λ1nin j, (3)

where λ0 and λ1 are pseudoscalars. Accordingly, the first term
in Eq. (2) reduces to:

�i jγi j = λ0δi jγi j = −λ0(n · (∇ × n)). (4)

This is the well-known chiral term in the distortion free energy
which characterizes the helical twisting power in the chiral
nematic phase.

The second term of Eq. (2) is invariant under the simul-
taneous interchange i → p and j → q and hence only the
symmetric in those indexes part of the tensor Ki j pq contributes
to the elastic energy. Taking into account also the symmetry
of the nematic phase, this part of the elasticity tensor can be
expressed as:

Ki j pq = K0δipδ jq + K12(δi jδpq + δiqδ j p) + K3δipn jnq

+K4δ jqninp + K5(δpqnin j + δi jnpnq)

+K6(δiqn jnp + δ j pninq) + K7nin jnpnq. (5)

One notes that the last four terms in Eq. (5) do not contribute
to Eq. (2) as their contractions with γi j or γpq vanish since
niγi j = 0. The contraction of the term K12δi jδpq with γi jγpq

yields the contribution proportional to the square of the twist
deformation:

K12δi jδpqγi jγpq = K12[n · (∇ × n)]2, (6)

and hence the parameter K12 contributes to the twist elastic
constant K22.

Contribution of other terms in Eq. (5) to the total distortion
free energy can be evaluated using the local coordinate system
in which the z axis is parallel to the director n at the point
r. In this coordinate system, ∇inz = 0 for all i because n
is a unit vector. For the rest director derivatives one usu-
ally introduces convenient notations: t1 = −∇xny, t2 = ∇ynx,
s1 = ∇xnx, s2 = ∇yny, and b1 = ∇znx, b2 = ∇zny (see, for
example, Ref. [26]). Then the twist deformation can be ex-
pressed as

[n · (∇ × n)] = −(t1 + t2), (7)

while the splay and bend vectors read as:

n(∇ · n) = (s1 + s2)n, (8)

(n · ∇)n = b1x̂ + b2ŷ, (9)

correspondingly, where the unit vectors x̂ and ŷ are in the
direction of the x and y axis of the local coordinate system,
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respectively. In the same local coordinate system, the compo-
nents of orientational deformation tensor γi j are expressed as
γ11 = t1, γ12 = −s2, γ13 = −b2 and γ21 = s1, γ22 = t2, γ23 =
b1. The components γ3i = 0 for all i.

Using these expressions one obtains:

K0δipδ jqγi jγpq = K0γi jγi j

= K0
[
(t1 + t2)2 + (s1 + s2)2 + b2

2 + b2
1

− 2t1t2 − 2s1s2
]
, (10)

K12δiqδ j pγi jγpq = K12[(t1 + t2)2 − 2t1t2 − 2s1s2], (11)

K3δipn jnqγi jγpq = K3
(
b2

1 + b2
2

)
. (12)

Using Eqs. (7)–(9) one can express (s1 + s2)2 = (∇ ·
n)2, (t1 + t2)2 = [n · (∇ × n)]2 and b2

1 + b2
2 = [n × (∇ ×

n)]2. The combination −2(t1t2 + s1s2) = ∇ · [(n · ∇)n −
n(∇ · n)] is a surface term which does not contain second
derivatives of the director. As a result, the distortion free-
energy density (2) can be written in the familiar form:

Fd = −λ0[n · (∇ × n)] + 1
2 K11(∇ · n)2

+ 1
2 K22[n · (∇ × n)]2 + 1

2 K33[n × (∇ × n)]2

+ Ks∇ · [(n · ∇)n − n(∇ · n)], (13)

where the Frank elastic constants can be expressed in terms of
the coefficients in Eq. (5):

K11 = 2K0, (14)

K22 = 2(K0 + 2K12), (15)

K33 = 2(K0 + K3), (16)

Ks = K12 + K0. (17)

Thus the elastic constants of the nematic phase are expressed
by three independent constants K0,K3, and K12 which enter
the general expression for the elasticity tensor K. One notes
that the constant K12 determines the difference between K11

and K22 while the constant K3 specifies the difference between
K11 and K33. Finally the Frank elastic constants can be ex-
pressed as the following contractions of the general elasticity
tensor:

K11 = 3
4 Ki j pq(δip − ninp)(δ jq − n jnq)

− 1
2 Ki j pq(δiq − ninq)(δ j p − n jnp), (18)

K22 = 1
4 Ki j pq(δip − ninp)(δ jq − n jnq)

+ 1
2 Ki j pq(δiq − ninq)(δ j p − n jnp), (19)

K33 = Ki j pq(δip − ninp)n jnq

= Ki jiqn jnq − Ki j pqninpn jnq, (20)

These general expressions relate conventional bulk elastic
constants with the components of the elasticity tensor K.

Particular expressions for the elasticity tensor can be obtained
using a molecular filed theory of nematic LCs and are pre-
sented in the following section.

III. MOLECULAR-STATISTICAL THEORY OF THE
DISTORTED NEMATIC PHASE

A molecular theory of elasticity of nematic LCs can be
developed using the mean-field expression for the free energy
of the inhomogeneous nematic phase. In this approximation
(see, for example, Ref. [27]) the free energy is determined
by the one-particle distribution function f1(ω, r) which may
also depend on position of the molecule r in the case of
inhomogeneous director distribution n(r). Here the orienta-
tional degrees of freedom of a generally biaxial molecule
are specified by ω = (a, b), where the unit vectors a and b
are in the directions of the long and short molecular axes,
respectively.

One notes that in the system of polar molecules, the one
particle distribution function can be approximately expressed
as [8,9,14] f1(ω, r) = f (ω)[1 + h(ω, r)], where f (ω) is the
orientational distribution function of the homogeneous nonpo-
lar nematic phase and h(ω, r) is a small polar correction to the
distribution function which exists only in the inhomogeneous
state and is proportional to the gradients of the director. Such
a polar correction to the distribution function eventually gives
rise to the corresponding polar corrections to splay and bend
elastic constants [8,9,14]. In this section, we consider the
nematic phase composed of nonpolar molecules and hence
h(ω, r) = 0. Then the distribution function f is equal to that
in the homogeneous nematic phase and may depend on the
position r only via the inhomogeneous director n(r). The sta-
tistical theory of elasticity of polar nematic LCs is considered
in Sec. VI.

We also assume for simplicity that the mesogenic
molecules are effectively uniaxial (i.e., we neglect the order-
ing of short molecular axes for generally biaxial molecules
[28]) and assume that the orientational distribution function
and the corresponding pair interaction potential are indepen-
dent of the short axes b. Hence in the uniaxial nematic LC
f1(ω, r) = f (a · n(r)). The free energy in the molecular field
approximation can then be expressed as

F = ρkBT
∫

f [a · n(r)] ln [� f (a · n(r))] da dr

+ 1

2
ρ2

∫
V (a1, r12, a2)

× f [a1 · n(r1)] f [a2 · n(r2)]dr12da1da2dr1, (21)

where � is a constant, ρ is the average molecular number
density and V (a1, r12, a2) is the effective pair intermolecular
interaction potential which depends on the long axes a1 and
a2 of the molecules 1 and 2 and on the intermolecular vector
r12 = r2 − r1. the effective interaction potential may also in-
clude the steric cut-off factor which accounts for the fact that
the moleculas cannot penetrate each other [29].
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The effective interaction potential V (a1, r12, a2) can be ex-
panded in terms of the so-called spherical invariants [25,27]:

V (a1, r12, a2) =
∑
lmk

Ulmk (r12)T lmk (a1, u12, a2), (22)

where u12 = r12/r12 and the set T lmk (a1, u12, a2) is a com-
plete set of basis functions that contain the vector a1 to
the power l , the vector u12 to the power m and the vector
a2 to the power k. The explicit expressions for some in-
variants are given, for example, by van der Meer [24]. For
convenience, we present the particular form of the relevant
invariants T lmk and their key properties in Appendix A. The
invariants with one zero index are just Legendre polynomials,
i.e., T n0n(a1, u12, a2) = Pn(a1 · a2) where Pn(x) is the Legen-
dre polynomial of rank n.

