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Abstract. Regional reanalyses provide a dynamically con-
sistent recreation of past weather observations at scales use-
ful for local-scale environmental applications. The develop-
ment of convection-permitting models (CPMs) in numerical
weather prediction has facilitated the creation of kilometre-
scale (1–4 km) regional reanalysis and climate projections.
The Bureau of Meteorology Atmospheric high-resolution
Regional Reanalysis for Australia (BARRA) also aims to re-
alize the benefits of these high-resolution models over Aus-
tralian sub-regions for applications such as fire danger re-
search by nesting them in BARRA’s 12 km regional reanaly-
sis (BARRA-R). Four midlatitude sub-regions are centred on
Perth in Western Australia, Adelaide in South Australia, Syd-
ney in New South Wales (NSW), and Tasmania. The result-
ing 29-year 1.5 km downscaled reanalyses (BARRA-C) are
assessed for their added skill over BARRA-R and global re-
analyses for near-surface parameters (temperature, wind, and
precipitation) at observation locations and against indepen-
dent 5 km gridded analyses. BARRA-C demonstrates better
agreement with point observations for temperature and wind,
particularly in topographically complex regions and coastal
regions. BARRA-C also improves upon BARRA-R in terms
of the intensity and timing of precipitation during the thun-
derstorm seasons in NSW and spatial patterns of sub-daily
rain fields during storm events. BARRA-C reflects known is-
sues of CPMs: overestimation of heavy rain rates and rain
cells, as well as underestimation of light rain occurrence.
As a hindcast-only system, BARRA-C largely inherits the

domain-averaged bias pattern from BARRA-R but does pro-
duce different climatological extremes for temperature and
precipitation. An added-value analysis of temperature and
precipitation extremes shows that BARRA-C provides addi-
tional skill over BARRA-R when compared to gridded obser-
vations. The spatial patterns of BARRA-C warm temperature
extremes and wet precipitation extremes are more highly cor-
related with observations. BARRA-C adds value in the repre-
sentation of the spatial pattern of cold extremes over coastal
regions but remains biased in terms of magnitude.

1 Introduction

At horizontal kilometre scales (1–4 km), convection-
permitting models (CPMs) have provided a step change in
weather forecasting capabilities, particularly for forecasting
rainfall and cloud cover (e.g. Lopez et al., 2009; Mailhot
et al., 2010; Brousseau et al., 2016; Clark et al., 2016) over
local regions with complex terrain or land–sea boundaries
(Calmet et al., 2018). Similarly, CPMs have provided new
insights for regional climate projections (e.g. Argüeso et al.,
2014; Prein et al., 2015; Kendon et al., 2017; 2019) beyond
current global models. For instance, regional CPMs have
suggested that future increases in short-duration precipitation
extremes are larger than what can be expected from increases
in atmospheric moisture alone (Kendon et al., 2021, and ref-
erences therein). Major efforts are underway toward refin-

Published by Copernicus Publications on behalf of the European Geosciences Union.



4358 C.-H. Su et al.: BARRA v1.0

ing the horizontal resolution of global climate models to the
kilometre scale (Schär et al., 2020). Extreme weather events
such as thunderstorms, damaging winds, and hailstorms are
better represented in higher-resolution models (Walsh et al.,
2016). Current general practice is that grid spacings less than
about 4 km are required to explicitly model small convec-
tive cloud processes, replacing parameterizations of moist
convection. This avoids several issues seen in parameter-
ized convection schemes used in models with a grid spacing
greater than 10 km (Lean et al., 2008) and the “grey zone”
issues in mesoscale (4–10 km) models (Gerard et al., 2009).
A common assumption of traditional convective parameteri-
zations is that cloud fields adjust so much more rapidly than
the processes forcing them that this adjustment can be mod-
elled as instantaneous. Such schemes thus have no “memory”
of the meteorological flow, leading to unrealistic model be-
haviours. Models with parameterized convection exhibit pre-
mature convective initiation, a misrepresented diurnal cycle
of precipitation, overestimation of drizzle occurrence, under-
estimation of extreme rainfall (Lean et al., 2008; Clark et al.,
2016), fewer identifiable mesoscale convective systems with
less structure (Done et al., 2004), and rainfall coastal lock-
ing whereby precipitation generated over the sea does not
penetrate inland (Bureau of Meteorology, 2018). When the
parameterization scheme is used at a resolution finer than
10 km, it also tends to produce intermittent on–off behaviour
of deep convection (Gerard et al., 2009).

