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Abstract

The purpose of this paper is to give the delay control based on discrete-time state
observations to stabilize highly nonlinear hybrid stochastic functional differential
equations (SFDEs). It is considered that time lag generated by the controller in
each discrete observation should be different. The new controlled hybrid SFDEs are
affected the variable delay caused by the controller, the distributed delay and the
superlinear coefficients of the systems itself, whichmakes the problem handlingmore
complicated. Then, a series of criteria for the exponential stability of the controlled
SFDEs are obtained, and an upper bound for the discrete observation interval and
variable delay is given. Finally, numerical example illustrate the proposed theoretical
results.
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1 INTRODUCTION

Functional differential equations are always used to describe systems whose states depend not only on the present but also on the
past.1,2,3 Considering the influence of random factors and the sudden changes of system structure and parameters, SFDEs with
Markovian switching (also known as hybrid SFDEs), including stochastic delay differential equations (SDDEs) with Markovian
switching, have been widely used to deal with practical problems. Stability and stabilization are the fundamental and important
contents in SFDEs.4,5,6,7,8,9,10
However, most of the existing stability results require that the coefficients of the functional system must satisfy the linear

growth condition.11,12 In fact, in the real world, especially in ecosystems and financial systems, many SFDEs are highly nonlinear
(that is, the coefficients of these systems do not satisfy the linear growth condition).13,14,15 Hu et al.16 discussed some asymptotic
properties of the hybrid SDDEs whose coefficients are highly nonlinear. Feng et al.17 further extended the above results to more
general hybrid SFDEs and improved the stability conditions for a special class of nonautonomous functional systems. Fei et
al.18 studied the delay dependent stability theories of hybrid SDDEs with highly nonlinear to reduce the conservatism. Along
this line, the theory and application of the stability of highly nonlinear hybrid SFDEs have also received a lot of attentions; see
e.g., related works19,20,21,22 and references therein.
On the other hand, for unstable hybrid stochastic differential equations (SDEs), Mao23 designed a class of feedback con-

trollers u(t, x([t∕�]�), r(t)) only based on discrete state observations x([t∕�]�), which makes the controlled systems mean square
exponentially stable, where the state x(t) ∈ Rn and � is the time interval between two observations, [t∕�] is is the integer part
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of t∕�, and the mode r(t) ∈ � = {1, 2, ..., N} is a finite Markov chain. Obviously, such controllers u(t, x([t∕�]�), r(t)) can not
only save cost, but also be implemented more easily. Inspired by this, some scholars have extended this controller based on
discrete observations to more general systems, and some have applied it to stochastic stabilization by intermittent control and
have achieved many results.24,25 Recently, based on discrete observation data x([t∕�]�), Fei and his collaborators26,27 designed
feedback controllers for highly nonlinear hybrid systems, and studied the asymptotic and exponential stability of the controlled
systems.
Furthermore, considering that there may be a time lag �0 in the signal transmission of feedback control, Qiu et al.28 designed

a more realistic controller u(t, x([t∕�]� − �0), r(t)) to stabilize the unstable hybrid SDEs. In fact, delay control have been widely
used in stochastic systems.29,30,31,32,33However, to the authors’ best knowledge, there is little known on how to stabilize hybrid
SFDEs with highly nonlinear by a delay feedback control based on discrete-time state observations. The problem becomes even
harder when the time lag is a variable of time instead of a positive constant �0 as in the papers mentioned above. Comparing
with the existing papers, we highlight the main works of this article are as follows.

• We consider that the control function u based on the discrete state values x(k�)may produce different time lags �k at times
k�, where k = [t∕�]with k = 0, 1, 2, ... In this case, the controller u(t, x(k�), r(t))works on interval [k�+�k, (k+1)�+�k+1).
That is, affected by the variable delay �k, the working time of the controller in each discrete observation is variable rather
than a constant �. The work pattern of the controller is shown in Figure 1.1.
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Figure 1.1: Sketch of the work pattern of u(t, x(k�), r(t)).

• Most of the existing papers use the comparison method to obtain the results of delay control based on discrete-time
state observations. Specifically, when the continuous controller u(t, x(t), r(t)) can stabilize the unstable SDEs, compare
u(t, x([t∕�]� − �0), r(t)) with u(t, x(t), r(t)) and obtain an upper bound of � + �0 by using the property of flow. However,
this comparison method not only requires that the equation is globally Lipschitz continuous, but also requires that the time
lag must be a constant �0. Inspired by the work of Li et al.,31 we will use Lyapunov functional method to find a better
upper bound of � + �k for highly nonlinear hybrid SFDEs.

• The controlled highly nonlinear SFDEs are affected by both the distributed delay of the system itself and the variable
delay �k caused by discrete observation signals. We used some new techniques to deal with the effects of different types
and properties of time lags.

2 NOTATIONS AND PROBLEM STATEMENT

Notations.Let (Ω,F, {Ft}t≥0,ℙ) be a complete probability space with a natural filtration {Ft}t≥0 satisfying the usual conditions.
If G is a subset of Ω, denote by IG its indicator function; that is, IG(!) = 1 if ! ∈ G and 0 otherwise. Let R+ = [0,∞). If
A is a vector or matrix, its transpose is denoted by AT . For x ∈ Rn, |x| denotes its Euclidean norm. For A ∈ Rn×d , we let
|A| =

√

trace(ATA) be its Frobenius norm.A ≤ 0 (A < 0) means that the matrixA is non-positive definite (negative definite). If
A is a symmetric real-valued matrix (A = AT ), denote by �max(A) and �min(A) its largest and smallest eigenvalue, respectively.
If both a, b are real numbers, then a ∧ b = min{a, b} and a ∨ b = max{a, b}. For ℎ > 0, denote by C([−ℎ, 0];Rn) the family of
continuous functions  from [−ℎ, 0] → Rn with the norm ‖ ‖ = sup−ℎ≤s≤0 | (s)|. If x(t) is an Rn-valued stochastic process,
we let xt = {x(t + s) ∶ −ℎ ≤ s ≤ 0} for t ≥ 0 whence xt is a C([−ℎ, 0];Rn)-valued stochastic process.
Let B(t) = (B1(t), ..., Bd(t))T be a d-dimensional Brownian motion defined on the probability space. For t ≥ 0, let r(t) be a

right-continuous Markov chain on the probability space taking values in a finite state space � = {1, 2, ..., N} with generator
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Π = (�ij)N×N given by

ℙ{r(t + Δ) = j|r(t) = i} =

{

�ijΔ + o(Δ) if i ≠ j,
1 + �iiΔ + o(Δ) if i = j,

where Δ > 0. Here �ij ≥ 0 is the transition rate from i to j if i ≠ j while �ii = −
∑

j≠i �ij .We always assume that the Markov
chain r(⋅) is independent of the Brownian motion B(⋅).
Consider a nonlinear hybrid SFDE

dx(t) = f (t, xt, r(t))dt + g(t, xt, r(t))dB(t), t ≥ 0 (1)

with the initial data

� = {�(s) ∶ −ℎ ≤ s ≤ 0} ∈ C([−ℎ, 0];Rn) and i0 ∈ �, (2)

where ℎ > 0 is a system delay. Moreover,

f ∶ R+ × C([−ℎ, 0];Rn) ×� → Rn and g ∶ R+ × C([−ℎ, 0];Rn) ×� → Rn×d .

be both Borel measurable functions.
Let’s give some hypotheses about the coefficients f and g.

