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Abstract

Despite its intrinsic complexity and multidisciplinary nature, considerable insight can be gained

into many aspects of the evaporation of sessile droplets by using relatively simple mathematical

models. In this chapter we describe some of these models and some of the insights they bring

to our understanding of this fascinating problem, focusing almost entirely on models that can

be solved analytically either fully or, in some cases, up to quadrature of known functions.

1 Background

The evaporation of sessile droplets is a fundamental scientific problem that is key to numerous phys-

ical and biological processes, including a wide range of industrial applications such as agrochemical

spraying of plants, cooling technologies, desalination, DNA synthesis, ink-jet printing, painting,

protein crystallography, and surface patterning, and, as a result, has been the subject of an explo-

sion of analytical, experimental, and numerical investigations in recent years [see, for example, the

review articles by Routh (2013), Larson (2014), Brutin & Starov (2018), and Giorgiutti-Dauphiné

& Pauchard (2018)]. However, as we shall describe in this chapter, despite its intrinsic complexity

and multidisciplinary nature, considerable insight can be gained into many aspects of the problem

by using relatively simple mathematical models.

2 The Diffusion-Limited Model

Probably the most widely applicable, and certainly the most widely studied, mathematical model

for the evaporation of a sessile droplet into a quiescent atmosphere is the so-called “diffusion-

limited model”1, which has been used with considerable success by many authors [see, for example,

Picknett & Bexon (1977), Deegan et al. (1997, 2000), Hu & Larson (2002, 2005), McHale et al.

(2005), Popov (2005), Poulard et al. (2005), Dunn et al. (2009a), Kulinich & Farzaneh (2009),

1Presumably as a consequence of the clear account of it given in the widely cited work by Popov (2005), the

diffusion-limited model is, rather confusingly, sometimes also referred to as “the Popov model”.

1

Mathematical models for the evaporation of sessile droplets



Figure 1: Geometry of the diffusion-limited evaporation of an axisymmetric droplet on a planar

substrate z = 0. The quasi-steady free surface of the droplet, z = h, is a spherical cap with radius

R, contact radius R, and contact angle θ. The arrows indicate the evaporative flux from the free

surface of the droplet, J , into the quiescent atmosphere.
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Eggers & Pismen (2010), Gelderblom et al. (2012), Nguyen & Nguyen (2012), Yu et al. (2012), Ait

Saada et al. (2013), Dash & Garimella (2013), Stauber et al. (2014, 2015a, 2015b), and Wray et al.

(2020)]. This model is based on the assumption that the quasi-steady evaporation from the droplet

is controlled by the diffusion of vapour in the quiescent atmosphere.

The geometry of the diffusion-limited evaporation of an axisymmetric droplet with free surface

z = h(r, t) on a planar substrate z = 0, where (r, φ, z) are the usual cylindrical polar coordinates

with origin on the substrate at the centre of the droplet, and t denotes time, is shown in Figure

1. Provided that the droplet is sufficiently small (specifically, provided that it is smaller than the

capillary length ` = (σ/ρg)1/2, where σ and ρ are the surface tension and density of the fluid,

and g is the magnitude of acceleration due to gravity), the quasi-steady free surface of the droplet

is a spherical cap with radius R = R(t), contact radius R = R(t), and contact angle θ = θ(t)

(0 ≤ θ ≤ π) given by

h = −R cos θ ±
√
R2 − r2 where R =

R

sin θ
, (2.1)

as shown in Figure 1. Note that the physically relevant (i.e. the non-negative) part of h given by

(2.1) is a single-valued function of r for 0 ≤ θ ≤ π/2 and for 0 ≤ r ≤ R when π/2 < θ ≤ π (in

which case only the “+” sign is relevant), but is a double-valued function of r for R < r ≤ R

when π/2 < θ ≤ π (in which case the “+” and the “−” signs correspond to the upper and lower

hemispheres, respectively). The volume of the droplet, V = V (t), is given by

V =
πR3

3

sin θ(2 + cos θ)

(1 + cos θ)2
. (2.2)

The initial values of R, θ and V at t = 0 are denoted by R0, θ0 and V0.

In its simplest form, the diffusion-limited model involves solving Laplace’s equation ∇2c = 0

for the concentration of vapour in the atmosphere, denoted by c = c(r, z, t), subject to boundary

conditions representing conditions of complete saturation at the free surface of the droplet, c = csat

on z = h(r, t), where csat is the constant saturation concentration of vapour, no flux of vapour

through the unwetted part of the substrate, ∂c/∂z = 0 on z = 0 for r > R, and the far-field

condition c→ c∞ as r2 + z2 →∞, where c∞ is the constant far-field concentration; note that the

latter is sometimes expressed in terms of the relative humidity, denoted by H (0 ≤ H ≤ 1), as

c∞ = Hcsat.