By contrast, CPMs can represent deep convection and
mesoscale convective organization explicitly on the model
grid. Explicit modelling of convection better captures precip-
itation persisting across orographic or land–sea boundaries
by the advection of clouds and precipitation. Better represen-
tation of topography in CPMs also leads to improved wind
circulation patterns and resulting vertical velocities (e.g. Fos-
ser et al., 2015). Improved modelling of the interactions be-
tween storm cells and their organizations should improve the
estimation of damaging winds. Many studies have found a
better diurnal cycle of tropical convection over land, cloud
vertical structure, and coupling between moisture convec-
tion and convergence in CPMs (Stein et al., 2015; Leutwyler
et al., 2017). A finer grid resolution can improve the flow
and wind simulation over the recirculation zone behind the
escarpment of a hill, and higher vertical grid resolution im-
proves simulation on the lee side of hills (Ma and Liu, 2017).

These benefits from using CPMs are yet to be fully real-
ized in many atmospheric reanalyses. Atmospheric reanaly-
ses combine prior knowledge of physical processes captured
in the models with observations from a diverse range of in-
struments to form spatially complete representations of the
historical atmospheric conditions. They are therefore invalu-
able for applications concerned with local weather processes,
climate signals, or events that were not fully observed such as
climate monitoring and change assessments (Kendon et al.,
2017; 2019), renewable energy assessment (e.g. Frank et al.,
2020), and hazard management (e.g. Vitolo et al., 2019).

Global-scale reanalyses have advanced in quality and quan-
tity during the past 3 decades with improvements to models,
data assimilation methods, the number of observations, and
ensemble methods (Kalnay et al., 1996; Ebita et al., 2011;
Gelaro et al., 2017; Dee et al., 2011), as well as with increas-
ing spatial resolution. The latest addition, ERA5 (Hersbach
et al., 2020), has a horizontal spacing of 31 km. Users of re-
analyses have called for development towards finer spatial
and temporal scales, i.e. below 10 km horizontal spacing and
sub-daily time intervals (Gregow et al., 2016). Such scales
are needed in localized climate monitoring for which local-
scale mechanisms influenced by complex topography, coast-
lines, and convective processes are responsible for local cli-
mate features and feedbacks.

Departing markedly from global reanalyses are the re-
gional reanalyses that use limited-area models at higher
horizontal resolutions over sub-regions, e.g. North America
(Mesinger et al., 2006), the Arctic polar region (Bromwich
et al., 2016), Europe (Borsche et al., 2015, and references
therein), India (Mahmood et al., 2018), and Australia (Su
et al., 2019). These reanalyses use grid lengths of the order of
10 km to improve the representation of sub-daily variability
and near-surface weather. These are generally produced with
global atmosphere model configurations that include convec-
tion parameterizations (e.g. Su et al., 2019). Recently, Wahl
et al. (2017) overcame this with a 7-year 2 km reanalysis
over Germany with the assimilation of conventional obser-
vations and radar-derived rain rates and showed improved
spatiotemporal variability and intensity frequency of precip-
itation. Such a direction in the development of the reanal-
yses, combined with higher-resolution regional projections,
can offer a more accurate picture of changes in regional me-
teorology and extreme weather in the changing climate.

Dynamical downscaling is frequently used to estimate
the dynamic variables at scales finer than those of coarser-
resolution climate or weather models. This approach is un-
dertaken at the Bureau of Meteorology (Bureau) in Aus-
tralia to produce kilometre-scale weather forecasts and/or en-
semble forecasts over major cities, and a 1.5 km forecast-
only model has been used since 2017 for added value over
the Bureau’s lower-resolution global system. This goal is
also pursued in the Bureau of Meteorology Atmospheric
high-resolution Regional Reanalysis for Australia (BARRA;
Jakob et al., 2017) project. Within this context, this pa-
per is a companion paper to Su et al. (2019) wherein an
Australian regional 12 km reanalysis system (BARRA-R)
was presented. Here we describe dynamical downscaling of
BARRA-R using the UK Met Office (UKMO) Unified Model
(UM) at a 1.5 km horizontal grid length over four midlatitude
sub-regions of Australia (Fig. 1) over 29 years from January
1990 to February 2019. These regions are chosen in part-
nership with state fire and emergency management agencies
because of the important advantages that dynamically down-
scaled reanalyses can provide for local-scale planning and
management to reduce future risks due to extreme weather
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Figure 1. Domains of BARRA-C, (left to right) BARRA-PH
(over Perth), BARRA-AD (Adelaide), BARRA-TA (Tasmania), and
BARRA-SY (Sydney), showing the modelled orography. Red cir-
cles indicate the locations of the state capital cities.

events such as bushfires. The four downscaling models, col-
lectively referred to as BARRA-C, yield gridded products
that include a variety of 10 min to hourly surface parame-
ters describing both weather and land surface conditions as
well as hourly upper-air parameters covering the troposphere
and stratosphere with a 40 km model top on 70 model levels
and 37 pressure levels.