The spherical invariants possess a number of important
properties which simplify calculations. In particular the inte-
gral of T lmk (a1, u12, a2) with two arbitrary functions g1(a1 ·
n1) and g2(a2 · n2) which depend only on a1 and a2 can be
expressed as [24]:∫

g1(a1 · n1)T lmk (a1, u12, a2)g2(a2 · n2)da1da2

= S1,l S2,kT lmk (n1, u12, n2), (23)

where Sq,n = ∫
daPn(a · n)gq(a · nq) and where q = 1, 2.

Equation (23) can also be used in the particular case when

both g1(a · n) and g2(a · n) are equal to the orientational dis-
tribution function of the homogeneous nematic phase f (a · n).
In this case, S1,l and S2,k are the orientational nematic order
parameters of rank l and k, respectively.

Substituting the expansion Eq. (22) into the free-energy
Eq. (21) and using the integration rule Eq. (23) one obtains:

F = ρkBT
∫

f [a · n(r)] ln {� f [a · n(r)]} da dr

+ 1

2
ρ2

∑
lmk

Sl Sk

×
∫

Ulmk (r12)T lmk (n(r1), u12, n(r2))dr12dr1. (24)

This free energy depends on the director at two different
space points r1 and r2 and it is the free energy of the inho-
mogeneous nematic phase, which can be expressed as a sum
of the free energy of the homogeneous state and the distortion
free energy determined by the deformations of the director
distribution. One notes that the first term in Eq. (24) is local
and does not contribute to the distortion energy. For smoothly
inhomogeneous director, the distortion free energy can be
separated from the free energy of the homogeneous state by
expanding the functions T lmk (n(r1), u12, n(r2)) in the second
term of Eq. (24) in powers of r12 around r1.

Indeed, let us define T̃ lmk (r1, u12, r2) ≡ T lmk (n(r1),
u12, n(r2)) and expand them as functions of r2 in Taylor series
around r1:

T̃ lmk (r1, u12, r2) ≈ T̃ lmk (r1, u12, r1) + r12, j

[
∂

∂x2, j
T̃ lmk (r1, u12, r2)

]
r2=r1

+ r12, j r12,q

2

[
∂2

∂x2, j∂x2,q
T̃ lmk (r1, u12, r2)

]
r2=r1

, (25)

where the derivatives can be expressed as

[
∂

∂x2, j
T̃ lmk (r1, u12, r2)

]
r2=r1

= ∂nt

∂x j
(r1)

[
∂

∂n2,t
T lmk (n1, u12, n2)

]
n2=n1=n(r1 )

(26)

and [
∂2

∂x2, j∂x2,q
T̃ lmk (r1, u12, r2)

]
r2=r1

= ∂2nt

∂xq∂x j
(r1)

[
∂

∂n2,t
T lmk (n1, u12, n2)

]
n2=n1=n(r1 )

+ ∂nt

∂x j
(r1)

∂ns

∂xq
(r1)

[
∂2T lmk

∂n2,t∂n2,s
(n1, u12, n2)

]
n2=n1=n(r1 )

. (27)

As the integral of the term linear in r12, j in Eq. (25) vanishes identically for achiral molecules (i.e., for any centrosymmetric
interaction potential) the free-energy Eq. (24) naturally splits into the energy of homogeneous nematic state:

Fh = ρkBTV
∫

f (a · n) ln [� f (a · n] da + 1

2
ρ2V

∑
lmk

∫
dr12Ulmk (r12)

×
∫

f (a1 · n)T lmk (a1, u12, a2) f (a2 · n)da1da2, (28)

and the part describing the distortion free energy:

Fd = 1

4
ρ2

∑
lmk

SlSk

∫
dr12r12, j r12,qUlmk (r12)

∫
dr1

[
∂2

∂x2, j∂x2,q
T̃ lmk (r1, u12, r2)

]
r2=r1

. (29)
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On substituting Eq. (27) into Fd one notices that the integral over r1 of the first term of Eq. (27) containing the second derivative
of the director can be taken by parts as:∫

dr1
∂2nt

∂xq∂x j
(r1)

[
∂

∂n2,t
T lmk (n1, u12, n2)

]
n2=n1=n(r1 )

= −
∫

dr1
∂nt

∂x j
(r1)

∂ns

∂xq
(r1)

[
∂2T lmk

∂n2,t∂n1,s
(n1, u12, n2) + ∂2T lmk

∂n2,t∂n2,s
(n1, u12, n2)

]
n2=n1=n(r1 )

, (30)

and the second term here obviously cancels out the integral over r1 of the second term in Eq. (27). Therefore, one obtains the
distortion free energy (29) as:

Fd = −1

4
ρ2

∑
lmk

Sl Sk

∫
dr12r12, j r12,qUlmk (r12)

∫
dr1

∂nt

∂x j
(r1)

∂ns

∂xq
(r1)

[
∂2T lmk

∂n2,t∂n1,s
(n1, u12, n2)

]
n2=n1=n(r1 )

. (31)

Next, one notices that

∂nt

∂x j
= −εtvinvγi j . (32)

Substituting the director derivatives in this form in Eq. (31), one obtains:

Fd = −1

4
ρ2

∑
lmk

SlSk

∫
dr12r12, j r12,qUlmk (r12)

∫
dr1εtvinvγi jεsupnuγpq

[
∂2T lmk

∂n2,t∂n1,s
(n1, u12, n2)

]
n2=n1=n(r1 )

, (33)

which reduces the distortion energy density to the general form (2) and enables one to express the energy as

Fd =
∑
lmk

∫
dr Klmk

i j pqγi jγpq, (34)

and the elasticity tensor is reduced to a sum Ki j pq = ∑
lmk Klmk

i j pq of different contributions expressed as:

Klmk
i j pq = −1

4
ρ2Sl Skεtviεsupnvnu

∫
dr r jrqUlmk (r)

[
∂2T lmk

∂n2,t∂n1,s

(
n1,

r
r
, n2

)]
n2=n1=n

. (35)

The relationship between the elasticity tensor (29) and (35)
and the general results obtained by Poniewierski and Stechi
[22] is discussed in Appendix B.

IV. ORDER PARAMETERS AND FRANK ELASTIC
CONSTANTS OF NONPOLAR NEMATICS

In practice, the series in Eq. (22) should be truncated to
take into account the first few relevant terms. Here we preserve
all nonpolar invariants up to the fourth order in a1 and a2 and
up to the quadratic order in u12. Then the effective interaction
potential is approximately expressed as:

V (a1, r12, a2) ≈ U0 + U202(r12)T 202(a1, u12, a2)

+U220(r12)T 220(a1, u12, a2) + U022(r12)T 022(a1, u12, a2)

+U222(r12)T 222(a1, u12, a2) + U422(r12)T 422(a1, u12, a2)

+U224(r12)T 224(a1, u12, a2) + U404(r12)T 404(a1, u12, a2).

(36)

A. Orientational order parameters

If the orientational deformations in the nematic phase are
smooth on the molecular interaction scale, then one may
neglect their effect on the nematic order parameters and
evaluate them by minimizing the free energy of the homo-
geneous phase given by Eq. (28). Varying the free energy as a

functional of Fh[ f (a · n)] one obtains the integral equation:

f (a1 · n) = Z−1 exp [−UMF(a1 · n)/kBT ], (37)

where Z is the normalization factor and UMF(a1 · n) is the
mean-field potential which is expressed as:

UMF(a1 · n) = ρ
∑
lmk

Sk

∫
dr12Ulmk (r12)T lmk (a1, u12, n),

(38)
where we have taken into account that in the homogeneous
nematic phase n(r1) = n(r2) = n = const.