The solution for c was obtained by Lebedev (1965, Sections 8.10 and 8.12), who solved a

mathematically equivalent electrostatics problem. In particular, this solution shows that the local

evaporative mass flux from the free surface of the droplet, denoted by J = J(r, t) and given by

J = −D∇c · n evaluated on z = h, where n is the unit outward normal to the free surface and D

3

Mathematical models for the evaporation of sessile droplets



is the diffusion coefficient of vapour in the atmosphere, is given by

J =
D(csat − c∞)

R

×
[

1

2
sin θ +

√
2(coshα+ cos θ)3/2

∫ ∞
0

τ cosh θτ

coshπτ
tanh [τ(π − θ)]P−1/2+iτ (coshα) dτ

]
, (2.3)

where P−1/2+iτ (coshα) denotes the Legendre function of the first kind of degree −1/2 + iτ and

argument

coshα =
r2 cos θ ±R

√
R2 − r2 sin2 θ

R2 − r2
, (2.4)

where the “+” and “−” signs again correspond to the upper and lower hemispheres, respectively,

when π/2 < θ ≤ π. In particular, a local analysis in the vicinity of the contact line at r = R reveals

that

J ∝ (R− r)−λ as r → R− where λ =
π − 2θ

2π − 2θ
, (2.5)

showing that J is integrably singular at the contact line when 0 ≤ θ < π/2, finite and non-zero at

the contact line when θ = π/2, and zero at the contact line when π/2 < θ ≤ π.

At leading order in the limit of small contact angle, θ → 0+, the free surface of the droplet is

simply a parabola, namely h = θ(R2 − r2)/(2R), with volume V = πθR3/4, and the flux is given

by

J =
2D(csat − c∞)

π
√
R2 − r2

for r < R. (2.6)

In the special case θ = π/2, the free surface of the droplet is a hemisphere with radius R = R,

namely h =
√
R2 − r2, with volume V = 2πR3/3, and the flux is uniform and given by

J =
D(csat − c∞)

R
. (2.7)

In the special case θ = π, the free surface of the droplet is a sphere of radius R with zero contact

radius, R = 0, namely h = R±
√
R2 − r2, with volume V = 4πR3/3. In this case the expression

for the flux (2.3) requires careful interpretation, and so, as Stauber et al. (2015a) pointed out,

it is more convenient to use Smith & Barakat’s (1975) solution for a mathematically equivalent

electrostatics problem to obtain

J =
D(csat − c∞)

2R

[
1 +

(
2R
h

)3/2 ∫ ∞
0

q tanh q J0

(rq
h

)
exp(−q) dq

]
, (2.8)

where J0(·) denotes the Bessel function of the first kind of order zero. In particular, the flux from

the apex of the droplet (i.e. at r = 0 and z = 2R) is given by

J =
D(csat − c∞)

R
Catalan, (2.9)
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Figure 2: Scaled plots of four droplets given by (2.1) each with the same volume, V , but different

contact angles, namely (a) θ = π/18 = 10◦, (b) θ = π/2 = 90◦, (c) θ = 17π/18 = 170◦, and (d)

θ = π = 180◦, and different scaled contact radii, R/V 1/3, together with the corresponding scaled

evaporative flux from the free surface, JV 1/3/(D(csat − c∞)), given by (2.3) or, in the special case

θ = π, by (2.8), shown by the arrows. Note that the length of the arrows is proportional to the

magnitude of JV 1/3/(D(csat−c∞)), with the length of the reference arrow in part (d) corresponding

to JV 1/3/(D(csat − c∞)) = 1. Reprinted with permission from Stauber et al. (2015a, Figure 1).
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where Catalan ' 0.9160 is Catalan’s constant.

Figure 2, reprinted from Stauber et al. (2015a), shows scaled plots of four droplets given by

(2.1) each with the same volume, V , but different contact angles, namely θ = π/18 = 10◦ (typical

of 0 ≤ θ < π/2), θ = π/2 = 90◦, θ = 17π/18 = 170◦ (typical of π/2 < θ < π), and θ = π = 180◦,

and different scaled contact radii, R/V 1/3, together with the corresponding scaled evaporative flux

from the free surface, JV 1/3/(D(csat − c∞)), given by (2.3) or, in the special case θ = π, by (2.8),

shown by the arrows. In particular, Figure 2 clearly illustrates the qualitatively different behaviour

of the flux J in the cases 0 ≤ θ < π/2, θ = π/2 and π/2 < θ ≤ π. Specifically, when 0 ≤ θ < π/2,

J is largest (theoretically infinite) at the contact line and smallest at the apex of the droplet (i.e.

at r = 0), when θ = π/2 the flux is uniform and given by (2.7), and when π/2 < θ ≤ π the flux is

largest at the apex of the droplet and zero at the contact line.