Assumption 1. For any integer b ≥ 1, there exists a real number Lb > 0 such that for all (t, i) ∈ R+ × � and all  , � ∈
C([−ℎ, 0];Rn) with ‖ ‖ ∨ ‖�‖ ≤ b, it follows that

|f (t,  , i) − f (t, �, i)| ∨ |g(t,  , i) − g(t, �, i)| ≤ Lb‖ − �‖. (3)

Moreover, for each i ∈ �, there are two probability measures �1 and �2 on [−ℎ, 0] as well as some numbers L > 0, m1 ≥ 1 and
m2 ≥ 1 such that

|f (t,  , i)| ≤ L(| (0)| + | (0)|m1 +

0

∫
−ℎ

| (�)|d�1(�) +

0

∫
−ℎ

| (�)|m1d�1(�))

and |g(t,  , i)| ≤ L(| (0)| + | (0)|m2 +

0

∫
−ℎ

| (�)|d�2(�) +

0

∫
−ℎ

| (�)|m2d�2(�)) (4)

for all (t,  ) ∈ R+ × C([−ℎ, 0];Rn).

When m1 = m2 = 1, condition (4) degenerates to linear growth condition, so the results in this paper are more general than
those of the previous ones.28,34 Meanwhile, Assumption 1 can not guarantee the existence of global solution for equation (1),
we need to introduce a new condition, which can be traced back to Khasminskii’s work.35

Assumption 2. Letm1, m2, �1, �2 be the same as in Assumption 1. Assume that there are some positive numbersm, p, aj , bj , (j =
0, 1, 2) such that

p ≥ (m1 + 1) ∨ (2m2 − m1 + 1), m > (m1 + 1) ∨ (2m2) and a0 > a1 + a2 (5)

while

 (0)Tf (t,  , i) +
p − 1
2

|g(t,  , i)|2 ≤ − a0| (0)|m +
2
∑

j=1
aj

0

∫
−ℎ

| (�)|md�j(�)

+ b0| (0)|2 +
2
∑

j=1
bj

0

∫
−ℎ

| (�)|2d�j(�) (6)

for all (t,  , i) ∈ R+ × C([−ℎ, 0];Rn) ×�.

Using Theorem 3.1 in the work of Feng et al.,17 it can be seen from Assumptions 1 and 2 that functional equation (1) has a
global continuous solution such that sup0≤t<∞ E|x(t)|p < ∞. However, the equations that satisfy the above assumptions are not
necessarily stable (see Example (45) in Section 5). Therefore, we need to design a more realistic controller u in the drift term
to stabilize the unstable stochastic system (1). As mentioned before, the controller only observes at discrete time k�, and each
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observation may have different time lags �k. Here u ∶ R+ ×Rn ×� → Rn is a Borel measurable function. Let �̄ > � ≥ 0, while
we shall assume �k ∈

[

�, �̄
]

, � + �̄ ≤ ℎ and � + � > �̄. Then we will discuss the controlled hybrid SFDE

dx(t) = [f (t, xt, r(t)) + u(t, x(%t), r(t))]dt + g(t, xt, r(t))dB(t), t ≥ 0, (7)

stability, where

x(%t) =
{

0, if t ∈ [0, �0),
x(k�), if t ∈ [k� + �k, (k + 1)� + �k+1), k = 0, 1, 2, ....

Let’s give a hypothesis about our controller u .

Assumption 3. Assume that there is a real number � > 0 such that

|u(t, x, i) − u(t, y, i)| ≤ � |x − y| (8)

for all (t, i) ∈ R+ ×� and x, y ∈ Rn. Moreover, assume that u(t, 0, i) ≡ 0 for all (t, i) ∈ R+ ×�.

Remark 1. (i) Obviously, the assumption of � + � > �̄ is to ensure that interval [k� + �k, (k + 1)� + �k+1) is nonempty. Since
the time lag caused by the controller and the time interval of discrete observation are easy to adjust in practical application, we
have assumed �+ �̄ ≤ ℎ. Actually, when the delay of the system ℎ is very small, it is entirely possible that �+ �̄ > ℎ. Especially
ℎ = 0, the system (1) becomes a SDE, similar results have been given by Fei et al.26
(ii) From Assumption 3, we can see that the solutions of hybrid SFDEs (7) and (1) are equal on [0, �0), that is, the controller

u has no effect [0, �0), which is more reasonable. Since we will discuss the asymptotic behavior of the SFDE (7), we only need
to discuss this controlled system on [�0,∞). Therefore, let’s define a bounded function # ∶ R+ → [�, � + �̄) by

#(t) = t − k� for t ∈ [k� + �k, (k + 1)� + �k+1), k = 0, 1, 2, ... (9)

Thus the SFDE (7) can be rewritten as

dx(t) = [f (t, xt, r(t)) + u(t, x(t − #(t)), r(t))]dt + g(t, xt, r(t))dB(t), (10)

on t ≥ �0. Obviously, due to the existence and uniqueness of the solution of SFDE (1), we may choose the corresponding initial
data as

�̂ = {�̂(s) ∶ −ℎ + �0 ≤ s ≤ �0} ∈ C([−ℎ, 0];Rn) and i�0 ∈ �, (11)

where �̂ is the solution of SFDE (1) on [−ℎ + �0, �0].
(iii) For any (t, x, i) ∈ R+ × Rn ×�, by Assumption 3, it is easy to show that

|u(t, x, i)| ≤ � |x|, (12)

where � is defined in (8).

3 BOUNDEDNESS

In the following section, we will discuss the existence and uniqueness of the solution and the moment boundedness of the new
controlled system (10).