Integrating over r12 and using the fact that for m > 0,∫
T lmk (a, u12, n)d2u12 = 0, together with Eq. (23), one fi-

nally obtains the following approximate expression for the
mean-field potential where all terms with k, l, m � 4 in the
expansion (36) are taken into account:

UMF(a1 · n) = ρSV202P2(a1 · n) + ρS4V404P4(a1 · n). (39)

Here we have omitted the index of the order parameter S2 to
follow the historical notations, and introduced the parameters
Vα0α according to the general rule (A17).

Substituting Eq. (39) into Eqs. (37) and (28) one obtains
the final expression for the homogeneous nematic free-energy
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density:

1

V
Fh = −1

2
ρ2S2V202 − 1

2
ρ2S2

4V404

− ρkBT ln
∫

exp [−UMF(a · n)/kBT ]da, (40)

where UMF(a · n) is given by Eq. (39). This free energy is fully
determined by the two order parameters, S and S4, which can
be obtained by its numerical minimization.

B. Frank elastic constants

As shown in Appendix C, substitution of the effective pair
interaction potential (36) into Eq. (35) allows obtaining the
elastic constants (18–20) as:

K11 = 2πρ2S
(−SU202 − 1

5 SU222 + S4U422
)

− 20
3 πρ2S2

4 U404, (41)

K22 = 2πρ2S
(−SU202 + 2

5 SU222 + 1
3 S4U422

)
− 20

3 πρ2S2
4 U404, (42)

K33 = 2πρ2S
(−SU202 − 1

5 SU222 − 4
3 S4U422

)
− 20

3 πρ2S2
4 U404, (43)

where all constants U lmk are evaluated according to the gen-
eral rule (A18).

V. ORDER PARAMETERS AND ELASTIC CONSTANTS
FOR MOLECULES INTERACTING VIA THE GAY-BERNE

POTENTIAL

As the elastic constants expressed by Eqs. (18)–(20) ex-
plicitly depend on two order parameters, S and S4, their
evaluation requires a particular model, relying on a specific
molecular interaction potential. Typically in LCs, the main
part of the molecular interaction potential is determined by
the long-range attraction and short-range repulsion of hard
elongated molecules.

A. Gay-Berne pair interaction potential

A useful model potential of that kind is the G-B potential
[30] which combines relative simplicity, continuity, and capa-
bility of reproducing orientational order of anisotropic liquids
[31,32]. It expresses the pair intermolecular interaction energy
as an anisotropic generalization of the Lenard-Jones potential:

UGB(a1, r12, a2) = 4 ε(a1, u, a2)

×{[r12/r0 − σ (a1, u, a2) + 1]−12

− [r12/r0 − σ (a1, u, a2) + 1]−6} (44)

with the range

σ (a1, u, a2)

=
{

1 − χ

2

[
(u · a1 + u · a2)2

1 + χ a1 · a2
+ (u · a1 − u · a2)2

1 − χ a1 · a2

]}−1/2

(45)

and strength

ε(a1, u, a2)

= ε0[1 − χ2(a1 · a2)2]−ν/2

×
{

1 − χ ′

2

[
(u · a1 + u · a2)2

1 + χ ′ a1 · a2
+ (u · a1 − u · a2)2

1 − χ ′ a1 · a2

]}μ

.

(46)

depending on the orientations of long molecular axes.
Two parameters characterize the effective molecular shape:

r0 is its breadth and χ = (κ2 − 1)/(κ2 + 1) is determined
by the relative molecule elongation κ . The parameter χ ′ =
(κ ′1/μ − 1)/(κ ′1/μ + 1) is determined by the ratio κ ′ of
the well depths for side-to-side and end-to-end molecular
orientations.

The parameters μ and ν enumerate certain known mod-
ifications of the potential. Thus, the values μ = 2, ν = 1
correspond to the potential originally proposed in Ref. [30],
while other sets, such as μ = 1, ν = 2, and μ = 1, ν = 3,
have been studied later in Refs. [33] and [32,34] correspond-
ingly.

One notes that in the generalized mean-field approximation
used in this paper the G-B potential (44) is to be multiplied
by a step function �(r12 − r0σ (a1, u, a2)) which excludes
from the integration in Eq. (38) the anisometric volume r12 <

r0σ (a1, u, a2) where the potential is positive. This steric cut-
off factor removes the contribution of certain intermolecular
configurations when the interacting anisotropic molecules are
too close to each other and effectively intersect.

B. Expansion coefficients

The analytical dependence of G-B potential on the in-
termolecular distance r12 allows expressing the coefficients
(A17) as

Vα0α = −r3
0

||T α0α||
∫

da1da2T α0α (a1, u, a2)

× 2ε(a1, u, a2)

495
[31 + 81σ (a1, u, a2)

+ 108σ 2(a1, u, a2)], (47)

while the coefficients (A18) reduce to

U lmk = −r5
0

||T lmk||
∫

da1da2T lmk (a1, u, a2)

× 2ε(a1, u, a2)

1155
[461 + 455σ (a1, u, a2)

+ 434σ 2(a1, u, a2) + 378σ 3(a1, u, a2)

+ 252σ 4(a1, u, a2)]. (48)

Numerically evaluating the remaining integrals we obtain the
dimensionless parameters vlmk = V lmk (ε0r3

0 )−1 and ulmk =
U lmk (ε0r5

0 )−1 that determine the phase behavior and elastic
constants. Those corresponding to the classical G-B potential
with μ = 2, ν = 1 are presented in Fig. 1, while the constants
of modified potentials with μ = 1, ν = 2 and with μ = 1,
ν = 3 are shown in Figs. 2 and 3, respectively. As discussed
in Appendix D, the moderate values of the parameters of
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FIG. 1. Colormaps of the dimensionless parameters of the classical G-B pair potential with μ = 2 and ν = 1 characterizing its expansion
in spherical invariants determining the nematic ordering (v202 and v404) and the elastic constants (u202, u404, u222, and u422). The white dotted
line of the border between the areas of positive and negative elastic constants and four exemplary points A, B, C, and D are shown in the v202

plot.

FIG. 2. Colormaps of the dimensionless parameters of the modified G-B pair potential with μ = 1 and ν = 2 characterizing its expansion
in spherical invariants determining the nematic ordering (v202 and v404) and elastic constants (u202, u404, u222, and u422). Four exemplary points
A, B, C, and D are marked in the v202 plot.
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FIG. 3. Same as Fig. 2 for the modified G-B pair potential with μ = 1 and ν = 3.

the classical G-B potential arise as a result of substantial
compensation of much larger contributions. For the modified
G-B potential, this compensation is less pronounced and the
dimensionless constants of this potential are all negative and
by one-two orders of magnitude larger at large κ .

C. Elastic constants of the Gay-Berne nematic

Using the evaluated dimensionless parameters of the po-
tentials we calculate the order parameters S and S4 by
a direct minimization of the free energy (40) and obtain
them as functions of the dimensionless temperature τ =
kBT (|v202| ε0ρr3

0 )−1. Note that the latter includes the absolute
value of the parameter v202, which allows us to rescale the
temperature dependencies into very similar ranges.

The elastic constants are determined by the order param-
eters and the coefficients U lmk according to Eqs. (41)–(43).
We express them by the dimensionless constants kii =
Kii(ε0ρ

2r5
0 )−1 determined by the dimensionless parameters

ulmk :

k11 = −2πS2u202 − 2
5πS2u222 + 2πSS4u422 − 20

3 πS2
4 u404,

(49)

k22 = −2πS2u202 + 4
5πS2u222 + 2

3πSS4u422 − 20
3 πS2

4 u404,

(50)

k33 = −2πS2u202 − 2
5πS2u222 − 8

3πSS4u422 − 20
3 πS2

4 u404.