3 The Evolution of the Droplet

Integrating the local evaporative flux J given by (2.3) over the free surface of the droplet, S, gives

the total evaporative flux from the droplet, and hence, by global conservation of mass, the rate of

change of the volume of the droplet, dV/dt, i.e.

dV

dt
= −1

ρ

∫
S
J dS = −πD(csat − c∞)

ρ

R g(θ)

(1 + cos θ)2
, (3.1)

where the function g = g(θ) is defined by

g(θ) = (1 + cos θ)2
{

tan
θ

2
+ 8

∫ ∞
0

cosh2 θτ

sinh 2πτ
tanh [τ(π − θ)] dτ

}
. (3.2)

For future reference, it is useful to note that g(0) = 16/π, g(π/2) = 2, and g ∼ (π − θ)3 log 2→ 0+

as θ → π−. Hence, recalling that V is given in terms of R and θ by (2.2), the evolution of the

droplet as it evaporates satisfies the first-order nonlinear ordinary differential equation

d

dt

(
R3 sin θ(2 + cos θ)

(1 + cos θ)2

)
= −3D(csat − c∞)

ρ

R g(θ)

(1 + cos θ)2
. (3.3)

In particular, solving (3.3) from the initial time t = 0 at which R = R0, θ = θ0 and V = V0 until

the final time at which R and/or θ and hence V become zero determines the evolution and lifetime

of the droplet. Of course, the single equation (3.3) is not on its own sufficient to determine how

both R and θ evolve, and so in order to do this it is also necessary to specify what mode the droplet

is evaporating in.2

2Of course, in reality, the mode of evaporation is determined by the details of the dominant physics near the

contact line, but resolving these details inevitably introduces considerable additional complications, and so is beyond

the scope of the relatively simple mathematical models described in this chapter.
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4 Modes of Evaporation

The two simplest and most widely studied modes are the so-called “extreme modes”, namely the

constant contact radius (CR) mode and the constant contact angle (CA) mode. In the CR mode

(typically observed on rough surfaces) the contact line is pinned at its initial position, i.e. R ≡ R0,

and the contact angle decreases to zero as the droplet evaporates, whereas in the CA mode (typically

observed on smooth surfaces) the contact angle is equal to its initial value, i.e. θ ≡ θ0, and the

contact radius decreases to zero as the droplet evaporates [see, for example, Picknett & Bexon

(1977)].

While these extreme modes do occur, in practice, droplets often evolve in a so-called “mixed

mode” consisting of a combination of these behaviours. Various mixed modes of varying degrees

of complexity have been observed, but two commonly occurring mixed modes with a “stick–slip”

behaviour that naturally lend themselves to theoretical analysis are the stick–slide (SS) mode and

the stick–jump (SJ) mode.

In the SS mode the droplet is initially in a CR phase with a pinned contact line, R ≡ R0, but

when the contact angle reaches a critical (receding) value, denoted by θ = θ∗, the contact line

de-pins, and thereafter the droplet is in a CA phase with a constant contact angle, θ ≡ θ∗, until it

has completely evaporated. The time at which the contact line de-pins is denoted by t = t∗. Note

that the SS mode incorporates the two extreme modes as special cases. Specifically, when θ∗ = 0

the contact line never de-pins and the SS mode reduces to the CR mode, while when θ∗ ≥ θ0 the

contact line immediately de-pins and the SS mode reduces to the CA mode. [See, for example,

Nguyen & Nguyen (2012), Dash & Garimella (2013), and Stauber et al. (2014, 2015b).]

In the SJ mode the droplet is again initially in a CR phrase with a pinned contact line, but when

the contact angle reaches a critical (minimum) value, denoted by θ = θmin, the contact line de-pins

and jumps instantaneously inwards to a new position with a smaller contact radius while the contact

angle jumps instantaneously up to a critical (maximum) value, denoted by θ = θmax (≥ θmin). The

pattern then repeats itself, with a (theoretically infinite) sequence of CR phases separated by

instantaneous jump phases. The values of R, θ and V in the nth CR phrase (n = 1, 2, 3, . . .),

which lasts from t = tn−1 to t = tn, where t = tn is the time at which the nth jump phase occurs,

are denoted by Rn, θn = θn(t) and Vn = Vn(t), respectively, with R1 = R0 and θ1 = θ0, where

θmin ≤ θ0 ≤ θmax. [See, for example, Askounis et al. (2011), Orejon et al. (2011), Deitrich et al.

(2015), and Stauber (2015).]
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5 Evolution and Lifetime of a Thin Droplet

The special case of a thin droplet with small contact angle θ � 1 is particularly amenable to further

theoretical analysis, and so it is insightful to describe the evolution and lifetime of a droplet in this

case before discussing them in the general case in Section 6.