Theorem 1. Under Assumptions 1, 2 and 3, for any given initial data (11),
(i) the SFDE (10) has a unique global solution x(t),
(ii) for p in condition (5), the solution x(t) satisfies that

sup
�0≤t<∞

E|x(t)|p <∞. (13)

That is, the controlled system (10) is asymptotically bounded in pth moment.

Proof. Let V (x) = |x|p. An operator LV ∶ [�0,∞) × C([−ℎ, 0];Rn) ×� → R is defined by

LV (t,  , i) =p| (0)|p−2 (0)T [f (t,  , i) + u(t,  (−#(0)), i)] +
p
2
| (0)|p−2|g(t,  , i)|2

+
p(p − 2)
2

| (0)|p−4| (0)T g(t,  , i)|2.
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By Assumptions 2 and 3, we further get

LV (t,  , i) ≤p| (0)|p−2
[

 (0)Tf (t,  , i) +
p − 1
2

|g(t,  , i)|2 +  (0)T u(t,  (−#(0)), i)
]

≤ − pa0| (0)|p+m−2 + pb0| (0)|p + p� | (0)|p−1| (−#(0))|

+ p| (0)|p−2
2
∑

j=1

(

aj

0

∫
−ℎ

| (�)|md�j(�) + bj

0

∫
−ℎ

| (�)|2d�j(�)
)

.

From the Young inequality, it is easy to calculate that

paj| (0)|p−2
0

∫
−ℎ

| (�)|md�j(�) =

0

∫
−ℎ

paj| (0)|p−2| (�)|md�j(�)

≤
p(p − 2)aj
p + m − 2

| (0)|p+m−2 +
pmaj

p + m − 2

0

∫
−ℎ

| (�)|p+m−2d�j(�),

pbj| (0)|p−2
0

∫
−ℎ

| (�)|2d�j(�) =

0

∫
−ℎ

pbj| (0)|p−2| (�)|2d�j(�)

≤(p − 2)bj| (0)|p + 2bj

0

∫
−ℎ

| (�)|pd�j(�),

p� | (0)|p−1| (−#(0))| =
( (p� )p∕(p−1)| (0)|p

(0.5"p)1∕(p−1)
)

p−1
p
(

0.5"p| (−#(0))|p
)

1
p

≤ (p − 1)(� )
p∕(p−1)

(0.5")1∕(p−1)
| (0)|p + 0.5"| (−#(0))|p.

These, together with (5), yield

LV (t,  , i) ≤ − p
(

a0 −
(p − 2)(a1 + a2)
p + m − 2

)

| (0)|p+m−2 +
2
∑

j=1
Kj

0

∫
−ℎ

| (�)|p+m−2d�j(�)

+ 0.5"| (−#(0))|p +K0| (0)|p +
2
∑

j=1
2bj

0

∫
−ℎ

| (�)|pd�j(�). (14)

where K0 = pb0 + (p − 2)(b1 + b2) +
(p−1)(�)p∕(p−1)

(0.5")1∕(p−1)
, Kj =

pmaj
p+m−2

, j = 1, 2.
(i) Under condition (3), using the standard truncation method,36 there exists a unique maximal local solution of equation (10)

on t ∈ [�0, �e), where �e is the explosion time. Let k0 be a sufficiently large positive constant for ‖�̂‖ < k0. To show that the
local solution x(t) is global, for each integer k ≥ k0, define the stopping time

�k = inf{t ∈ [�0, �e) ∶ |x(t)| ≥ k},

where throughout this paper we set inf ∅ = ∞ (as usual ∅ denotes the empty set). Obviously, �k increases as k → ∞ and
�k → �∞ ≤ �e a.s. If we can deduce that �∞ = ∞ a.s., then �e = ∞ a.s., which implies the desired result (i). This is also
equivalent to prove that there is limk→∞ P (�k ≤ t)→ 0. By the Itô formula, we obtain

EV (x(t ∧ �k)) = V (x(�0)) + E

t∧�k

∫
�0

LV (s, xs, r(s))ds. (15)

Recalling (5), we can rewrite (14) as

LV (t,  , i) ≤ − p(a0 − a1 − a2)| (0)|p+m−2 +
2
∑

j=1
Kj(

0

∫
−ℎ

| (�)|p+m−2d�j(�) − | (0)|p+m−2)
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+ 0.5"| (−#(0))|p + (K0 + 2b1 + 2b2)| (0)|p +
2
∑

j=1
2bj(

0

∫
−ℎ

| (�)|pd�j(�) − | (0)|p)

≤
2
∑

j=1
Kj(

0

∫
−ℎ

| (�)|p+m−2d�j(�) − | (0)|p+m−2) + 0.5"| (−#(0))|p

+
2
∑

j=1
2bj(

0

∫
−ℎ

| (�)|pd�j(�) − | (0)|p) + C1,

where C1 ∶= maxs≥0
[

− p(a0 − a1 − a2)sp+m−2 + (K0 + 2b1 + 2b2)sp
]

. Hence, we deduce that

EV (x(t ∧ �k)) ≤ |x(0)|p + C1t +
2
∑

j=1
KjE

t∧�k

∫
�0

(

0

∫
−ℎ

|x(s + �)|p+m−2d�j(�) − |x(s)|p+m−2
)

ds

+ 0.5"E

t∧�k

∫
�0

|x(s − #(s))|pds +
2
∑

j=1
2bjE

t∧�k

∫
�0

(

0

∫
−ℎ

|x(s + �)|pd�j(�) − |x(s)|p
)

ds. (16)

Using the Fubini theorem, we may give the following estimate
t∧�k

∫
�0

(

0

∫
−ℎ

|x(s + �)|p+m−2d�j(�) − |x(s)|p+m−2
)

ds =

0

∫
−ℎ

d�j(�)

t∧�k+�

∫
�0+�

|x(s)|p+m−2ds −

t∧�k

∫
�0

|x(s)|p+m−2ds

≤

0

∫
−ℎ

d�j(�)

t∧�k

∫
�0−ℎ

|x(s)|p+m−2ds −

t∧�k

∫
�0

|x(s)|p+m−2ds

=

�0

∫
�0−ℎ

|�̂(s)|p+m−2ds.

Similarly,
t∧�k

∫
�0

(

0

∫
−ℎ

|x(s + �)|pd�j(�) − |x(s)|p
)

ds ≤

�0

∫
�0−ℎ

|�̂(s)|pds.