This paper describes the model and the experimental de-
sign in Sect. 2, and Sect. 3 provides the first assessment of
the downscaled reanalysis with a focus on screen-level tem-
perature, 10 m wind, and precipitation. Comparisons with
BARRA-R and global reanalyses are also made to illustrate
the added value of BARRA-C. Our findings are further dis-
cussed in Sect. 4, with an overall summary in Sect. 5.

2 BARRA-C

The development of BARRA is based on the Bureau’s op-
erational deterministic numerical weather prediction (NWP)
forecasting over the Australian region using the Australian
Community Climate and Earth-System Simulator systems
ACCESS-R and ACCESS-C (Puri et al., 2013). The op-
erational version at the time (Australian Parallel Suite 2)
of ACCESS-R is the national 12 km 6-hourly analysis–
assimilation and 3 d forecasting system (Bureau of Meteorol-
ogy, 2016). ACCESS-R has provided the initial and bound-
ary conditions to initialize and constrain ACCESS-C over
six smaller domains centred at the Australian cities until
2020 (Bureau of Meteorology, 2018). The APS2 ACCESS-
C dynamically downscales ACCESS-R to provide 6-hourly,
1.5 d forecasts at 1.5 km horizontal resolution. The relation
between BARRA-R and BARRA-C mirrors this system but
is implemented with a shorter forecast (or hindcast) range

and a newer version of the meteorological forecast model
and science configuration (Sect. 2.1). In particular, BARRA-
R is nested in ERA-Interim reanalysis (Dee et al., 2011) and
includes four assimilation and hindcast cycles per day (Su
et al., 2019). BARRA-C is a hindcast-only system that inher-
its the analysis from BARRA-R as initial conditions. While
BARRA-C refers to the collection of the four sub-domain
models, we use BARRA-AD, BARRA-PH, BARRA-SY, and
BARRA-TA to denote individual domains centred at Ade-
laide (South Australia, AD), Perth (Western Australia, PH),
Sydney (New South Wales, SY), and Tasmania (TA) (Fig. 1).

The PH and AD domains are similar in terms of climate,
having arid deserts north of their domains, temperate dry hot
or warm summers near coasts, and arid steppe climate in be-
tween (Peel et al., 2007). SY has a temperate climate with
warm to hot summers and lacks a dry season, while TA dif-
fers with a cooler summer. Cool-season perennial grass (C3)
is the dominant vegetation over the southwestern region of
PH and the near-coast region of AD, and broadleaf trees are
widespread in the SY and TA domains (Fig. S1 in the Sup-
plement). There are several large ephemeral salt lakes (e.g.
Lake Torrens, Lake Gairdner) in the AD domain, and these
are modelled as land points with bare soil. Of the four do-
mains, only SY has a distinct thunderstorm season, which
occurs during November–March. Thunderstorms are far less
frequent in the other three domains due to lower incidence
of warm, humid air masses and also prevalent stable condi-
tions during the potentially favourable warmer months owing
to a subtropical high-pressure belt over or near these areas
(Kuleshov et al., 2002). In contrast to PH and AD, the SY
and TA domains are topographically complex. The Great Di-
viding Range extends north to south through the SY domain,
and the TA domain features low mountains and a landscape
of plateaus.