At leading order in the limit of small contact angle, θ → 0+, h and V take the simple forms

given earlier, namely

h =
θ(R2 − r2)

2R
and V =

πθR3

4
, (5.1)

and the problem for the concentration of vapour in the atmosphere becomes simply that of solving

Laplace’s equation ∇2c = 0 in z > 0 subject to c = csat on z = 0 for r < R with the other boundary

condition and the far-field condition unchanged, and has a relatively simple exact solution which

can be expressed in several equivalent forms, including

c = c∞ +
2(csat − c∞)

π

∫ ∞
0

J0(ξr) sin(ξR) exp(−ξz)

ξ
dξ (5.2)

and

c = c∞ +
2(csat − c∞)

π
sin−1

2R

[(r −R)2 + z2]1/2 + [(r +R)2 + z2]1/2
. (5.3)

Both (5.2) and (5.3) yield the familiar expression for the local evaporative flux J = −D∂c/∂z

evaluated on z = 0 for r < R given in (2.6). Hence the total evaporative flux from the free surface

of the droplet is

2π

∫ R

0
J r dr = 4RD(csat − c∞), (5.4)

and so (3.1) becomes
d(θR3)

dt
= −16RD(csat − c∞)

πρ
. (5.5)

[See, for example, Hu & Larson (2002) and Dunn et al. (2008).]

Setting R ≡ R0 in (5.5) and solving for θ shows that a thin droplet evaporating in the CR mode

evolves according to

R ≡ R0, θ = θ0 −
16D(csat − c∞)

πρR2
0

t, (5.6)

and so has lifetime

tCR =
πρθ0R

2
0

16D(csat − c∞)
. (5.7)

On the other hand, setting θ ≡ θ0 in (5.5) and solving for R shows that the same droplet evaporating

in the CA mode evolves according to

R = R0

[
1− 32D(csat − c∞)

3πρθ0R2
0

t

]1/2
, θ ≡ θ0, (5.8)
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and so has lifetime

tCA =
3πρθ0R

2
0

32D(csat − c∞)
. (5.9)

In particular, note that tCA = 3tCR/2, i.e. the lifetime of a thin droplet evaporating in the CA

mode is 50% longer than that of the same droplet evaporating in the CR mode. Since the square of

the radius (and hence the square of the diameter) is linear in t, equation (5.8) is sometimes referred

to in the literature as “the d2 law”.

A thin droplet evaporating in the SS mode evolves according to (5.6) in the CR phase for

0 ≤ t ≤ t∗, where

t∗ =
πρ(θ0 − θ∗)R2

0

16D(csat − c∞)
, (5.10)

and according to

R = R0

[
1− 32D(csat − c∞)

3πρθ∗R2
0

(t− t∗)
]1/2

, θ ≡ θ∗ (5.11)

in the CA phase for t∗ ≤ t ≤ tSS, and so has lifetime

tSS =
πρ(2θ0 + θ∗)R2

0

32D(csat − c∞)
. (5.12)

In particular, note that tSS = (2θ0+θ∗)tCR/(2θ0) which satisfies tCR ≤ tSS ≤ tCA, i.e. the lifetime of

a thin droplet evaporating in the SS mode always lies between those of the same droplet evaporating

in the CR and CA modes. [See Stauber et al. (2014, 2015b).]

A thin droplet evaporating in the SJ mode evolves according to

R ≡ Rn, θ = θmax −
16D(csat − c∞)

πρR2
n

(t− tn−1) (5.13)

in the nth CR phrase for tn−1 < t < tn (n = 1, 2, 3, . . .), and R jumps instantaneously down from

Rn to Rn+1 (< Rn) and θ jumps instantaneously up from θmin to θmax in the nth jump phase at

t = tn. The volume of the droplet is conserved during the jump phases, i.e. Vn = Vn+1, so that

Rn+1 =

(
θmin

θmax

)1/3

Rn, (5.14)

and hence

Rn+1 =

(
θmin

θmax

)n/3
R0 (5.15)

and

tn =
πρ(θmax − θmin)R2

0

16D(csat − c∞)

[
1−

(
θmin
θmax

)2n/3]
[
1−

(
θmin
θmax

)2/3] . (5.16)

Taking the limit n→∞ in (5.16) yields the lifetime of the droplet, namely

tSJ =
πρ(θmax − θmin)R2

0

16D(csat − c∞)

θ
2/3
max

θ
2/3
max − θ2/3min

. (5.17)
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[See Stauber (2015).]

Note that, for all of the modes discussed above, the lifetime of the thin droplet is of the order of

ρθ0R
2
0

D(csat − c∞)
. (5.18)

6 Evolution and Lifetime of a General Droplet

Having discussed the behaviour of a thin droplet with small contact angle θ � 1 in Section 5, we

now describe the evolution and lifetime of a general droplet with any contact angle in the interval

0 ≤ θ ≤ π. The discussion in the section closely follows that of Stauber et al. (2014, 2015b).