Substituting these into (16) gives

E|x(t ∧ �k)|p ≤0.5"E

t∧�k

∫
�0

|x(s − #(s))|pds + C(t) ≤ 0.5"E

t

∫
�0

|x(s − #(s))|pI[�0,�k](s)ds + C(t)

=0.5"

t

∫
�0

E
(

|x(s − #(s))|pI[�0,�k](s)
)

ds + C(t),

where

C(t) = |x(0)|p + C1t + (K1 +K2)

�0

∫
�0−ℎ

|�̂(s)|p+m−2ds + 2(b1 + b2)

�0

∫
�0−ℎ

|�̂(s)|pds.

Obviously, for all s ≥ �0, we deduce that 0 ≤ s − #(s) ≤ s, which implies

E
[

|x(s − #(s))|pI[�0,�k](s)
]

≤ sup
0≤w≤s

E|x(w ∧ �k)|p.
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Therefore, we have

E|x(t ∧ �k)|p ≤ 0.5"

t

∫
�0

sup
0≤w≤s

E|x(w ∧ �k)|pds + C(t),

which implies that

sup
�0≤w≤t

E|x(w ∧ �k)|p ≤ 0.5"

t

∫
�0

sup
0≤w≤s

E|x(w ∧ �k)|pds + C(t).

Further, we get

sup
0≤w≤t

E|x(w ∧ �k)|p ≤ sup
0≤w≤�0

E|x(w)|p + sup
�0≤w≤t

E|x(w ∧ �k)|p

≤‖�̂‖p + 0.5"

t

∫
�0

sup
0≤w≤s

E|x(w ∧ �k)|pds + C(t).

It follows from the Gronwall inequality immediately that

sup
0≤w≤t

E|x(w ∧ �k)|p ≤ (C(t) + ‖�̂‖p)e0.5"(t−�0).

Hence
ℙ(�k ≤ t)kp ≤ sup

0≤w≤t
E|x(w ∧ �k)|p ≤ (C(t) + ‖�̂‖p)e0.5"(t−�0),

which implies that

lim sup
k→∞

ℙ(�k ≤ t) ≤ lim
k→∞

(C(t) + ‖�̂‖p)e0.5"(t−�0)

kp
= 0,

as required.
(ii) By (14), using the Itô formula to function e"t|x|p gives

d(e"tV (x(t))) =e"t(LV (t, xt, r(t)) + "V (x(t)))dt + pe"t|x(t)|p−2x(t)T g(t, xt, r(t))dB(t)

≤e"t
[

− p
(

a0 −
(p − 2)(a1 + a2)
p + m − 2

)

|x(t)|p+m−2 +
2
∑

j=1
Kj

0

∫
−ℎ

|x(t + �)|p+m−2d�j(�)

+ 0.5"|x(t − #(t))|p + (" +K0)|x(t)|p +
2
∑

j=1
2bj

0

∫
−ℎ

|x(t + �)|pd�j(�)
]

dt

+ pe"t|x(t)|p−2x(t)T g(t, xt, r(t))dB(t). (17)

Define

V1(t) =
2
∑

j=1
Kj

0

∫
−ℎ

t

∫
t+�

e"(s−�)|x(s)|p+m−2dsd�j(�), and V2(t) =
2
∑

j=1
2bj

0

∫
−ℎ

t

∫
t+�

e"(s−�)|x(s)|pdsd�j(�).

By the differential calculation, we obtain

dV1(t) =
2
∑

j=1
Kj

(

0

∫
−ℎ

e"(t−�)|x(t)|p+m−2d�j(�) −

0

∫
−ℎ

e"t|x(t + �)|p+m−2d�j(�)
)

dt

≤
2
∑

j=1
Kj

(

e"(t+ℎ)|x(t)|p+m−2 − e"t
0

∫
−ℎ

|x(t + �)|p+m−2d�j(�)
)

dt.

Similarly

dV2(t) ≤
2
∑

j=1
2bj

(

e"(t+ℎ)|x(t)|p − e"t
0

∫
−ℎ

|x(t + �)|pd�j(�)
)

dt.
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These, together with (17), give

d(e"tV (x(t)) + V1(t) + V2(t)) ≤e"t
[

H(x(t)) + 0.5"|x(t − #(t))|p
]

dt

+ pe"t|x(t)|p−2xT (t)g(t, xt, r(t))dB(t), (18)

where

H(s) = −
(

pa0 −
p(a1 + a2)(p − 2)

p + m − 2
− e"ℎ(K1 +K2)

)

|s|p+m−2 +
(

" +K0 + (2b1 + 2b2)e"ℎ
)

|s|p.

Recalling (5) and the definition of Kj , we may choose " > 0 so small such that

a0 −
(a1 + a2)(p − 2)
p + m − 2

− e"ℎ(K1 +K2) > 0.

Then, let C2 = sups≥0H(s), we can rewrite (18) as

d(e"tV (x(t)) + V1(t) + V2(t))
≤e"t(C2 + 0.5"|x(t − #(t))|p)dt + pe"t|x(t)|p−2xT (t)g(t, xt, r(t))dB(t). (19)

Integrating the above inequality from �0 to t, and taking expectation lead to

Ee"t|x(t)|p ≤E(e"tV (x(t)) + V1(t) + V2(t))

≤V (x(�0)) + V1(�0) + V2(�0) + E

t

∫
�0

e"s
[

C2 + 0.5"|x(s − #(s))|p
]

ds

≤C3 + C2
e"t

"
+ 0.5 sup

0≤s≤t
E|x(s)|pe"t,

where C3 ∶= V (x(�0)) + V1(�0) + V2(�0). Subsequently,

E|x(t)|p ≤C3 +
C2
"
+ 0.5 sup

0≤s≤t
E|x(s)|p.

This implies

sup
0≤s≤t

E|x(s)|p ≤ sup
�0≤s≤t

E|x(s)|p + ‖�̂‖p ≤ C3 +
C2
"
+ 0.5 sup

0≤s≤t
E|x(s)|p + ‖�̂‖p.

Then, we have

sup
0≤s≤t

E|x(s)|p ≤2(C3 +
C2
"
+ ‖�̂‖p) ∶= C4. (20)

Letting t→∞, we therefore obtain the desired result (13). 2

Remark 2. It is obvious from Theorem 1 that the solution of equation (7) with initial data (2) is unique and asymptotically
bounded on [0,∞). Similarly, the stabilization results in the following section hold for SFDE (7). Therefore, in all the assumptions
in the next section, we let (t,  , i) ∈ R+ × C([−ℎ, 0];Rn) ×�.