2.1 Forecast model

The UM (Davies et al., 2005; version 10.6) is the grid-
point atmospheric model used in BARRA and ACCESS.
It uses a non-hydrostatic, fully compressible, deep atmo-
sphere formulation, and its dynamical core (Even Newer
Dynamics for General atmospheric modelling of the envi-
ronment, ENDGame) solves the equations of motion using
mass-conserving, semi-implicit, semi-Lagrangian (SL), time
integration methods (Wood et al., 2014). The prognostic vari-
ables are three-dimensional wind components, virtual dry
potential temperature and Exner pressure, dry density, and
mixing ratios of moist quantities. These variables are dis-
cretized horizontally onto a regular longitude–latitude grid
with Arakawa-C staggering (Arakawa and Lamb, 1977) and
vertically with the Charney–Phillips staggered grid (Charney
and Phillips, 1953). The BARRA-C model has a horizontal
spacing of 0.0135◦× 0.0135◦ (about 1.5 km at the Equator),
and its vertical levels follow the modelled orography at the
surface and relax to surfaces of uniform radial height after
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62 model levels (∼ 17 km above ground) in the upper atmo-
sphere, with the model top height at 40 km. At this resolution,
the model is run with an integration time step of 60 s.

The science configuration of the model in BARRA-C is
based on the UK Met Office operational suite OS36, while
BARRA-R is based on the Global Atmosphere (GA6) con-
figuration of Walters et al. (2017). While the OS36 model
configurations preceded the release of the first UM Regional
Atmosphere and Land (RAL1) configuration of Bush et al.
(2020), BARRA-C implements some of the improvements
from RAL1. Table 1 summarizes the differences between
BARRA-C, BARRA-R, and RAL1. The physical parameter-
ization schemes common to BARRA-C and BARRA-R in-
clude a variant of Wilson and Ballard (1999) for mixed-phase
cloud microphysics, the large-scale cloud scheme of Smith
(1990), and the radiation scheme of Edwards and Slingo
(1996), all of which have been improved since publica-
tion. BARRA-R uses a convection parameterization scheme
based on Gregory and Rowntree (1990), which is not used in
BARRA-C. With a grid length of 1.5 km, the horizontal grid
length approaches the depth of the boundary layer (Hanley
et al., 2015), and as such it is no longer appropriate to use
the 1D boundary layer parameterization that restricts mixing
to the vertical. BARRA-C therefore uses a blended bound-
ary layer parameterization (Boutle et al., 2014b) whereby the
scheme transitions from the 1D vertical turbulence scheme of
Lock et al. (2000) to a 3D subgrid turbulence scheme based
on Smagorinsky (1963) as a function of the grid length to
the turbulent length scale (Halliwell et al., 2007). The mix-
ing length, which can be tuned to control the smoothness of
the fields and the number of small cells, is taken as 300 m,
which is used in operational systems.

The cloud scheme uses a profile of critical relative humid-
ity values (RHcrit), above which a grid box contains some
cloud if the relative humidity is exceeded. Based on the as-
sumption that there should be less subgrid variability in hu-
midity for smaller grid boxes, BARRA-C uses higher RHcrit
values that BARRA-R in the lowest few layers, decreasing
smoothly above to 0.8.

Without the convection parameterization scheme,
BARRA-C relies on the model dynamics to represent
convective motions. While convection remains unresolved
in 1.5 km models, removal of the cumulus parameteriza-
tion has been shown to result in more realistic behaviour
(Clark et al., 2016). In particular, the model can explicitly
capture processes with convective-like characteristics,
which can subsequently drive scales that the model can
properly resolve. BARRA-C also reduces the appearance
of unrealistically strong vertical velocities and “grid-point
storms” seen in BARRA-R due to the inability of convective
parameterization to stabilize the air column (Su et al.,
2019). Nevertheless, convection can remain under-resolved,
leading to cases of small, shallow showers that are too
early or no rain at all. The midlatitude version of RAL1
therefore includes stochastic perturbations of temperature

and moisture as well as relatively weak turbulent mixing
to encourage the model fields to be less uniform and help
convection to initiate. BARRA-C does not use stochastic
perturbations for moisture and may thus still suffer from
convection initiation issues.

Another distinguishing feature of BARRA-C is the han-
dling of mass conservation during the advection of moisture
prognostic variables. This is one of the key science devel-
opments in RAL1. BARRA-C and RAL1 use the zero lat-
eral flux scheme of Zerroukat and Shipway (2017) for mois-
ture conservation at the model’s lateral boundaries, avoiding
spurious extreme precipitation caused by the SL treatment of
moisture variables near partially resolved convection.

BARRA-C is missing some of the configuration improve-
ments introduced in RAL1 because production runs had al-
ready commenced. BARRA-C does not include a set of
changes to the representation of the land surface and the
canopy radiation model, which improve the damped diur-
nal cycle issue in near-surface temperatures. BARRA-C also
does not benefit from the improved treatment of gaseous ab-
sorption in both longwave and shortwave regimes in GA7
and RAL1, which improves interaction with band-by-band
aerosol and cloud forcing.