Setting R ≡ R0 in (3.3) yields

dθ

dt
= −D(csat − c∞)

ρR2
0

g(θ), (6.1)

and hence a general droplet evaporating in the CR mode evolves according to the implicit expression

R ≡ R0, t =
ρR2

0

D(csat − c∞)

∫ θ0

θ

dθ̃

g(θ̃)
, (6.2)

and so has lifetime

tCR =
ρR2

0

D(csat − c∞)

∫ θ0

0

dθ

g(θ)
. (6.3)

On the other hand, setting θ ≡ θ0 in (3.3) yields

d(R2)

dt
= −2D(csat − c∞)

ρ

g(θ0)

sin θ0(2 + cos θ0)
, (6.4)

and hence the same droplet evaporating in the CA mode evolves according to the explicit expression

R = R0

[
1− 2D(csat − c∞)

ρR2
0

g(θ0)

sin θ0(2 + cos θ0)
t

]1/2
, θ ≡ θ0, (6.5)

and so has lifetime

tCA =
ρR2

0

2D(csat − c∞)

sin θ0(2 + cos θ0)

g(θ0)
. (6.6)

In particular, the volume of the droplet evolves according to

V =
π

3

sin θ0(2 + cos θ0)

(1 + cos θ0)2

[
R2

0 −
2D(csat − c∞)

ρ

g(θ0)

sin θ0(2 + cos θ0)
t

]3/2
. (6.7)

A general droplet evaporating in the SS mode evolves according to (6.2) in the CR phase for

0 ≤ t ≤ t∗, where

t∗ =
ρR2

0

D(csat − c∞)

∫ θ0

θ∗

dθ

g(θ)
, (6.8)

and according to

R = R0

[
1− 2D(csat − c∞)

ρR2
0

g(θ∗)

sin θ∗(2 + cos θ∗)
(t− t∗)

]1/2
, θ ≡ θ∗, (6.9)
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in the CA phase for t∗ ≤ t ≤ tSS, and so has lifetime

tSS =
ρR2

0

2D(csat − c∞)

[∫ θ0

θ∗

2 dθ

g(θ)
+

sin θ∗(2 + cos θ∗)

g(θ∗)

]
. (6.10)

Note that, as expected, taking the limit θ → 0+ and recalling that g(0) = 16/π, the expressions

given above reduce to the corresponding expressions for a thin droplet given in Section 5. The

behaviour in the limit θ0 → π−, corresponding to spherical and initially nearly spherical droplets,

is discussed in Section 7.

For clarity of presentation in what follows, it is convenient to scale time with the timescale

introduced by Stauber et al. (2014, 2015b), namely

T =
ρ

2D(csat − c∞)

(
3V0
2π

)2/3

=
ρR2

0

2D(csat − c∞)

(
sin θ0(2 + cos θ0)

2(1 + cos θ0)2

)2/3

, (6.11)

and hereafter all times will be scaled with T unless explicitly stated otherwise.

Figures 3 and 4, reprinted from Stauber et al. (2014), show the lifetimes of droplets evaporating

in the CR, CA and SS modes, tCR, tCA and tSS, given by (6.3), (6.6) and (6.10), respectively,

plotted as functions of the initial contact angle θ0 for a range of values of θ∗. Note that tSS = tCA

for 0 < θ0 ≤ θ∗. Figures 3 and 4 reveal a number of interesting and somewhat unexpected features

of the dependence of the lifetimes of the droplets on θ0 and θ∗.

In particular, Figures 3 and 4 illustrate the sometimes overlooked result first obtained, but not

explicitly commented on, by Picknett & Bexon (1977) in their Figure 6, that, while it is true that

for most values of θ0 (specifically for 0 < θ0 < θcrit, where θcrit ' 2.5830 ' 148◦) the lifetime of a

droplet evaporating in the CR mode is less than that of the same droplet evaporating in the CA

mode (i.e. tCR < tCA), for droplets with sufficiently large values of θ0 (specifically for θcrit < θ0 < π)

the opposite is true (i.e. tCR > tCA). The lifetimes of identical droplets evaporating in the CR and

the CA modes coincide at θ0 = θcrit (for which tCR = tCA ' 0.9354) and at θ0 = π (for which

tCR = tCA = (41/3 log 2)−1 ' 0.9088). The longest possible lifetime of a droplet evaporating in the

CR mode occurs at θ0 = θcrit, while the longest possible lifetime of a droplet evaporating in the

CA mode is tCA = 1 and occurs at θ0 = π/2.