(51)

The stability of nematic phase naturally requires all elastic
constants to be positive. As shown in Fig. 1, this substantially
reduces the appropriate range of κ for the original G-B po-

tential. The main factor is the large parameter u222, which
negatively contributes to the elastic constants when κ exceeds
2. As shown in Appendix D, several vector combinations
entering u222 with different signs are all very large, but they
substantially compensate each other yielding moderate values
of u222.

Within the range of positive elastic constants, we choose
four well-separated points marked as A, B, C, and D in Fig. 1
and present the corresponding temperature variations of the
order parameters in Fig. 4(a) and the dimensionless elastic
constants in Fig. 4(b). One can readily see that the temperature
variation of the order parameters is very similar for all four
cases. At the same time, the variation of the elastic constants
is very different: The difference between the constants can be
rather small (as for the point B) or sufficiently large. One
notes, however, that in all cases K22 is the largest elastic
constant which is in contradiction with typical experimental
data for nematic LCs consisting of prolate molecules. This is
another disadvantage of the classical G-B potential.

For the modified G-B potentials with μ = 1, ν = 2 and
μ = 1, ν = 3 the whole range of the parameters κ and κ ′
corresponds to a stable nematic phase with positive elastic
constants. For four well separated points marked as A, B, C,
and D in Figs. 2 and 3, we present the corresponding tem-
perature variation of the order parameters and dimensionless
elastic constants in Figs. 5 and 6, respectively. One notes that
the points B, C, and D correspond to the same value of the
parameter κ . Comparing the graphs B, C, and D in Figs, 5
and 6 one concludes that the relative difference between the
elastic constants is increasing with the increasing molecular
elongation. Comparing also the graphs A and B, one may
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FIG. 4. Thermodynamics of nematic liquid crystal determined
by the parameters of classical G-B potential with μ = 2, ν = 1 (see
Fig. 1): (a) Dependencies of the order parameters S and S4 and
(b) dimensionless elastic constants k11 (solid), k22 (dashed), and k33

(dotted) on the dimensionless temperature for four sets of parameters
corresponding to the points A, B, C, and D,marked in Fig. 1. Same
colors correspond to same points.

assume that this difference also decreases with the increasing
anisotropy of the potential well. Note also that the points A
and B are the same for all three G-B potentials and one can
see that the elastic constants of the classical G-B potential are
significantly different from those for the modified potentials.

FIG. 5. Same as Fig. 4 for the modified G-B potential with μ =
1, ν = 2. The four sets of parameters correspond to the points marked
as A, B, C, and D in Fig. 2.

VI. ELASTICITY OF THE NEMATIC PHASE COMPOSED
OF POLAR MOLECULES

A. Contribution of polar intermolecular interactions to the free
energy of the nematic phase

In the homogeneous uniaxial nematic state, the
orientational one-particle distribution function f1(a, b, n)
= f ((n · a)2, (n · b)2) because the phase is nonpolar and
hence there is only quadratic dependence on all orientational
variables. Thus in the mean-field approximation, all polar
molecular interactions that are described by the terms with
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odd l and k in the expansion Eq. (22) do not affect the
homogeneous state.

In contrast, in the distorted nematic state, the polar part
of intermolecular interactions gives rise to a small polar cor-
rection to the distribution function. In this paper, we restrict
ourselves to uniaxial molecular interactions and hence the
orientational distribution function depends only on the unit
vector a along the primary molecular axis. In the first approx-
imation, the orientational distribution function of the distorted

nematic then can be expressed as:

f1(a, n(r)) = f (a · n(r))[1 + h(a, n(r))], (52)

where the distribution function f (a · n) is even in a and n,
while the small polar correction h(a, n) is an odd function
of a.

This orientational distribution function together with the
polar correction h(a, n(r)) can be obtained by minimizing the
free energy of the inhomogeneous nematic phase given by
Eq. (21), where the distribution functions are more generally
given by Eq. (52). Minimization of the free-energy results in
the following expression:

f [a1 · n(r1)][1 + h(a1, n(r1))] = 1

Z
exp

{
− ρ

kBT

∫
V (a1, r12, a2) f [a2 · n(r2)][1 + h(a2, n(r2))]da2dr12

}
, (53)

where

Z =
∫

exp

{
− ρ

kBT

∫
V (a1, r12, a2) f [a2 · n(r2)][1 + h(a2, n(r2))]da2dr12

}
da1. (54)

Substituting Eq. (53) back into Eq. (21) one expresses the free energy density as:

F = −ρkBT ln Z − 1

2
ρ2

∫
V (a1, r12, a2) f [a2 · n(r2)][1 + h(a2, n(r2))]

× f [a1 · n(r1)][1 + h(a1, n(r1))]dr2da1da2. (55)

Expanding the orientational distribution function f (a2 · n(r2)) in gradients of the director as:

f [a2 · n(r2)] ≈ f [a2 · n(r1)] + (r12 · ∇) f [a2 · n(r1)] + 1
2 (r12 · ∇ )2 f [a2 · n(r1)] + . . . , (56)

and accordingly expanding the free-energy density Eq. (55) in powers of the small function h, one can write the total free energy
of the inhomogeneous nematic phase in the form:

F = Fh + Fd +
∫

Fp(r1)dr1. (57)

Here Fh and Fd are the free energies given by Eqs. (28) and (29) of nonpolar nematic considered above, while Fp describes the
additional free energy of distortion:

Fp(r1) = −1

2
ρ2

∫
V (a1, r12, a2) f [a2 · n(r2)] f [a1 · n(r1)]h(a2, n(r2))h(a1, n(r1))dr12da2da1

+ 1

2
ρ2

∫
V (a1, r12, a2) f [a1 · n(r1)]h(a2, n(r2))(r12 · ∇) f [a2 · n(r1)]dr12da2da1

− 1

2
ρ2

∫
V (a1, r12, a2) f [a1 · n(r1)]h(a1, n(r1))(r12 · ∇) f [a2 · n(r1)]dr12da2da1

− ρ3

2kBT

∫
f [a1 · n(r1)]

[∫
V (a1, r12, a2) f [a2 · n(r1)]h(a2, n(r2))da2dr12

]2

da1. (58)

One notes that only the polar part of the intermolecu-
lar interaction potential contributes to all integral terms in
Eq. (58).

Taking into account that the function h(a, n(r)) is odd
in a, one concludes that the first term in Eq. (58) does not
vanish only if the potential V (a1, r12, a2) is odd both in a1

and a2 while the second term in Eq. (58) is nonzero only if the
potential is odd both in a2 and u12. In a similar way, the third
term does not vanish if the potential is odd both in a1 and u12.
Finally, the last term in Eq. (58) does not vanish only if the
potential is odd in a2 and even in u12.

Accordingly, it is convenient to present an arbitrary polar
achiral potential of interaction between uniaxial molecules
Vp(a1, r12, a2) as a sum of the two parts:

Vp(a1, r12, a2) = Vp1(a1, r12, a2) + Vp2(a1, r12, a2), (59)

where the potential Vp1(a1, r12, a2) is odd both in a1 and a2,
while Vp2(a1, r12, a2) is odd in r12 and also in a1 or in a2.
Both parts of the potential can be expanded in polar spherical
invariants as in Eq. (22). For Vp1(a1, r12, a2), the indices l and
k are odd and the index m is even. In contrast, the expansion
of the potential Vp2(a1, r12, a2) contains only invariants with
odd l , odd m, and even k or odd k, odd m, and even l .
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FIG. 6. Same as Fig. 4 for the modified G-B potential with μ =
1, ν = 3. The four sets of parameters correspond to the points marked
as A, B, C, and D in Fig. 3.