BARRA uses the land surface scheme of Best et al. (2011),
implemented in the Joint UK Land Environment and Sim-
ulator (JULES). It describes a 3 m four-layer soil column
with subsurface temperature updated using a heat diffusion
equation and with vertical moisture flux estimated using the
Richard’s equation and Darcy’s law. The soil hydraulics are
computed using the van Genuchten equation. It uses a nine-
tile approach to represent subgrid-scale heterogeneity in land
cover, with the surface of each land point subdivided into
five vegetation types (broadleaf trees, needle-leaved trees,
temperate cool-season (C3) grass, tropical warm-season (C4)
grass, and shrubs) and four non-vegetated surface types (ur-
ban, inland water, bare soil, and land ice). Urban surfaces
are represented only by a single urban tile such that street
canyons and roofs are not distinguished.

The characteristics of the lower boundary, climatological
fields, and natural and anthropogenic emissions are specified
using static ancillary fields. These are created as per Bush
et al. (2020; Table A1), with the exception of ancillaries for
the land–sea mask, canopy tree heights, and land usage. The
land–sea mask is created from the 1 km resolution Interna-
tional Geosphere–Biosphere Programme (IGBP) land cover
data (Loveland et al., 2000) for SY and TA and from Shuttle
Radar Topography Mission (SRTM) orography data for AD
and PH. Land cover data based on the Climate Change Initia-
tive (CCI; Hartley et al., 2017) are not adopted here as their
mapping to the nine land surface tiles over the Australian
region remains untested. The canopy tree heights are derived
from satellite light detection and ranging (lidar; Simard et al.,
2011; Dharssi et al., 2015). The land usage ancillary, created
from IGBP, is modified for AD and PH to match the wa-
ter fractions in the Water Observations from Space (WOfS;
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Table 1. An overview of major differences between BARRA-C, BARRA-R, and the midlatitude version of RAL1 (RAL1-M). The con-
figurations for BARRA-R are described in Su et al. (2019) and Walters et al. (2017), and those for RAL1-M are described in Bush et al.
(2020).

Aspects BARRA-R BARRA-C RAL1-M

Nesting setup Nested in 6-hourly ERA-Interim
boundary conditions

Nested in hourly BARRA-R bound-
ary conditions

NA

Horizontal grid length in radial
resolution

0.11◦ 0.0135◦ 0.0135 to 0.04◦

Vertical model level set 70 levels, with 50 levels below
18 km and 20 levels above this,
fixed model lid of 80 km a.s.l.

70 levels, with 61 levels below 18 km and 9 levels above this,
fixed model lid of 40 kma.s.l.

Model time step 300 s 60 s 60–100 s, depending on the model
resolution

UM model version 10.2 10.6 ≥ 10.6

JULES model version 3.0 4.7 ≥ 4.8

Data assimilation 6-hourly 4D variational analysis None NA

Moisture variable SL advection
schemes

Quasi-monotone (Bermejo and Staniforth, 1992) Posteriori monotonicity filter
(PMF)

Convective parameterization
scheme

Mass flux convection scheme of
Gregory and Rowntree (1990)

None

Gaseous absorption (radiation)
scheme

GA6 (Walters et al., 2017) GA7 (Walters et al., 2019)

Include spectral land surface
albedo

No Yes

Canopy radiation backscatter
scheme

Isotropic Anisotropic

Cloud microphysics scheme Single-moment scheme based on
Wilson and Ballard (1999)

Wilson and Ballard (1999), with prognostic graupel (Wilkinson
and Bornemann, 2014) and improved warm rain scheme
(Boutle et al., 2014a)

Boundary layer scheme 1D vertical turbulent mixing
scheme of Lock et al. (2000)

Blended boundary layer parameterization (Boutle et al., 2014b)

Land surface and hydrology GA6 (Walters et al., 2017), PDM subgrid-scale heterogeneity,
JULES urban parameters optimized for Australia (Dharssi
et al., 2015)

GA7 (Walters et al., 2019), wherein
TOPMODEL is used, and RAL1
changes, namely use of CCI-based
land cover tiles, reduced bare soil
fraction of short vegetation tiles,
scalar roughness lengths for grass
tiles, and revisions to the albedos of
vegetation tiles

BL stochastic perturbations None Perturbation to temperature Perturbation to temperature and
moisture

BL stability functions For stable BL, the “sharp” func-
tion of Lock et al. (2016) is used
over the sea, and over land it is a
blended combination of the Louis
(1979) and the “sharpest” function
for heights below 200 m. The con-
vective BL stability functions are
based on UKMO large-eddy model
simulations.