Since the SS mode is a simple combination of the extreme modes, it would be natural to assume

that the lifetime of a droplet evaporating in this mode would always lie between those of the same

droplet evaporating in the extreme modes (i.e. that either tCR < tSS < tCA or tCA < tSS < tCR) for

all values of θ0 in the range θ∗ < θ0 < π. However, as Figures 3 and 4 show, while this is always

true for 0 < θ0 < π/2, it is not, in general, true for π/2 < θ0 < π. Specifically, if we denote the

unique value of θ0 in the range π/2 ≤ θ0 ≤ θcrit at which tSS = tCA (shown with the dots in Figure

3(b)) by θ̂0 = θ̂0(θ
∗), then tSS > max(tCR, tCA) for θ̂0 < θ0 < π when 0 < θ∗ < π/2 (as shown

11

Mathematical models for the evaporation of sessile droplets



Figure 3: Lifetimes of droplets evaporating in the CR, CA and SS modes, tCR (thick solid curve),

tCA (thick dashed curve) and tSS (thin solid curves) plotted as functions of the initial contact angle

θ0 for a range of values of θ∗ in the interval 0 < θ∗ ≤ π/2. Part (b) shows the behaviour in the

range π/2 ≤ θ0 ≤ π in greater detail, and the dots correspond to the unique value of θ0 = θ̂0(θ
∗) in

the range π/2 ≤ θ0 ≤ π at which tSS = tCA. Reprinted with permission from Stauber et al. (2014,

Figure 3).
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Figure 4: As Figure 3(a), except for a range of values of θ∗ in the interval π/2 ≤ θ∗ < π. Reprinted

with permission from Stauber et al. (2014, Figure 4).

in Figure 3(b)) and for θ∗ < θ0 < π when π/2 < θ∗ < π (as shown in Figure 4). The longest

possible lifetime of a droplet evaporating in the SS mode occurs at θ0 = θ̂0 when 0 ≤ θ∗ ≤ π/2

and at θ0 = π/2 when π/2 ≤ θ∗ ≤ π. In particular, Figure 3 and 4 show that the longest possible

lifetime of a droplet evaporating in either the CR, the CA or the SS mode for any values of θ0 and

θ∗ is tCA(π/2) = 1, corresponding to a hemispherical droplet evaporating in the CA mode. Note

that the results of Stauber et al. (2014) presented in Figure 3 and 4 treat θ0 and θ∗ as independent

parameters. Subsequently Stauber et al. (2015b) examined the consequences of a physically credible

relationship between them based on the unbalanced Young force.

Figure 5, reprinted from Stauber et al. (2015a), shows illustrative examples of the evolutions

of (a) the contact angle θ, (b) the scaled contact radius R/V
1/3
0 , and (c) the scaled volume V/V0

plotted as functions of scaled time t/T for droplets with four different initial contact angles, namely

θ0 = π/18 = 10◦, θ0 = π/2 = 90◦, θ0 = θcrit ' 2.5830 ' 148◦, and θ0 = 17π/18 = 170◦, in the

CR and CA modes given by (6.2) and (6.5), respectively. In particular, Figure 5 shows that while

(as previously mentioned) the lifetimes of droplets evaporating in the CR and CA modes coincide

when θ0 = θcrit, the evolutions of θ, R and V for the two modes are very different.
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Figure 5: Evolutions of (a) the contact angle θ, (b) the scaled contact radius R/V
1/3
0 , and (c)

the scaled volume V/V0 plotted as functions of scaled time t/T for droplets with four different

initial contact angles θ0 = π/18 = 10◦, θ0 = π/2 = 90◦, θ0 = θcrit ' 2.5830 ' 148◦, and

θ0 = 17π/18 = 170◦, in the CR and CA modes shown with solid and dashed lines, respectively.

Reprinted with permission from Stauber et al. (2015a, Figure 2).
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7 Spherical and Initially Nearly Spherical Droplets

In the special case of a spherical droplet evaporating in either the CR or the CA mode both the

contact radius R ≡ R0 = 0 and the contact angle θ ≡ θ0 = π remain constant throughout the

evolution of the droplet (i.e. the extreme modes coincide).

As Stauber et al. (2015a) described, either integrating the flux given by (2.8) over the free

surface of the droplet or taking the limit θ → π− in (3.3) and recalling that g(θ) ∼ (π − θ)3 log 2,

shows that a spherical droplet evaporating in either of the extreme modes evolves according to

dR
dt

= −D(csat − c∞) log 2

ρR
, (7.1)

which has the exact solution

R = R0

[
1− 2D(csat − c∞) log 2

ρR2
0

t

]1/2
, (7.2)

where R0 = R(0) is the initial radius of the sphere, and so the droplet has unscaled lifetime

tπ =
ρR2

0

2D(csat − c∞) log 2
=

ρ

2D(csat − c∞)

(
3V0
2π

)2/3 1

41/3 log 2
, (7.3)

and its volume evolves according to

V =
4πR3

0

3

[
1− 2D(csat − c∞) log 2

ρR2
0

t

]3/2
. (7.4)

In particular, as previously mentioned, from (6.11) and (7.3), the (scaled) lifetime of the droplet is

tπ = (41/3 log 2)−1 ' 0.9088.