4 EXPONENTIAL STABILIZATION

In this section, we will give some criteria related to the control term u to obtain the exponential stability of the controlled SFDE
(10), and these criteria will be constructed by M-matrix. For the definition and basic properties of M-matrix, the reader may
refer to section 2.6 in the work of Mao and Yuan.4 Next, we give a condition related to M-matrix.

Assumption 4. For each i ∈ �, assume that there exist bi0, b̂i0 ∈ R and some positive constants ai0, âi0, aij , âij , bij , b̂ij (j = 1, 2)
for both

 (0)T [f (t,  , i) + u(t,  (0), i)] + 1
2
|g(t,  , i)|2
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≤ − ai0| (0)|m +
2
∑

j=1
aij

0

∫
−ℎ

| (�)|md�j(�) + bi0| (0)|2 +
2
∑

j=1
bij

0

∫
−ℎ

| (�)|2d�j(�) (21)

and

 (0)T [f (t,  , i) + u(t,  (0), i)] +
m1
2
|g(t,  , i)|2

≤ − âi0| (0)|m +
2
∑

j=1
âij

0

∫
−ℎ

| (�)|md�j(�) + b̂i0| (0)|2 +
2
∑

j=1
b̂ij

0

∫
−ℎ

| (�)|2d�j(�) (22)

to hold for all (t,  ) ∈ R+ × C([−ℎ, 0];Rn). Moreover,

Λ1 ∶= −2diag(b10, ..., bN0) − Π and Λ2 ∶= −(m1 + 1)diag(b̂10, ..., b̂N0) − Π (23)

are nonsingular M-matrices.

Remark 3. From the assumptions in Section 2, we can see that the above conditions are very easy to achieve in practice. For
example, let’s take u(t, x, i) = Ax, where A is a symmetric n × n real-valued matrix such that �max(A) ≤ −2b0 ( u obviously
satisfies Assumption 3 ). Then

xT u(t, x, i) ≤ −2b0|x|2, ∀(t, x, i) ∈ R+ × Rn ×�.
Combining this and Assumption 6 clearly shows that both conditions (21) and (22) can be satisfied, and

Λ1 = 2diag(b0, ..., b0) − Π and Λ2 = (m1 + 1)diag(b0, ..., b0) − Π

are both nonsingular M matrices, which implies that all the conditions of Assumption 4 are satisfied.

Using the properties of M-matrices, there exist positive constants �i and �̂i such that

(�1, ..., �N )T ∶= Λ−11 (1, ..., 1)
T , (�̂1, ..., �̂N )T ∶= Λ−12 (1, ..., 1)

T , (24)

where Λ1 and Λ2 have specified in Assumption 4.
In this paper, the form of Lyapunov functional with M-matrix is as follows

Û (t, x̂t, r̂t) = U (x(t), r(t)) +$

0

∫
−�∗

t

∫
t+s

Φ(w, xw, r(w))dwds (25)

for t ≥ �0, where x̂t ∶= {x(t + �) ∶ −2ℎ ≤ � ≤ 0}, r̂t ∶= {r(t + �) ∶ −2ℎ ≤ � ≤ 0}, �∗ = � + �̄, $ is a positive number to be
determined later, U and Φ(t, xt, r(t)) have been defined by

U (x, i) = �i|x|2 + �̂i|x|m1+1 (26)

and

Φ(t, xt, r(t)) = �∗|f (t, xt, r(t)) + u(t, x(t − #(t)), r(t))|2 + |g(t, xt, r(t))|2,

respectively. For x̂t and r̂t to be well defined for �0 ≤ t < �0 + 2ℎ, we set x(�) = x(−ℎ) for � ∈ [�0 − 2ℎ,−ℎ) and r(�) = i0 for
� ∈ [�0 − 2ℎ, 0). Similarly, we set

f (t,  , i) = f (0,  , i), g(t,  , i) = g(0,  , i), u(t,  (−#(0)), i) = u(0,  (−#(0)), i)

for (t,  , i) ∈ [�0 − 2ℎ, 0) × C([−ℎ, 0];Rn) ×�. The following Lemma directly follows from the generalized Itô formula4 and
the basic differential operation.

Lemma 1. For t ≥ �0, Û (t, x̂t, r̂t) is an Itô stochastic process with its Itô differential

dÛ (t, x̂t, r̂t) =
[

U (t, xt, r(t)) +$�∗Φ(t, xt, r(t)) −$

t

∫
t−�∗

Φ(s, xs, r(s))ds
]

dt + dM̂(t), (27)

where U ∶ [�0,∞) × C([−ℎ, 0];Rn) ×� → R is defined as

U (t, xt, r(t)) =2�r(t)
[

x(t)T [f (t, xt, r(t)) + u(t, x(t − #(t)), r(t))] +
1
2
|g(t, xt, r(t))|2

]
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+ (m1 + 1)�̂r(t)|x(t)|m1−1
[

x(t)T [f (t, xt, r(t)) + u(t, x(t − #(t)), r(t))] +
1
2
|g(t, xt, r(t))|2

]

+
(m21 − 1)

2
�̂r(t)|x(t)|m1−3|x(t)T g(t, xt, r(t))|2 +

N
∑

j=1
�r(t)j(�j|x(t)|2 + �̂j|x(t)|m1+1),

as well as M̂(t) is a local continuous martingale with M̂(�0) = 0.

Obviously, we deduce that

U (t, xt, r(t)) ≤ 2�r(t)
[

x(t)T [f (t, xt, r(t)) + u(t, x(t − #(t)), r(t))] +
1
2
|g(t, xt, r(t))|2

]

+ (m1 + 1)�̂r(t)|x(t)|m1−1

×
[

x(t)T [f (t, xt, r(t)) + u(t, x(t − #(t)), r(t))] +
m1
2
|g(t, xt, r(t))|2

]

+
N
∑

j=1
�r(t)j(�j|x(t)|2 + �̂j|x(t)|m1+1)

≤ LU (t, xt, r(t)) + (2�r(t) + (m1 + 1)�̂r(t)|x(t)|m1−1)x(t)T (u(t, x(t − #(t)), r(t)) − u(t, x(t), r(t)))

where LU ∶ R+ × C([−ℎ, 0];Rn) ×� → R is defined by

LU (t,  , i) = 2�i
[

 (0)T [f (t,  , i) + u(t,  (0), i)] + 1
2
|g(t,  , i)|2

]

+ (m1 + 1)�̂i| (0)|m1−1

×
[

 (0)T [f (t,  , i) + u(t,  (0), i)] +
m1
2
|g(t,  , i)|2

]

+
N
∑

j=1
�ij(�j| (0)|2 + �̂j| (0)|m1+1). (28)

Let’s give the first stability result of this paper.