One concludes that the potential Vp1(a1, r12, a2) does not
contribute to the second and third terms in Eq. (58) because
it is even in the unit intermolecular vector u12 and hence
these terms vanish after integration over u12. It contributes,
however, to the first and last terms in Eq. (58). In a similar
way, the potential Vp2(a1, r12, a2) which is odd in u12 does
not contribute to the first and last terms in Eq. (58) providing
a nonzero contribution to the second and third terms.

Taking into account, for simplicity, only the invariants of
the first and second order in a1 and a2, one obtains the follow-
ing approximate expressions:

Vp1(a1, r12, a2) ≈ U101(r12)T 101(a1, u12, a2)

+U121(r12)T 121(a1, u12, a2), (60)

and

Vp2(a1, r12, a2)

≈ U110(r12)[T 110(a1, u12, a2) − T 011(a1, u12, a2)]

+ U112(r12)[T 112(a1, u12, a2) − T 211(a1, u12, a2)].
(61)

Substituting Eqs. (60) and (61) into Eq. (58) one notices that
the unknown polar correction h to the distribution function
contributes to all integrals only via a vector:

m =
∫

a f [a · n(r)]h(r, a)d2a, (62)

enabling one to express the free-energy density Eq. (58) as:

Fp = − 2πρ2m2V101

− 2πρ2W112S{(m · n)(∇ · n) + [m · (n · ∇)n]}

− 8π2ρ3

kBT
(V101)2

{
S

[
(n · m)2 − m2

3

]
+ m2

3

}
, (63)

where the constants V101 and W112 are defined by (A17) and
(A19) respectively. It is worth mentioning that only the terms
U101(r12)T 101(a1, u12, a2) and U112(r12)T 112(a1, u12, a2) pro-
vide nonzero contributions to Eq. (58).

The polar order parameter m can in principle be deter-
mined by minimization of the free-energy density Eq. (63).
One notes, however, that the free-energy Eq. (63) possesses a
minimum only within a certain range of parameters. Indeed,
let us consider for simplicity the stability of the isotropic
phase. In the isotropic phase S = 0 and hence Eq. (63) can
be written in the following simple form:

Fp = −2πρ2V101

(
1 + 4πρ

3kBT
V101

)
m2. (64)

As the isotropic phase is nonpolar by definition, it should
be stable with respect to the formation of spontaneous polar
(e.g., ferroelectric) order specified by the order parameter
m, the energy density Eq. (64) must be non-negative. This
requires the constant V101, which promotes the polar order, to
be negative as well as the expression (1 + 4πρV101/3kBT ) to
be positive, i.e., restricting |V101| < 3kBT /4πρ.

Minimizing the free-energy density Eq. (63) with respect
to m yields its equilibrium value:

m0 = − W112S

2V101

×
{

n(∇ · n)

1 + 4πρ

3kBT V101(2S + 1)
+ (n · ∇)n

1 + 4πρ

3kBT V101(1 − S)

}
.

(65)

Finally, substituting m0 back into Eq. (63) one obtains the
final expression for the polar correction to the free-energy
density of deformation:

Fp = πρ2(W112S)2

2V101
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×
{

(∇ · n)2

1 + 4πρ

3kBT V101(2S + 1)
+ ((n · ∇ )n)2

1 + 4πρ

3kBT V101(1 − S)

}
.

(66)

Comparing with Eq. (13) and taking into account that ((n ·
∇ )n)2 = (n × ∇ × n)2, one concludes that Eq. (66) describes
the following corrections to splay and bend elastic constants
which are determined by polar molecular shape:

�K11 = πρ2(W112S)2

2V101
γ‖, (67)

�K33 = πρ2(W112S)2

2V101
γ⊥, (68)

where

γ‖ =
[

1 + 4πρ

3kBT
V101(2S + 1)

]−1

, (69)

γ⊥ =
[

1 + 4πρ

3kBT
V101(1 − S)

]−1

. (70)

One notes that at small S 	 1 both corrections are negative
as V101 < 0 and |V101| < 3kBT /4πρ. Now let us consider the
temperature variation of these corrections determined by the
factors γ‖ and γ⊥. At S = 0, they are equal and positive γ‖ =
γ⊥ = (1 + 4πρV101/3kBT )−1. However, the variation of γ‖
with the decreasing temperature is completely different from
that of γ⊥. Indeed, γ⊥ remains positive for all temperatures
and values of S and approaches unity in the limit of perfect
orientational order S = 1. Thus the polar correction to K33 is
generally small as long as the coupling constant W112 remains
relatively small. In contrast, γ‖ increases with the decreasing
temperature and diverges at some temperature T = Tspl when
4πρ|V101|[2S(Tspl ) + 1] = 3kBTspl.

Thus the polar correction to the splay elastic constant is
negative and its absolute value increases with the decreasing
temperature diverging at T = Tspl. Formally at T = Tspl the
nematic phase (if it still exists in this temperature range)
looses its stability with respect to the homogeneous polar or-
der. However, this phase transition is preempted by an elastic
instability because the absolute value of the negative polar
correction �K11 grows very fast in the pretransitional region
above Tspl and at some temperature T0 > Tspl the total splay
elastic constant (i.e., the sum of polar and nonpolar contri-
butions) vanishes and the homogeneous nematic phase looses
its stability with respect to the inhomogeneous director dis-
tribution. This may result in the formation of the splay-bend
phase.

B. Elastic constants of polar Gay-Berne nematic

For a quantitative illustration of the effect of polar molec-
ular shape on the elasticity of the nematic phase we consider
a polar modification of the G-B potential (44) by introducing
an additional factor to the anisotropic interaction range (45)
which has the qualitative meaning of the closest distance of
approach between the two molecules:

σ (a1, u, a2)

= [1 − η(4 − p2)(2 + p)p2]

FIG. 7. Cuts of the range (71) of polar G-B potential with η =
0.03 (solid) and η = 0 (dashed) by the plane containing the main
molecular axes a1,2 for their antiparallel and perpendicular orienta-
tions. The relative molecular elongation is κ = 4.

×
{

1 − χ

2

[
(u · a1 + u · a2)2

1 + χ a1 · a2
+ (u · a1 − u · a2)2

1 − χ a1 · a2

]}−1/2

.

(71)

The added factor depends on the molecular axes a1, a2 and
the intermolecular unit vector u via the combination p =
(u · a1 − u · a2). The dependence on p allows the potential to
retain its symmetry with respect to the molecular permutation
(a1 ↔ a2 and u ↔ −u). At the same time, it introduces the
so-called head-tail asymmetry with respect to the flipping of
the main axis of each molecule, a1 ↔ −a1 or a2 ↔ −a2.

The introduced polarity is quantitatively characterized by
the parameter η and the particular polynomial dependence
on p ensures that the range is not an even function of p
but remains fixed for certain molecular orientations corre-
sponding to p = 0,±2. For instance, the polarity does not
affect the interaction range of the molecules with parallel
main axes, a1 = a2. However, as shown in Fig. 7, sufficiently
small values of η result in a noticeable asymmetry of the
interaction range for molecules aligned in an antiparallel way
or perpendicular to each other.