Taking the limit θ0 → π− in (6.1) reveals that the contact angle of an initially nearly spherical

droplet evaporating in the CR mode evolves according to

θ = π −
(

1− t

tπ

)−1/2
(π − θ0) +O(π − θ0)3 (7.5)

as θ0 → π−, which remains close to θ = π until t is near to tπ (i.e. the droplet remains nearly

spherical until close to the end of its evaporation), in agreement with the corresponding evolution

in the case θ0 = 17π/18 = 170◦ shown in Figure 5(a). Similarly, taking the limit θ0 → π− in (6.4)

reveals that the contact radius of an initially nearly spherical droplet evaporating in the CA mode

evolves according to

R =

(
3V0
4π

)1/3(
1− t

tπ

)1/2

(π − θ0) +O(π − θ0)3 (7.6)

as θ0 → π−, which remains close to R = 0 for all t (i.e. the droplet remains nearly spherical

throughout its entire evaporation), in agreement with the corresponding evolution in the case
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θ0 = 17π/18 = 170◦ shown in Figure 5(b). For both of the extreme modes, the volume of the

droplet evolves according to

V = V0

(
1− t

tπ

)3/2

+O(π − θ0)2 (7.7)

as θ0 → π−. In other words, as Stauber et al. (2015a) pointed out, the extreme modes become

indistinguishable on strongly hydrophobic substrates (i.e. on substrates with θ0 ' π).

8 Evaporative Cooling

Evaporation of vapour from the free surface of the droplet requires latent heat and so causes

spatially non-uniform evaporative cooling of the droplet and its surroundings.

In the simplest version of the diffusion-limited model described in Section 2, the evaporative

problem for the concentration of vapour in the atmosphere is decoupled from the thermal problem

for the temperatures of the droplet, the substrate and the atmosphere, denoted by T = T (r, z, t),

T s = T s(r, z, t) and T a = T a(r, z, t), respectively. Hence, once the local evaporative flux has been

determined, the evaporative cooling of the droplet and its surroundings can be determined by

solving the appropriate equations for T , T s and T a subject to the local energy balance

LJ = (ka∇T a − k∇T ) · n on z = h, (8.1)

where L is the latent heat of vaporisation, k, ks and ka are the thermal conductivities of the droplet,

the substrate and the atmosphere, and n is again the unit outward normal to the free surface of

the droplet, together with conditions representing continuity of temperature and heat flux at the

boundaries between the three regions. This is, in general, difficult to do without resorting to

numerical methods, but analytical progress can be made in the special case of a thin droplet on a

thin substrate.

For a thin droplet with small contact angle θ � 1 on a thin substrate of thickness hs � R0,

then, provided that ka � k/θ0 and ka � R0k
s/hs (i.e. provided that, as is likely to be the case in

practice, the atmosphere is a relatively poor conductor), the problem for T a decouples from that

for T and T s. Assuming the transport of heat in the droplet and the atmosphere is due solely to

thermal conduction, T and T s satisfy ∂2T/∂z2 = 0 in 0 < z < h and ∂2T s/∂z2 = 0 in −hs < z < 0

for r < R subject to LJ = −k∂T/∂z on z = h, T = T s and −k∂T/∂z = −ks∂T s/∂z on z = 0,

and T s = T0 on z = −hs for r < R, where T0 is the prescribed constant temperature on the lower
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surface of the substrate, with solution

T = T0 −
2DL(csat − c∞)

π
√
R2 − r2

(
z

k
+
hs

ks

)
for 0 < z < h, (8.2)

T s = T0 −
2DL(csat − c∞)

πks
√
R2 − r2

(z + hs) for − hs < z < 0, (8.3)

for r < R. In particular, the solutions (8.2) and (8.3) quantify the evaporative cooling of the droplet

and the substrate, respectively. [See, for example, Dunn et al. (2008).]

A more sophisticated version of the diffusion-limited model in which the saturation concentration

csat is taken to be a known function of temperature T , i.e. csat = csat(T ), which couples the

evaporative and thermal problems, was formulated and analysed by Dunn et al. (2008, 2009a) and

Sefiane et al. (2009) (the latter of whom also included the dependence of the diffusion coefficient D

on the pressure of the atmosphere). In particular, these authors showed that the thermal properties

of the substrate can have a significant effect on the rate of evaporation. Subsequently Ait Saada

et al. (2013) and Schofield et al. (2021) developed this approach to calculate the effects of the

thermal properties of the system on the lifetime of a droplet evaporating in the extreme modes. In

particular, Figure 6, reprinted from Schofield et al. (2021), shows the lifetimes of droplets of water

evaporating in the CR and the CA modes on aluminium, HDPE and PTFE substrates plotted

as functions of the scaled initial contact angle θ0/π, and illustrates that the thermal conductivity

of the substrate can have a strong influence on the lifetime of the droplet, especially for droplets

with large initial contact angles. For comparison, Figure 6 also shows the corresponding lifetimes

according to the simplest (decoupled) version of the diffusion-limited model previously shown in

Figures 3 and 4.