Theorem 2. Let Assumptions 1, 2, 3, 4 hold. Assume that there exist positive numbers �, �1, �2, �3 and �j , j = 1, ..., 7, as well
as a functionW (x) ∈ C(Rn;R+), such that

�1 + �2 < 1, �3 + �4 < 1, �5| (0)|m+m1−1 ≤ W ( (0)) ≤ �6 + �7| (0)|m+m1−1 (29)

and

LU (t,  , i)+�1|f (t,  , i)|2 + �2|g(t,  , i)|2 + �3
(

2�i| (0)| + (m1 + 1)�̂i| (0)|m1
)2

≤ − �
[

| (0)|2 − �1

0

∫
−ℎ

| (�)|2d�1(�) − �2

0

∫
−ℎ

| (�)|2d�2(�)
]

−W ( (0)) + �3

0

∫
−ℎ

W ( (�))d�1(�) + �4

0

∫
−ℎ

W ( (�))d�2(�) (30)

for all (t,  , i) ∈ R+ × C([−ℎ, 0];Rn) ×�. Assume also �∗ is sufficiently small for

�∗ <

√

��3(1 − �1 − �2)
2�2

and �∗ ≤
√

�1�3
√

2�
∧
�2�3
�2

∧ 1

4
√

2�
. (31)

Then, for any p̂ ∈ [2, p) and initial data (11), the solution of the SFDE (10) obeys

lim sup
t→∞

1
t
log(E|x(t)|p̂) < 0. (32)

Proof. We divide the proof into four steps.
Step 1. By Assumption 3, then recalling (28), we deduce that

U (t, xt, r(t)) ≤ LU (t, xt, r(t)) + �3
[

2�r(t)|x(t)| + (m1 + 1)�̂r(t)|x(t)|m1
]2 +

�2

4�3
|x(t) − x(t − #(t))|2.

Then

dÛ (t, x̂t, r̂t) ≤ LÛ (t, x̂t, r̂t)dt + dM̂(t), (33)

in which

LÛ (t, x̂t, r̂t) =LU (t, xt, r(t)) + �3
[

2�r(t)|x(t)| + (m1 + 1)�̂r(t)|x(t)|m1
]2
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+
�2

4�3
|x(t) − x(t − #(t))|2 +$�∗Φ(t, xt, r(t)) −$

t

∫
t−�∗

Φ(s, xs, r(s))ds. (34)

Moreover, using Assumptions 1, 3 and Theorem 1, we have

sup
�0≤t<∞

E|LÛ (t, x̂t, r̂t)| <∞. (35)

Step 2. Let$ = �2∕�3. We derive from (33) and (35) that

e"tEÛ (t, x̂t, r̂t) ≤ Û (�0, x̂�0 , r̂�0) + E

t

∫
�0

e"s("Û (s, x̂s, r̂s) + LÛ (s, x̂s, r̂s))ds (36)

for any t ≥ �0. Using condition (31), it is easy to show that 2(�
∗)2�2

�3
≤ �1 and

�∗�2

�3
≤ �2, then by elementary inequality and (12),

we have

$�∗Φ(s, xs, r(s)) ≤
2(�∗)2�2

�3
|f (s, xs, r(s))|2 +

�∗�2

�3
|g(s, xs, r(s))|2 +

2(�∗)2�2

�3
|u(s, x(s − #(s)), r(s))|2

≤ �1|f (s, xs, r(s))|2 + �2|g(s, xs, r(s))|2 +
2(�∗)2�4

�3
|x(s − #(s))|2.

Substituting this into (34) and using condition (30) give

LÛ (s, x̂s, r̂s) ≤LU (s, xs, r(s)) + �1|f (s, xs, r(s))|2 + �2|g(s, xs, r(s))|2

+ �3
[

2�r(s)|x(s)| + (m1 + 1)�̂r(s)|x(s)|m1
]2 +

2(�∗)2�4

�3
|x(s − #(s))|2

+
�2

4�3
|x(s) − x(s − #(s))|2 −

�2

�3

s

∫
s−�∗

Φ(w, xw, r(w))dw

≤ − �
[

|x(s)|2 − �1

0

∫
−ℎ

|x(s + �)|2d�1(�) − �2

0

∫
−ℎ

|x(s + �)|2d�2(�)
]

−W (x(s))

+ �3

0

∫
−ℎ

W (x(s + �))d�1(�) + �4

0

∫
−ℎ

W (x(s + �))d�2(�) +
2(�∗)2�4

�3
|x(s − #(s))|2

+
�2

4�3
|x(s) − x(s − #(s))|2 −

�2

�3

s

∫
s−�∗

Φ(w, xw, r(w))dw.

By (31), noting that ��∗ ≤ 1
4
√

2
, we obtain that

2(�∗)2�4

�3
|x(s − #(s))|2 ≤ 4(�∗)2�4

�3
|x(s)|2 +

�2

8�3
|x(s) − x(s − #(s))|2.

It is easy to see that

LÛ (s, x̂s, r̂s) ≤ −
(

� −
4(�∗)2�4

�3

)

|x(s)|2 + ��1

0

∫
−ℎ

|x(s + �)|2d�1(�) + ��2

0

∫
−ℎ

|x(s + �)|2d�2(�)

−W (x(s)) + �3

0

∫
−ℎ

W (x(s + �))d�1(�) + �4

0

∫
−ℎ

W (x(s + �))d�2(�)

+
3�2

8�3
|x(s) − x(s − #(s))|2 −

�2

�3

s

∫
s−�∗

Φ(w, xw, r(w))dw.
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Substituting this into (36) gives

e"tEÛ (t, x̂t, r̂t) ≤ Û (�0, x̂�0 , r̂�0) + E

t

∫
�0

"e"sÛ (s, x̂s, r̂s)ds + Υ1 + Υ2 + Υ3 − Υ4, (37)

where

Υ1 =E

t

∫
�0

e"s
[

−
(

� −
4(�∗)2�4

�3

)

|x(s)|2 + ��1

0

∫
−ℎ

|x(s + �)|2d�1(�) + ��2

0

∫
−ℎ

|x(s + �)|2d�2(�)
]

ds,

Υ2 =E

t

∫
�0

e"s
[

−W (x(s)) + �3

0

∫
−ℎ

W (x(s + �))d�1(�) + �4

0

∫
−ℎ

W (x(s + �))d�2(�)
]

ds,

Υ3 =
3�2

8�3
E

t

∫
�0

e"s|x(s) − x(s − #(s))|2ds,

Υ4 =
�2

�3
E

t

∫
�0

e"s
(

s

∫
s−�∗

Φ(w, xw, r(w))dw
)

ds.