Using the polar G-B potential one can evaluate the elastic
constants (49) and (51) together with their polar corrections
given by the following dimensionless expressions:

k(p)
11 = π (w112S)2

2v101[1 + 4πv101(2S + 1)(3τ |v202|)−1]
, (72)

k(p)
33 = π (w112S)2

2v101[1 + 4πv101(1 − S)(3τ |v202|)−1]
, (73)

where the dimensionless parameter w112 = W112(ε0r4
0 )−1 is

defined similarly to ulmk and vlmk introduced in Sec. V. The
analytical integration over the intermolecular distance yields
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FIG. 8. Colormaps of dimensionless parameters of the expansion in spherical invariants of the modified polar G-B pair potential with
μ = 1, ν = 3, and η = 0.005. In the v202 plot the four exemplary points A, B, C, and D are shown for which we evaluate the elastics constants
in Fig. 9 and the white dashed line shows the border of the area with K11 singularity. The colormaps of not shown parameters are marginally
affected by η and remain practically identical to those in Fig. 3.

the orientational integral:

W112 = −16π2

495
r4

0

∫
da1da2T 112(a1, u, a2)

× ε(a1, u, a2)[65 + 124σ (a1, u, a2)

+ 162σ 2(a1, u, a2) + 144σ 3(a1, u, a2)], (74)

which has to be evaluated numerically.
We have employed the modified G-B potential with μ = 1

and ν = 3, add a weak polarity of the molecular shape spec-
ified by the parameter η = 0.005 and calculated numerically
all dimensionless parameters of the expansion of such a po-
tential which enter the expressions for the elastic constants. It
appears that the effect of the weak molecular polarity η on
the most of the parameters ulmk and vlmk which determine
the nonpolar contributions to the elastic constants (49)–(51)
is practically negligible apart from the parameter u222. The
latter, as discussed above and in Appendix D, arises as a
result of partial cancellation of several large contributions, and
the polar modification of the potential noticeably affects this
balance. In Fig. 8 we present the colormap of the parameter
v202 which is practically unaffected by weak polarity η, the
colormap of the parameter u222 which is slightly altered by
the polarity (compare with the similar plot in Fig. 3), as well

as of the two additional expansion coefficients v101 and w112

which are determined by the molecular polarity.
In Fig. 9, we present the temperature variation of the elastic

constants of polar nematics with the polar contributions (72)
and (73) taken into account. One can readily see that in the
case of weak polarity, the temperature dependencies of the
twist and bend elastic constants remain practically unaffected.
At the same time, the splay elastic constant k11 behaves in
a completely different way: First, it increases with the de-
creasing temperature similarly to k33 and k22 but then reaches
a maximum and rapidly decreases until vanishing at some
temperature T0 which is different for different parameters of
the interaction potential. One notes that the homogeneous
nematic phase may be stable only in the temperature range
between the nematic-isotropic transition temperature TNI and
T0 provided that TNI > T0. For some values of the parameters,
the instability temperature T0 may be formally higher than
TNI and then there is no stable nematic phase at all. This
is illustrated in Fig. 8 where all points on the white dashed
line correspond to TNI = T0. Below this line, TNI < T0, and
hence all combinations of parameters do not correspond to
a stable homogeneous nematic phase. Note that this area
covers a substantial part of the κ-κ ′ plane. It is truly remark-
able how a very weak polar interaction which corresponds
to less than 1% of the total intermolecular interaction po-
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FIG. 9. Same as Fig. 6 for the modified polar G-B potential with
μ = 1, ν = 3, and η = 0.005. The four sets of parameters corre-
spond to the points marked as A, B, C, and D in Fig. 8.

tential may completely destabilize the nematic phase at all
temperatures.

VII. DISCUSSION

In this paper we have used a novel approach to the
evaluation of the elastic constants of nematic LCs. The
distortion free energy of the nematic phase has been ex-
pressed in terms of the orientational deformations tensor γi j =
εilknl∇ jnk which specifies the pure rotation of the director and
explicitly accounts for the nonpolar symmetry of the nematic
phase. The general fourth rank elasticity tensor of the nematic
phase has been expressed as a sum of five independent terms,

and it has been shown that only three terms contribute to the
elastic constants. As a result, the Frank elastic constants have
been rigorously expressed in terms of the three corresponding
coefficients. One notes that these coefficients which have not
been considered in the literature before, have a physical mean-
ing. For example, the constants K12 and K3 determine the
difference between K11 and K22, and K11 and K33, respectively.
Finally, explicit expressions for the elastic constants have been
obtained as the contractions of the elasticity tensor with the
appropriate tensors which depend on the components of the
director.

Approximate expressions for the elastic constants have
been derived using the molecular-field approximation in
the molecular theory of nematic LCs. The intermolecular
interaction potential is expanded in the complete set of
functions—the so-called spherical invariants. As a result,
the elastic constants of the nematic phase are expressed as
sums of the contributions which depend on the corresponding
expansion coefficients and on the orientational order param-
eters of the increasing order. In practice, such a sum can
be truncated after the first few terms because the remaining
terms depend on the higher order parameters which decrease
rapidly with the increasing rank. It has also been shown that
the elasticity tensor of the nematic phase, obtained in this
paper can be transformed into the form which exactly corre-
sponds to the general result derived in Ref. [22] provided the
molecular-field approximation is employed. One notes, how-
ever, that the expressions for the elastic constants, obtained,
for example, in Ref. [22] depend on the derivatives of the
orientational distribution function which are to be evaluated
separately, and thus the elastic constants are not expressed
as explicit ensemble averages. In contrast, in the present
theory the intermolecular potential is expanded in spheri-
cal invariants and each term is explicitly averaged with the
distribution functions. Therefore, the theory establishes a di-
rect approximate relationship between Frank elastic constants
and the intermolecular interaction potential and the order
parameters.

One notes that this approach can in principle be used for
any interaction potential which is available in the analytical
or in the numerical form. For illustration, we have calculated
numerically all elastic constants for the model nematic LC
composed of molecules interacting via the popular G-B po-
tential. Both the classical version of the G-B potential and
two its modifications have been used and the elastic con-
stants have been calculated as functions of temperature, for
different molecular elongation and anisotropy of the potential
well. Surprisingly, the model nematic phase with the classi-
cal G-B interaction appears to be unstable with respect to
the director deformations in the broad range of the model
parameters. Moreover, even in the stable nematic phase the
largest elastic constant is K22 which is in contradiction with
typical experimental data for nematic LCs composed of pro-
late molecules. In contrast, for the two modified versions
of the G-B potential [32–34], the nematic phase is always
stable and K33 is the largest elastic constant as one expects.
It has also been shown that the difference between the elastic
constants is increasing with the increasing molecular elonga-
tion. Thus the results indicate that Frank elastic constants are
significantly more sensitive to the details of the intermolecular
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interactions than the order parameters, and some particular
interactions may lead to the elastic instabilities in the nematic
phase.

The molecular theory of elasticity of the nematic phase
has also been generalized to account for the polar molecular
shape. It has been taken into consideration that the orienta-
tional distribution function of polar molecules in the nematic
phase with inhomogeneous director distribution contains a
small correction which is proportional to bend and splay de-
formation vectors [8,14]. This means that even in the system
of uniaxial polar molecules the distribution function does
not have the simple form f (a, r) = f [a · n(r)] as assumed
in the molecular theory of nematic LCs composed of non-
polar molecules. The polar correction has been determined
by minimization of the free energy of the inhomogeneous
nematic phase taking into account the gradient terms and
polar intermolecular interactions. A small polar correction to
the orientational distribution function gives rise to the cor-
responding corrections to splay and bend elastic constants
which appear to be negative throughout the range of the stable
nematic phase. It has been shown that the behavior of these
corrections is completely different. In the case of uniaxial
polar molecules, considered in this paper, the polar correction
to the bend elastic constant is generally small for weakly polar
molecules and its absolute value decreases with the decreasing
temperature. In contrast, the absolute value of the correction to
the splay elastic constant rapidly increases with the decreasing
temperature and may even diverge at some temperature Tspl.
At this temperature, the nematic phase looses its stability
with respect to the formation of the homogeneous polar (e.g.,
ferroelectric) order.

It is interesting to note, however, that this polar instability
can never occur in the conventional nematic phase because it
is preempted by another structural instability. In the pretransi-
tional region above Tspl the absolute value of the negative polar
correction �K11 can be very large and at some temperature
T0 > Tspl the total splay elastic constant K11 (the sum of the
positive nonpolar and negative polar contributions) vanishes.
This results in an instability of the homogeneous nematic
phase with respect to an inhomogeneous distribution of the
director and may be considered as a mechanism of the transi-
tion into the splay-bend phase [1,2,3].

