Weak Transient Signal Detection
Via a Polynomial Eigenvalue Decomposition

Stephan Weiss1, James Matthews2, and Ben Jackson3

1Dept. of EEE, University of Strathclyde, Glasgow, Scotland
2PA Consulting, Global Innovation and Technology Centre Cambridge, Melbourn SG8 6DP, UK
3UK Defence Science & Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, UK

Isaac Newton Institute, Cambridge, 27+28 July 2021

with thanks to: Connor Delaosa, Ian Proudler (Strathclyde), Peter Relph (PA), Zoe Duffey, Graeme Reid, Emily Goodwin, James Haward (Dstl)
Problem & Model

- A number of broadband stationary sources \(s_\ell[n], \ell = 1, \ldots, L \), illuminate an \(M \)-element sensor array;
- each transfer path is modelled by a vector of impulse responses \(\mathbf{a}_\ell[n] \in \mathbb{C}^M \);
- stationary additive, spatially and temporally uncorrelated noise \(\mathbf{v}[n] \in \mathbb{C}^M \);

\[
\mathbf{x}[n] = \sum_{\ell=1}^{L} \mathbf{a}_\ell[n] \ast s_\ell[n] + \mathbf{v}[n]
\]
Problem & Model

- A number of broadband stationary sources \(s_\ell[n], \ell = 1, \ldots, L \), illuminate an \(M \)-element sensor array;
- each transfer path is modelled by a vector of impulse responses \(a_\ell[n] \in \mathbb{C}^M \);
- stationary additive, spatially and temporally uncorrelated noise \(v[n] \in \mathbb{C}^M \);
- a broadband transient signal \(s_{L+1}[n] \) enters the scene at some point in time;
- aim: we want to detect the onset of this transient signal, which may be weak in power [10];
- assumption: \(M > L \).

\[
x[n] = \sum_{\ell=1}^{L+1} a_\ell[n] * s_\ell[n] + v[n]
\]
Model

Each source, \(s_\ell[n] \), contributes to the data vector \(x[n] = [x_1[n], \ldots, x_M[n]]^T \) via a steering vector \(a_\ell[n] = [A_{\ell,1}[n], \ldots A_{\ell,M}[n]]^T \);

compact with \(A[n] = [a_1[n] \ldots a_L[n]] \) and \(s[n] = [s_1[n], \ldots, s_L[n]]^T \):

\[
\]

space-time covariance: \(R[\tau] = \mathcal{E}\{x[n]x^H[n-\tau]\} \):

\[
R[\tau] = A[\tau] \ast \mathcal{E}\{s[n]s^H[n-\tau]\} \ast A^H[-\tau] + \mathcal{E}\{v[n]v^H[n-\tau]\} \\
= A[\tau] \ast \Gamma[\tau] \ast A^H[-\tau] + \sigma_v^2 I_M \delta[\tau] .
\]
Cross-Spectral Density Matrix

- Transfer function matrix $A(z) = \sum_n A[n]z^{-n}$ (short $A(z) \circ A[n]$) is a polynomial in $z \in \mathbb{C}$;
- Cross-spectral density $R(z) \circ R[\tau]$:
 \[R(z) = A(z)\Gamma(z)A^P(z) + \sigma_v^2I_M; \]
- Parahermitian property:
 \[R^P(z) = R^H(1/z^*) = R(z); \]
- When evaluated for a specific normalised angular frequency Ω_0: $R_0 = R(z)|_{z=e^{j\Omega_0}}$;
- R_0 is a constant matrix that describes a narrowband problem;
- R_0 is Hermitian \rightarrow eigenvalue decomposition (EVD) $R_0 = Q_0\Lambda_0Q_0^H$.
Narrowband EVD and Subspace Decomposition

- We assume an ordered EVD \(R_0 = Q_0 \Lambda_0 Q_0^H \), where \(\Lambda_0 = \text{diag}\{\lambda_1, \ldots, \lambda_M\} \) with \(\lambda_\ell \geq \lambda_{\ell+1}, \ell = 1, \ldots, (M - 1) \);

- partitioning enables a subspace decomposition:

\[
R_0 = \begin{bmatrix} Q_s & Q_n \end{bmatrix} \begin{bmatrix} \Lambda_s + \sigma_v^2 I_L & \sigma_v^2 I_{M-L} \\ \sigma_v^2 I_{M-L} & \sigma_v^2 I_{M-L} \end{bmatrix} \begin{bmatrix} Q_s^H \\ Q_n^H \end{bmatrix}
\]

- source enumeration: eigenvalues above noise floor = number of uncorrelated sources;

- \(y[n] = Q_n^H x[n] \in \mathbb{C}^{M-L} \) only contains noise;

- power in \(y[n] \): \(\mathcal{E}\{\|y[n]\|_2^2\} = (M - L) \sigma_v^2 \) because of orthonormality of \(Q \).
Broadband EVD

- Space-time covariance $R[\tau]$ or equivalently the CSD matrix $R(z)$ are only diagonalised by the EVD for a specific value τ or z;
- for an analytic $R(z)$ that is not derived from multiplexed data, there exists a parahermitian matrix EVD [12, 11]

$$R(z) = Q(z)\Lambda(z)Q^P(z) ; \tag{3}$$

- $\Lambda(z)$ is diagonal, parahermitian, analytic, and unique;
- eigenvectors in $Q(z)$ are paraunitary, analytic, and unique up to an arbitrary allpass function;
- paraunitarity $Q(z)Q^P(z) = Q^P(z)Q(z) = I$ implies losslessness;
- a number of algorithms can approximate (3) [6, 7, 8, 15, 13, 14].
Broadband Subspace Decomposition