The extreme situation of a substrate with high thermal resistance and/or when the saturation

concentration depends strongly on temperature was analysed by Dunn et al. (2009b) and Schofield

et al. (2018). In particular, these authors showed that for a thin droplet on a thin substrate the

lifetime of the droplet is of the order of

ρθ0R0Lhsc′sat(T∞)

ks(csat(T∞)− c∞)
, (8.4)

where c′sat(T ) = dcsat/dT is the derivative of csat with respect to T , which can be much longer than

the usual timescale given in equation (5.18), confirming that the lifetime of an evaporating droplet

can be significantly extended by strong thermal effects.
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Figure 6: Lifetimes of droplets of water with initial contact radius R0 = 1 mm evaporating in (a)

the CR mode, tCR, and (b) the CA mode, tCA, into air with T∞ = 295 K on aluminium (ks = 237

W m−1 K−1, circles), HDPE (ks = 0.50 W m−1 K−1, stars) and PTFE (ks = 0.25 W m−1 K−1,

squares) substrates of thickness hs = 1 mm plotted as functions of the scaled initial contact angle

θ0/π. The solid lines show the corresponding lifetimes according to the simplest (decoupled) version

of the diffusion-limited model previously shown in Figures 3 and 4. Reprinted with permission from

Schofield et al. (2021, Figure 6).
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9 Extensions and Generalisations

Although not discussed here, the theoretical predictions of the models described in this chapter

(and similar models based on the same physical assumptions) have been found to be in remarkably

good agreement with the results of physical experiments in a wide range of situations. However,

like any mathematical model, the relatively simple models described in this chapter have their

limitations and shortcomings and there are many ways in which they can be extended, developed

and improved. Here we briefly mention just three such extensions amongst many others.

Firstly, inspired by the pioneering work of Deegan et al. (1997, 2000) in recent years there has

been considerable interest in the manner in which solid particles initially suspended within a droplet

are deposited onto the substrate as it evaporates and, in particular, in the characteristic “coffee-

stain” or “ring-stain” which typically forms near to the location of the contact line of a pinned

droplet [see, for example, the review articles by Larson (2014) and Mampallil & Eral (2018)].

Several authors have developed mathematical models for the advection of the particles towards

the contact line as a droplet evaporates, including Boulogne et al. (2017), who obtained analytical

predictions for the accumulation of particles at the contact line of a thin droplet with the spatially

non-uniform evaporative flux (2.6) and a spatially uniform evaporative flux (the latter being an

appropriate model for the evaporation of a droplet on a wet hydrogel rather than a dry substrate).

Secondly, as described in Section 8, even the simplest version of the diffusion-limited model

shows that the evaporation causes spatially non-uniform evaporative cooling, and if the surface

tension of the droplet depends on temperature, the resulting spatially non-uniform temperature

distribution within the droplet can lead to a thermocapillary-driven flow within it. Many authors

have used a range of mathematical models of varying degrees of sophistication to analyse aspects

of this phenomenon, including Hu & Larson (2005) and Ristenpart et al. (2007).

Thirdly, while the vast majority of theoretical and experimental work on droplet evaporation

has, like the present chapter, focused on single droplets, in practice, most droplets do not occur in

isolation, and so the interactions between multiple evaporating droplets are of considerable scientific

and practical interest. An interesting recent theoretical development is the work by Wray et al.

(2020), who developed an asymptotic model for the evaporation of an arbitrary arrangement of thin

droplets. This model captures the “shielding” effect that each droplet has on the evaporation of its

neighbours, and was used by the authors to obtain explicit expressions for the evolution and the

lifetimes of a pair of identical droplets evaporating in the CR, CA and SS modes which generalise

those given in Section 6 for an isolated droplet and quantify how the effect of shielding lengthens

the lifetime of the droplets. For example, the lifetime of a pair of identical droplets with contact
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radius R0 whose centres are a distance B (> 2R0) apart evaporating in the CR mode is

tCR =
πρθ0R

2
0

16D(csat − c∞)

(
1 +

2

π
arcsin

R0

B

)
, (9.1)

which shows that the effect of shielding is to increase the lifetime of the droplets by as much as 33%

(achieved in the limit when the droplets are touching, i.e. in the limit B → 2R+
0 ) relative to that of

an isolated droplet given by (5.7) (achieved in the limit when the droplets are far apart, i.e. in the

limit B → ∞). Wray et al. (2020) also obtained qualitatively similar results for pairs of identical

droplets evaporating in the CA and the SS modes. A rather different theoretical approach was

taken by Schofield et al. (2020), who used a conformal-mapping technique to obtain closed-form

solutions for the evolution and lifetime of a pair of identical two-dimensional “droplets” which also

quantify how the effect of shielding lengthens the lifetime of these droplets.
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