One concludes that the homogeneous nematic phase
may be stable only in the temperature range between the
nematic-isotropic transition temperature TNI and the insta-
bility temperature T0, and both these temperatures strongly
depend on the parameters of the interaction potential. It has
been shown that in some areas of the parameters space T0 is
higher than TNI and hence the systems with the corresponding
values of the parameters do not exhibit any stable homoge-
neous nematic phase. Thus even a weak polar intermolecular
interaction may completely destabilize the nematic phase at
all temperatures.

The theory developed in this paper may also be generalized
to describe elasticity of nematic LCs composed of biaxial and
polar bent-core molecules which may exhibit the twist-bend
phase. Bent-core molecules can be modeled, for example, by
two G-B interaction cites. The corresponding theory will be
presented in our future publication.
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APPENDIX A: INVARIANTS T lmk

The first several functions T lmk read as:

T 101(a1, u12, a2) = (a1 · a2), (A1)

T 110(a1, u12, a2) = (a1 · u12), (A2)

T 011(a1, u12, a2) = (a2 · u12), (A3)

T 121(a1, u12, a2) = 3(a1 · u12)(a2 · u12) − (a1 · a2), (A4)

T 112(a1, u12, a2) = 3(a1 · a2)(a2 · u12) − (a1 · u12), (A5)

T 211(a1, u12, a2) = 3(a1 · a2)(a1 · u12) − (a2 · u12), (A6)

T 220(a1, u12, a2) = P2(a1 · u12)

= 3
2 (a1 · u12)2 − 1

2 , (A7)

T 202(a1, u12, a2) = P2(a1 · a2)

= 3
2 (a1 · a2)2 − 1

2 , (A8)

T 022(a1, u12, a2) = P2(a2 · u12)

= 3
2 (a2 · u12)2 − 1

2 , (A9)

T 404(a1, u12, a2) = P4(a1 · a2)

= 35
8 (a1 · a2)4 − 30

8 (a1 · a2)2 + 3
8 , (A10)

T 222(a1, u12, a2)

= 9
2 (a1 · a2)(a2 · u12)(a1 · u12)

− 3
2 (a1 · a2)2 − 3

2 (a1 · u12)2 − 3
2 (u12 · a2)2 + 1,

(A11)

T 422(a1, u12, a2)

= 35
8 (a1 · a2)2(a1 · u12)2

− 5
2 (a1 · a2)(a2 · u12)(a1 · u12) + 1

4 (u12 · a2)2

− 5
8 (u12 · a1)2 − 5

8 (a1 · a2)2 + 1
8 , (A12)

and

T 224(a1, u12, a2) = T 422(a2, u12, a1). (A13)

The functions are mutually orthogonal in a sense that∫
T lmk (a1, u12, a2)T l ′m′k′

(a1, u12, a2)da1da2

= δll ′δmm′δkk′ ||T lmk||, (A14)

but not properly normalized, as ||T 101|| = ||T 110|| =
||T 011|| = 16

3 π2, ||T 121|| = ||T 112|| = ||T 211|| = 32
3 π2,
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||T 220|| = ||T 202|| = ||T 022|| = 16
5 π2, ||T 222|| = 56

25π2, and
||T 224|| = ||T 242|| = ||T 422|| = 56

45π2, ||T 404|| = 16
9 π2.

Therefore, expansion of an arbitrary pair interaction poten-
tial U (a1, r, a2) reads as:

U (a1, r, a2) =
∑
lmk

Ulmk (r)T lmk
(

a1,
r
r
, a2

)
, (A15)

with the coefficients obtained as

Ulmk (r) = 1

||T lmk||
×

∫
U (a1, r, a2)T lmk

(
a1,

r
r
, a2

)
da1da2. (A16)

Note that upon integration, the right-hand side is independent
of the direction of r.

If a potential is even with respect to the permutation 1 ↔ 2
of interacting particles, then certain coefficients are interre-
lated. In particular, U110(r) = −U011(r), U112(r) = −U211(r),
U220(r) = U022(r), and U422(r) = U224(r).

The contributions to the homogeneous nematic free energy
is expressed by the integrals

V lmk =
∫ ∞

0
dr r2Ulmk (r), (A17)

the elastic constants of nonpolar nematic are determined by
the integrals

U lmk =
∫ ∞

0
dr r4Ulmk (r), (A18)

while the elasticity of nematics composed of polar molecules
involves also the integrals

W lmk =
∫ ∞

0
dr r3Ulmk (r). (A19)

APPENDIX B: COMPARISON WITH THE GENERAL
EXPRESSIONS OF PONIEWIERSKI AND STECKI

Poniewierski and Stecki [22] have considered the orienta-
tional elasticity of the nematic phase composed of uniaxial
nonpolar molecules by introducing another elasticity tensor
Mjqts that presents the corresponding part of the distortion
free-energy density as

Fd = 1

2
kBT Mjqts

∂nt

∂x j

∂ns

∂xq
. (B1)

They have obtained the following exact expression for this
elasticity tensor:

Mjqts = 1

2
ρ2

∫
r12, j r12,qC2(a1, r12, a2)a2,t a1,s

× ∂ f (a1 · n)

∂ (a1 · n)

∂ f (a2 · n)

∂ (a2 · n)
dr12da1da2, (B2)

where C2(a1, r12, a2) is the direct pair correlation function of
the homogeneous nematic phase. The Frank elastic constants
are then expressed in terms of the components of the tensor
Mjqts as K11 = Mxxxx, K22 = Mxyxy, and K33 = Mxzxz. It can
readily be shown that exactly the same expression can also be
derived from the above Eq. (31) in terms of the molecular-field
approximation.

Indeed, by comparing Eq. (B1) with Eq. (31) one identifies this elasticity tensor in the form:

MMF
jqts = − ρ2

2kBT

∑
lmk

SlSk

∫
dr12r12, j r12,qUlmk (r12)

[
∂2T lmk

∂n2,t∂n1,s
(n1, u12, n2)

]
n2=n1=n

= − ρ2

2kBT

∫
dr12r12, j r12,q

[
∂2

∂n2,t∂n1,s

(∑
lmk

Sl SkUlmk (r12)T lmk (n1, u12, n2)

)]
n2=n1=n

= − ρ2

2kBT

[
∂2

∂n2,t∂n1,s

(∫
dr12r12, j r12,q

∫
V (a1, u12, a2) f (a1 · n1) f (a2 · n2)da1da2,

)]
n2=n1=n

, (B3)

where we have taken into account that according to (22) and (23)∫
dr12r12, j r12,q

∫
V (a1, u12, a2) f (a1 · n1) f (a2 · n2)da1da2 =

∑
lmk

SlSkUlmk (r12)T lmk (n1, u12, n2). (B4)

One notes that in (B3) the derivative ∂2/(∂n2,t∂n1,s) is acting only on the orientational distribution functions f (a1 · n1) and
f (a2 · n2). Taking into consideration also that

[
∂2

∂n2,t∂n1,s
f (a1 · n1) f (a2 · n2)

]
n2=n1=n

= a1,sa2,t
∂ f (a1 · n)

∂ (a1 · n)

∂ f (a2 · n)

∂ (a2 · n)
, (B5)

allows expressing the tensor (B3) of the nematic phase in the molecular-field approximation in the form:

MMF
iqts = − ρ2

2kBT

∫
r12, j r12,qV (a1, r12, a2)a1,sa2,t × ∂ f (a1 · n)

∂ (a1 · n)

∂ f (a2 · n)

∂ (a2 · n)
dr12da1da2. (B6)
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This exactly coincides with the general result of Poniewirski
and Stecki (B2) if the direct correlation function
C2(a1, r12, a2) is replaced by −V (a1, r12, a2)/kBT in the
molecular-field approximation.