The “sharpest” function for stable BL everywhere; the
convective BL stability functions are based on UKMO
large-eddy model simulations.

Critical relative humidity profile 0.92 in the lowest layer, with a grad-
ual decrease to 0.8 at model level 17
(∼ 2100 km)

0.96 in the lowest layer and a decrease to 0.8 at model level 15
(∼ 850 km)
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Mueller et al., 2016). Aerosol absorption and scattering in
the radiation scheme assume climatological aerosol proper-
ties. A climatological ozone field is also prescribed.

2.2 Initial and boundary conditions

The BARRA-C model hindcast is re-initialized with 6-
hourly initial conditions at the synoptic hours t0= 00:00,
06:00, 12:00, and 18:00 UTC created by downscaling from
BARRA-R analyses (Fig. S2 in the Supplement). These
fields are taken from the centre of BARRA-R’s 6 h analy-
sis windows. A two-component reconfiguration approach is
used in which BARRA-R winds, moisture, and temperature
are downscaled separately with different resolution topogra-
phy sets to remove model instability due to large horizon-
tal topography gradients. BARRA-C is further constrained
by BARRA-R at the lateral boundaries without nudging
based on the prescription described in Bush et al. (2020)
and a boundary rim width of 0.34◦. The boundary conditions
force the development of the larger-scale features within the
BARRA-C domains. These setups follow the Bureau’s NWP
system and ensure that the benefits of the BARRA-R analy-
sis are inherited by BARRA-C, wherein the nested model is
treated as a physically consistent interpolator of the driving
model.

The JULES soil moisture and temperature are prescribed
by BARRA-R. Consistent with BARRA-R, daily sea surface
temperature and sea ice 0.05◦× 0.05◦ analysis from repro-
cessed (1985–2007; Roberts-Jones et al., 2012) and near-
real-time Operational Sea Surface Temperature and Ice Anal-
ysis (OSTIA; Donlon et al., 2012) are used as lower bound-
aries over the water after being interpolated to the BARRA-C
grid. The near-real-time data are used from January 2007.

Each hindcast in BARRA-C is a 9 h simulation but only 6 h
are used. The model data during the first 3 h are discarded as
the fine detail is only partially established from the coarse-
resolution initial conditions due to model spin-up. There-
fore, the hindcast fields between t0+ 4 h and t0+ 9 h form
the BARRA-C datasets. Such a hindcast length is considered
short but is chosen to meet computational constraints when
regular re-initialization is needed for running the model for
such an extended period. One clear limitation of our setup is
that model spin-up artefacts are expected to still be present,
particularly for convective clouds and rain.

3 Assessment

Our assessment focuses on near-surface variables and pre-
cipitation as the aim of BARRA-C is to capture small-scale
local weather phenomena which are most apparent near the
surface. BARRA-C hindcasts are evaluated against point-
scale station observations for screen-level temperature, 10 m
wind speed (Sect. 3.1), and precipitation (Sect. 3.3). They
are also compared with gridded daily analyses of these ob-

servations for temperature (Sects. 3.2 and 3.6) and precipi-
tation (Sects. 3.4 and 3.6). Added skill in BARRA-C is il-
lustrated by comparing these variables against BARRA-R,
ERA-Interim hindcasts, and ERA5 hourly analyses (ERA5
hindcasts only for precipitation). To increase the diversity
of models used in our intercomparison, we also include
the Modern-Era Retrospective analysis for Research and
Applications-2 (MERRA-2; Gelaro et al., 2017) hindcasts. A
scale-selective evaluation of extreme storms is conducted in
Sect. 3.5 using radar observations available over the SY do-
main. Finally, an added-value (AV) method is used to quan-
tify improvements between BARRA-C and BARRA-R in
the representation of extreme daily maximum and minimum
temperature as well as daily rainfall from gridded observa-
tions. Readers are referred to Sect. A in the Supplement for
details of the various reference datasets considered in our as-
sessment.