Step 3. Applying the substitution technique, we have
t

∫
�0

0

∫
−ℎ

e"s|x(s + �)|2d�k(�)ds =

0

∫
−ℎ

e−"�d�k(�)

t

∫
�0

e"(s+�)|x(s + �)|2ds ≤ e"ℎ
0

∫
−ℎ

d�k(�)

t

∫
�0−ℎ

e"s|x(s)|2ds

≤ e"ℎ
�0

∫
�0−ℎ

|�̂(s)|2ds + e"ℎ
t

∫
�0

e"s|x(s)|2ds.

Thus

Υ1 ≤ �(�1 + �2)e"ℎ
�0

∫
�0−ℎ

|�̂(s)|2ds −
[

� −
4(�∗)2�4

�3
− �(�1 + �2)e"ℎ

]

E

t

∫
�0

e"s|x(s)|2ds. (38)

Similarly,

Υ2 ≤ e"ℎ(�3 + �4)

�0

∫
�0−ℎ

W (�̂(s))ds − [1 − e"ℎ(�3 + �4)]E

t

∫
�0

e"sW (x(s))ds. (39)

By the Fubini theorem,

Υ3 =
3�2

8�3

t

∫
�0

e"sE|x(s) − x(s − #(s))|2ds.

Appling the Itô isometry and the Hölder inequality, we get

E|x(s) − x(s − #(s))|2 ≤ 2E

s

∫
s−#(s)

(

�∗|f (w, xw, r(w)) + u(w, x(w − #(w)), r(w))|2 + |g(w, xw, r(w))|2
)

dw

≤ 2E

s

∫
s−�∗

(

�∗|f (w, xw, r(w)) + u(w, x(w − #(w)), r(w))|2 + |g(w, xw, r(w))|2
)

dw,

which implies

Υ3 ≤ 3∕4Υ4. (40)
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Plugging (38) , (39) and (40) into (37), we have

e"tEÛ (t, x̂t, r̂t) ≤ C5 + E

t

∫
�0

e"s"Û (s, x̂s, r̂s)ds −
[

� −
4(�∗)2�4

�3
− �(�1 + �2)e"ℎ

]

E

t

∫
�0

e"s|x(s)|2ds

− [1 − e"ℎ(�3 + �4)]E

t

∫
�0

e"sW (x(s))ds − 1∕4Υ4, (41)

where C5 = Û (�0, x̂�0 , r̂�0) + �(�1 + �2)e
"ℎ ∫ �0

�0−ℎ
|�̂(s)|2ds + e"ℎ(�3 + �4) ∫

�0
�0−ℎ

W (�̂(s))ds.
Step 4. Using the elementary inequality and (29), we give

|x|m1+1 ≤|x|2 + |x|m+m1−1 ≤ |x|2 +
W (x)
�5

.

Recalling the definition of Û yields

$1e
"tE|x(t)|2 ≤ e"tEÛ (t, x̂t, r̂t) ≤ C5 −

[

1 − e"ℎ(�3 + �4) −
"$3

�5

]

E

t

∫
�0

e"sW (x(s))ds

−
[

� −
4(�∗)2�4

�3
− �(�1 + �2)e"ℎ − "$2 − "$3

]

E

t

∫
�0

e"s|x(s)|2ds + Υ5 − 1∕4Υ4, (42)

where$1 = mini∈� �i, $2 = maxi∈� �i, $3 = maxi∈� �̂i, and

Υ5 =
"�2

�3
E

t

∫
�0

e"s
(

0

∫
−�∗

s

∫
s+v

Φ(w, xw, r(w))dwdv
)

ds.

It is straightforward to show that

Υ5 ≤
"�2

�3
E

t

∫
�0

e"s
(

�∗
s

∫
s−�∗

Φ(w, xw, r(w))dw
)

ds = "�∗Υ4.

We may choose " > 0 to be so small such that

"�∗ ≤ 1
4
,

�(�1 + �2)e"ℎ + "$2 + "$3 ≤ � −
4(�∗)2�4

�3
,

"$3

�5
+ e"ℎ(�3 + �4)) ≤ 1.

Plugging these into (42), we have

E|x(t)|2 ≤
C5
$1

e−"t, ∀t ≥ �0.

Finally, for any 2 ≤ p̂ < p, applying the Hölder inequality gives

E|x(t)|p̂ = E
[(

|x(t)|2
)(p−p̂)∕(p−2)(

|x(t)|p
)(p̂−2)∕(p−2)]

≤
(

C5∕$1
)(p−p̂)∕(p−2)C (p̂−2)∕(p−2)4 e−"t(p−p̂)∕(p−2), (43)

which completes the proof. 2
By the similar method in the work of Fei et al,26 from the rules of Theorem 2, we deduce that the SFDE (10) is also

exponentially stable in almost surely sense.

Theorem 3. Under the same Assumptions of Theorem 2, for any initial value (11), the solution of the SFDE (10) obeys

lim sup
t→∞

1
t
log(|x(t)|) < 0 a.s. (44)
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5 EXAMPLE

To illustrate applications of our theory clearly, we give a scalar stochastic integro-differential equation (SIDE)

dx(t) = f (t, xt, r(t))dt + g(t, xt, r(t))dB(t), (45)

in which coefficients are defined by

f (t, xt, 1) = x(t)
(

1 − 5x2(t) +

0

∫
−ℎ

x2(t + �)d�1(�)
)

, g(t, xt, 1) =

0

∫
−ℎ

x2(t + �)d�2(�),

f (t, xt, 2) = x(t)
(

0.5 − 4x2(t) +

0

∫
−ℎ

x2(t + �)d�1(�)
)

, g(t, xt, 2) =

0

∫
−ℎ

x5∕3(t + �)d�2(�), (46)

ℎ = 1, d�1(�) =
e�

1−e−1
d� and d�2(�) = d� on � ∈ [−1, 0] are probability measures, and r(t) ∈ � = {1, 2} is a Markov chain

with its generator

Π =
(

−1 1
1 −1

)

. (47)

This equation is widely discussed in population models (see e.g., related works37,38 and the reference therein). After some
calculations, it is obvious that equation (45) satisfies Assumptions 1 and 2, which means that the SIDE (45) has a unique global
solution. However, letting x(t) = 3 + 3 sin(t) on t ∈ [−1, 0] and r(0) = 2, from the numerical simulation of the computer, we
can see that hybrid stochastic integro-differential equation (45) is not stable. This result can be clearly illustrated in Figure 5.1.
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Figure 5.1: By the truncated Euler–Maruyama method with step size 10−4, the computer simulation of the sample paths of the
Markov chain and the equation (45) with ℎ = 1.