- The parahermitian matrix EVD $R(\tilde{z}) = Q(z)\Lambda(\tilde{z})Q^P(z)$ enables a broadband subspace decomposition:

$$R(\tilde{z}) = \begin{bmatrix} Q_s(z) & Q_n(z) \end{bmatrix} \Lambda_s(\tilde{z}) \begin{bmatrix} Q_s(z) \\ Q_n(z) \end{bmatrix} + \sigma_v^2 I_L \sigma_v^2 I_{M-L}$$

- $Q[n] \circ Q(z)$ describes a lossless filter bank;
- data vector component in the noise-only subspace: $y[n] = Q_n^H[-n] * x[n]$;
- again, it can be shown that ideally $\mathbb{E}\{\|y[n]\|_2^2\} = (M - L)\sigma_v^2$.
‘Syndrome’ Idea

- We estimate $\mathbf{R}(z)$ over a window of data, with $L < M$ stationary sources present;
- compute parahermitian matrix EVD, perform source enumeration, and determine the eigenvectors spanning the noise-only subspace, $\mathbf{Q}_n(z)$;
- if an additional source $s_{L+1}[n]$ enters the scene, it will likely protrude into the noise-only subspace;
- we therefore monitor the syndrome vector

$$y[n] = \mathbf{Q}_n^H[-n] \ast \mathbf{x}[n]$$

for a change in power, or for any structured / correlated components.
Intuitive Example I

- $M = 6$ sensors, $L = 3$ stationary sources; weak transient source at $n = 5000$;
- monitoring a sensor output $x_1[n]$:

![Graphs of $x_1[n]$ and $\|x[n]\|^2$ over discrete time n.](image)
Intuitive Example II

- $M = 6$ sensors, $L = 3$ stationary sources; weak transient source at $n = 5000$;
- monitoring a syndrome element $y_1[n]$:

![Graph (a)](image1)

- $z_1[n]$ vs. discrete time n

![Graph (b)](image2)

- $\|z[n]\|^2$ vs. discrete time n
Proposed Approach

- We use the statistics and evaluated parahermitian matrix EVD of a previous time window, and utilise the broadband noise-only subspace spanned by the columns of $Q_n(z)$;

- being analytic, $Q_n(z)$ can typically be approximated well by low-order polynomials, and is relatively inexpensive to implement;

- because of the processing, elements of the syndrome vector $y[n]$ are spatially and temporally correlated;

- decimation by D can break temporal correlation and further reduces complexity;

- we can average over consecutive syndrome vectors to increase discrimination;

- $\xi^{(K)}_{n,D}$ is generalised χ^2 distributed if temporal correlation is suppressed [9, 1].
Results I — Statistics

- $M = 6$ sensors, $L = 2$ stationary sources, transfer functions determined by radio propagation model for dense urban environment (polynomial order ≈ 40);
- statistics of output for I_0: no transient versus I_1: transient present:

![Graph showing the comparison between I_0 and I_1.]
Results II — Sources and Propagation Environment

- Power of contributions for realistic channel scenario:

<table>
<thead>
<tr>
<th>signal</th>
<th>power</th>
</tr>
</thead>
<tbody>
<tr>
<td>source 1</td>
<td>0.0000 dB</td>
</tr>
<tr>
<td>source 2</td>
<td>-4.3494 dB</td>
</tr>
<tr>
<td>source 3</td>
<td>-13.2865 dB</td>
</tr>
<tr>
<td>noise</td>
<td>-16.2865 dB</td>
</tr>
</tbody>
</table>
Results III — Discrimination vs Decision Time

- Averaging increasingly separates the distributions for I_0 and I_1 — measured as discrimination D: derived from the ROC [5];

- Averaging also increases the time to compute $\xi_{n,D}(T)$ — decision time T (for a 20MHz channel);

- N here is the window over which the space-time covariance is estimated [2, 3, 4].
Summary

- We have proposed a broadband subspace approach to detect the presence of weak transient signals;
- this is based on second order statistics of sensor array data — the space-time covariance matrix — and a polynomial matrix EVD;
- this covariance matrix and its decomposition can be computed off-line;
- a subspace decomposition for the noise-only subspace determines a syndrome vector;
- in the absence of a transient signal, this syndrome only contains noise;
- a transient signal is likely to protrude into the noise-only subspace, and a change in energy can be detected even if the signal is weak;
- discrimination can be traded off against decision time;
- further work: (i) impact of time-varying channels, and (ii) forensic investigation of the transient source once detected.
References I

A method to integrate and classify normal distributions.

Impact of space-time covariance estimation errors on a parahermitian matrix EVD.

Sample space-time covariance matrix estimation.

Support estimation of a sample space-time covariance matrix.

The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve.

An EVD Algorithm for Para-Hermitian Polynomial Matrices.

Design of FIR paraunitary filter banks for subband coding using a polynomial eigenvalue decomposition.

Sequential matrix diagonalization algorithms for polynomial EVD of parahermitian matrices.
References II

Distribution of a sum of weighted chi-square variables.

Detection of weak transient signals using a broadband subspace approach.

Corrections to "on the existence and uniqueness of the eigenvalue decomposition of a parahermitian matrix".

On the existence and uniqueness of the eigenvalue decomposition of a parahermitian matrix.

Extraction of analytic eigenvectors from a parahermitian matrix.
In *SSPD*, 2020.

Eigenvalue decomposition of a parahermitian matrix: Extraction of analytic eigenvalues.

Iterative approximation of analytic eigenvalues of a parahermitian matrix EVD.