APPENDIX C: CONTRIBUTIONS FROM VARIOUS
SPHERICAL INVARIANTS TO THE ELASTIC CONSTANTS

Let us separately consider the contributions to the elasticity
tensor of different terms in Eq. (36). For the invariant T 202 one
obtains[

∂2T 202

∂n2,t∂n1,s

(
n1,

r
r
, n2

)]
n2=n1=n

= 3δts + 3nt ns, (C1)

and one can readily see that the contribution of the second
term to the elasticity tensor Eq. (35) vanishes, while the first
term yields the contribution:

K202
i j pq = −3

4
ρ2S2εtviεtupnvnu

∫
dr r jrqU202(r)

= −πρ2S2 U202 δ jq(δip − ninp), (C2)

where the constant U202 as well as all similar ones can be
evaluated by integrating the potential as in Eq. (A18).

Substituting Eq. (C2) into Eqs. (18)–(20) one obtains that
this part of the potential equally contributes to all elastic
constants:

K202
11 = K202

22 = K202
33 = −2πρ2S2 U202. (C3)

In a similar way, the derivative of the invariant T 404 can be
expressed as[

∂2T 404

∂n2,t∂n1,s

(
n1,

r
r
, n2

)]
n2=n1=n

= 10δts + 45nt ns. (C4)

Equation (C4) is similar to Eq. (C1) and hence one may
directly conclude that the T 404 term in the interaction po-
tential also yields the same contribution to all three elastic
constants:

K404
11 = K404

22 = K404
33 = − 20

3 πρ2S2
4 U404. (C5)

One notes that the invariants T 220 and T 022 depend only on
one of the directors, n1 or n2, and hence they do not contribute
to the elasticity as their second derivatives in (35) vanish.

To calculate the contributions of the invariants T 222, T 422,
and T 224 we first calculate the contributions from the follow-
ing different terms: (n1 · n2)(n1 · u)(n2 · u), (n1 · n2)2(n2 ·
u)2, and (n1 · n2)2(n1 · u)2:∫ [

∂2(n1 · n2)(n1 · u)(n2 · u)

∂n2t∂n1s

]
n2=n1=n

u juqd2u

=
∫

[(n · u)2δts + (n · u)(nsut + nt us) + usut ]u juqd2u

= 4π

15
[2δst (δ jq + n jnq ) + 2δ jqnsnt + δt j (δsq + nsnq)

+ δtq(δs j + nsn j ) + δs jnt nq + δsqn jnt ], (C6)

∫ [
∂2(n1 · n2)2(n2 · u)2

∂n2t∂n1s

]
n2=n1=n

u juqd2u

=
∫

[2(n · u)2(δst + nsnt ) + 4nsut (n · u)]u juqd2u

= 8π

15
[(δst + nsnt )(δ jq + 2n jnq) + 2δ jqnsnt

+ 2δtqnsn j + 2δt jnsnq], (C7)∫ [
∂2(n1 · n2)2(n1 · u)2

∂n2t∂n1s

]
n2=n1=n

u juqd2u

=
∫

[2(n · u)2(δst + nsnt ) + 4nt us(n · u)]u juqd2u

= 8π

15
[(δst + nsnt )(δ jq + 2n jnq) + 2δ jqnsnt

+ 2δsqnt n j + 2δs jnt nq]. (C8)

Note that the integrals over u are evaluated using a helpful
identity:∫

u juquνuρd2u = 4π

15
(δ jqδνρ + δ jρδνq + δ jνδqρ ). (C9)

Accordingly,∫
du u juq

[
∂2T 222

∂n2,t∂n1,s

(
n1,

r
r
, n2

)]
n2=n1=n

= 2π

5
[−4δ jq(δst + nsnt ) + 6δst n jnq + 3δt j (δsq + nsnq)

+ 3δtq(δs j + nsn j ) + 3δs jnt nq + 3δsqn jnt ] (C10)

and

K222
i j pq = − 1

4
ρ2S2

∫
dr r4U222(r) εtviεsupnvnu

×
∫

du u juq

[
∂2T 222

∂n2,t∂n1,s

(
n1,

r
r
, n2

)]
n2=n1=n

= − π

10
ρ2S2 U222 [2(δip − ninp)(3n jnq − 2δ jq)

+ 3(εqupε jvi + ε jupεqvi )nvnu]. (C11)

Substituting Eq. (C11) into Eqs. (18)–(20) one finally ob-
tains the following contributions of the T 222 term to the elastic
constants:

K222
11 = −2π

5
ρ2S2 U222, (C12)

K222
22 = 4π

5
ρ2S2 U222, (C13)

K222
33 = −2π

5
ρ2S2 U222. (C14)

The second derivative of the function T 422 can be ex-
pressed as:∫

du u juq

[
∂2T 422

∂n2,t∂n1,s

(
n1,

r
r
, n2

)]
n2=n1=n

= 2π

3
[−δstδ jq − δt jδsq − δtqδs j + 5δst n jnq
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FIG. 10. Colourmaps of the contributions from different vector combinations to the dimensionless parameter u222 of the classical Gay-
Berne pair potential with μ = 2 and ν = 1.

+ 6δsqnt n j + 6δs jnt nq + 6δ jqnsnt

− δt jnsnq − δtqnsn j + 7nsnt n jnq] (C15)

and the corresponding contribution to the elastic tensor reads:

K422
i j pq = −1

4
ρ2SS4

∫
dr r4U422(r) εtviεsupnvnu

×
∫

du u juq

[
∂2T 422

∂n2,t∂n1,s

(
n1,

r
r
, n2

)]
n2=n1=n

= −π

6
ρ2SS4U422 εtviεsupnvnu

× [−δstδ jq − δt jδsq − δtqδs j + 5δst n jnq]

= π

6
ρ2SS4U422 [(δip − ninp)(δ jq − 5n jnq)

+ (ε jviεqup + εqviε jup)nvnu], (C16)

which contributes to the elastic constants (18)–(20) as:

K422
11 = πρ2SS4U422, (C17)

K422
22 = π

3
ρ2SS4U422, (C18)

K422
33 = −4π

3
ρ2SS4U422. (C19)

One can readily see that the contribution of the func-
tion T 224 is the same as that of T 422 and hence K224

11 =

K422
11 , K224

22 = K422
22 , and K224

33 = K422
33 . Combining the contri-

butions from all invariants one obtains the final expressions
for the elastic constants given by Eqs. (41)–(43).

APPENDIX D: CONTRIBUTIONS TO u222

Relatively large positive parameter u222 of the origi-
nal G-B potential with μ = 2 and ν = 1 negatively con-
tributes to the elastic constants and destabilizes the ne-
matic phase for κ exceeding 2–3. In order to understand
the role of different contributions to u222, we express it
as

u222 = 25

56π2

∫
da1da2

4ε(a1, u, a2)

2310ε0

× [461 + 455σ (a1, u, a2) + 434σ 2(a1, u, a2)

+ 378σ 3(a1, u, a2) + 252σ 4(a1, u, a2)]

×
[

9

2
(a1 · a2)(a2 · u12)(a1 · u12)

−3

2
(a1 · a2)2 − 3

2
(a1 · u12)2 − 3

2
(u12 · a2)2 + 1

]
,

(D1)

and calculate separately the contributions of the vector com-
binations in the latter square brackets. As seen in Fig. 10, all
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such contributions are negative and their absolute values are
much larger than the resulting parameter u222. Therefore, we
conclude that this and other more moderate parameters of the
classical G-B potential arise as a result of substantial compen-

sation of much larger terms. Note, for another example, that
the parameter u202 stays between –1 and 3, while the separate
contributions from (a1 · a2)2 and unity are larger by orders of
magnitude.
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