Next, we will give the control function and verify our previous assumptions one by one. Firstly, the control function u ∶
R+ × R ×� → R define as follows

u(t, x, 1) = −3x, u(t, x, 2) = −2x, (48)

which impies the condition (8) hold with � = 3. By Theorem 1, the controlled SIDE

dx(t) = [f (t, xt, r(t)) + u(t, x(%t), r(t))]dt + g(t, xt, r(t))dB(t) (49)

has a unique global solution on [0,∞), such that

sup
0≤t<∞

E|x(t)|p < C4, ∀p ≥ 6.
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For (t,  , i) ∈ R+ × C([−1, 0];Rn) ×�, we have

 (0)[f (t,  , i) + u(t,  (0), i)] + 1
2
|g(t,  , i)|2

≤

{

−4.5 4(0) + 0.5 ∫ 0
−1

 4(�)e�

1−e−1
d� + 0.5 ∫ 0

−1  
4(�)d� − 2 2(0), if i = 1,

−3.5 4(0) + 0.5 ∫ 0
−1

 4(�)e�

1−e−1
d� + 0.3333 ∫ 0

−1  
4(�)d� − 1.5 2(0) + 0.1617 ∫ 0

−1  
2(�)d�, if i = 2,

and

 (0)[f (t,  , i) + u(t,  (0), i)] +
m1
2
|g(t,  , i)|2

≤

{

−4.5 4(0) + 0.5 ∫ 0
−1

 4(�)e�

1−e−1
d� + 1.5 ∫ 0

−1  
4(�)d� − 2 2(0), if i = 1,

−3.5 4(0) + 0.5 ∫ 0
−1

 4(�)e�

1−e−1
d� + ∫ 0

−1  
4(�)d� − 1.5 2(0) + 0.5 ∫ 0

−1  
2(�)d�, if i = 2.

Subsequently

b10 = b̂10 = −2, b20 = b̂20 = −1.5,

while

Λ1 =
(

5 −1
−1 4

)

and Λ2 =
(

9 −1
−1 7

)

,

which means that the Assumption 4 holds. By (24), we observe that

�1 = 0.2632, �2 = 0.3158, �̂1 = 0.1290, �̂2 = 0.1613.

The function U defined by (26) has the form

U (x, i) =
{

0.2632x2 + 0.1290x4, if i = 1,
0.3158x2 + 0.16131x4, if i = 2.

Using (28), we have

LU (t,  , i) ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1.9785 6(0) + 0.1720 ∫ 0
−1

 6(�)e�

1−e−1
d� + 0.5161 ∫ 0

−1  
6(�)d� − 3.3684 4(0)

+0.2632 ∫ 0
−1

 4(�)e�

1−e−1
d� + 0.2632 ∫ 0

−1  
4(�)d� −  2(0), if i = 1,

−1.9355 6(0) + 0.2151 ∫ 0
−1

 6(�)e�

1−e−1
d� + 0.4302 ∫ 0

−1  
6(�)d� − 3.0492 4(0)

+0.3158 ∫ 0
−1

 4(�)e�

1−e−1
d� + 0.3718 ∫ 0

−1  
4(�)d� −  2(0) + 0.1053 ∫ 0

−1  
2(�)d�, if i = 2.

Setting �1 = 0.05, �2 = 0.6 and �3 = 1.5, we have

LU (t,  , i) + �1|f (t,  , i)|2 + �2|g(t,  , i)|2 + �3
(

2�i| (0)| + (m1 + 1)�̄i| (0)|m1
)2

≤ − 0.3892 2(0) + 0.3053

0

∫
−1

 2(�)d� −W ( (0)) + 0.1782

0

∫
−1

W ( (�))e�

1 − e−1
d� + 0.7995

0

∫
−1

W ( (�))d�, (50)

whereW (x) = 2.00183x4+0.64558x6. That is, conditions (29) and (30) are also hold, and condition (31) becomes �∗ < 0.0567.
Using Theorems 2 and 3, when �∗ = � + �̄ < 0.0567, we can obtain that the controlled SFDE (49) is not only exponentially
stable in Lp̂ (p̂ ≥ 2), but also almost surely exponentially stable.
Now, let’s design � and �k in two cases, and verify our results through simulation.
Case I. When the controller has good performance, the time lag generated by the controller is small, we can choose a larger

discrete observation time interval. To perform a numerical simulation, we set ℎ = 1, � = 0.04, �k is a uniform distribution on
[0, 0.01], and the same initial value as before. The sample paths of the Markov chain and the solution of the equation (49) are
shown in Figure 5.2.
Case II. If the time lag caused by the controller is large, we need to makemore frequent discrete observations.When condition

� + � > �̄ is satisfied, �̄ > � still makes the controlled system (49) exponentially stable. To perform a numerical simulation, we
set ℎ = 1, � = 0.02, �k is a uniform distribution on [0.02, 0.03], and the same initial value as before. The sample paths of the
Markov chain and the solution of the equation (49) are shown in Figure 5.3.
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Figure 5.2: By the truncated Euler–Maruyama method with step size 10−4, the computer simulation of the sample paths of the
Markov chain and the equation (49) with ℎ = 1, � = 0.04, �k is a uniform distribution on [0, 0.01].
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Figure 5.3: By the truncated Euler–Maruyama method with step size 10−4, the computer simulation of the sample paths of the
Markov chain and the equation (49) with ℎ = 1, � = 0.02, �k is a uniform distribution on [0.02, 0.03].

6 CONCLUSION

In this article, we have discussed how to obtain the delay control based on discrete observations to make a given class of hybrid
SFDEs stable, and we have also given an upper bound of observation interval and feedback delay. Different from the previous
literature, this hybrid equation (1) is infinite dimensional system, and this coefficients are highly linear. The new controlled
hybrid stochastic system (7) contains not only continuous states and discrete modes, but also new discrete states, so this equation
is more complex to deal with. We have established the existence of the global solution and the pth boundedness of moment of
the controlled system, and then we have obtained the p̂th moment exponential stability and almost surely stability of the systems
by using Lyapunov functional method. Finally, we have used a scalar hybrid integro-differential equation as an example to verify
our results.
Combining the results of this paper with the work of Li et al.,39 we can further discuss the feedback control problem of

stochastic functional differential equations driven by G-Brownian motion.
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