3.1 Point evaluation of screen temperature, 10 m wind
speed, surface pressure

The t0+ 6 h model hindcasts of screen-level temperature,
10 m wind speed, and surface pressure are evaluated against
land station observations during the 2010–2012 period, fol-
lowing the approach of Su et al. (2019). These observations
have no direct relation to BARRA-C, since there is no anal-
ysis in BARRA-C, and they are not used in the associated
BARRA-R cycle t0. These fields are interpolated from the
model levels using surface similarity theory (Walters et al.,
2017). Our benchmarks include BARRA-R and ERA-Interim
t0+ 6 h hindcasts, the MERRA-2 hourly time-averaged hind-
cast fields, and the ERA5 hourly analysis. The models are
interpolated to be coincident with the observed locations and
times. As the observations are irregularly distributed in time,
all observations within a t0+ 5 to t0+ 7 h time window for
t0= 00:00 and 12:00 UTC are considered. The root mean
square difference (RMSD), Pearson’s linear correlation, ad-
ditive bias, and variance bias are calculated at each station
between observed (do) and model (dm) data. Additive bias is
defined as Bias= E(dm)−E(do), where E(·) is the expecta-
tion operator, and the variance bias as Mbias =

var(dm)
var(do)

− 1 so
as to capture differences in the dispersion, where var(·) com-
putes the variance in time. This assessment does not serve to
provide information on the true quality of the various reanal-
yses at their native resolutions; rather, it indicates whether
the models contain finer-scale information captured by point
measurements. Based on Di Luca et al. (2016), we distin-
guish three distinct regions with characteristics of complex
topography (stations with an elevation higher than 500 m –
topo), land–sea contrasts (stations that are within 1.5◦ of the
coast – coast), or relatively smooth terrain (stations far from
the coast – flat) (Fig. S3 in the Supplement).

The comparisons of scores across all BARRA-C domains
are shown in Fig. 2. For temperature, BARRA (i.e. BARRA-
R and BARRA-C) and ERA5 show better agreement with the
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Figure 2. Box plots showing the distribution of evaluation scores of various models for (a) screen-level temperature, (b) 10 m wind speed,
and (c) surface pressure across the four BARRA-C domains. Three regions are analysed separately: coastal (“coast”), complex topography
(“topo”), and flat, and the models are distinguished by colours. The scores are calculated from model hindcasts valid between 05:00–
07:00 UTC and 17:00–19:00 UTC against observations during 2010–2012.

station data than the other coarser reanalyses for most met-
rics. For instance, BARRA-C shows lower RMSD than ERA-
Interim at 80 % of stations. BARRA shows greater contrast
from the global reanalyses than between them. ERA5 shows
a warm (additive) bias, while BARRA appears cooler. ERA-
Interim and ERA5 generally show less variability in temper-
ature than observations (Mbias < 0), while the other models
tend to have more similar temperature variability with ob-
servations. This is related to the cold bias in ERA during
high temperature (shown in the next section). On average,
BARRA scores lower for RMSD than ERA5 at elevated sta-
tions (e.g. Snowy Mountains in SY) and smaller for Mbias
at near-coast stations. In general, BARRA-C shows more
visible improvements to BARRA-R at stations near coasts
or over complex topography in terms of RMSD, correla-
tion, and Mbias (Fig. S3 in the Supplement). Consequently,
BARRA-TA scores higher than BARRA-R on average. How-
ever, BARRA-C shows higher RMSD in the flat regions than
in the other regions, unlike the other reanalyses. The degra-
dation is small (within 0.6 K in terms of RMSD), and for AD,
this is related to overdispersion (Mbias > 1).

For 10 m wind speed, BARRA-C, BARRA-R, and ERA5
similarly exhibit lower RMSD and higher correlation with
the station data than the other global reanalyses, and the dif-
ferences between these three models are not pronounced.
BARRA’s largest enhancement to ERA-Interim is found at
elevated stations and near coasts, benefitting Tasmania par-
ticularly. Contrasting with BARRA-R, BARRA-C tends to
show lower RMSD at these stations (Fig. S3, Supplement),

and while we observe higher RMSD in BARRA-C, the dif-
ference is within 1 ms−1. The wind estimated by all the mod-
els tends to be underdispersed (Mbias < 1), relating to a pos-
itive (negative) bias during light (strong) wind conditions.
Such a model underdispersion is more striking in the TA and
SY domains than in the other domains as well as over coastal
regions.

For surface pressure, the higher-resolution models, includ-
ing ERA5, show markedly lower RMSD near coasts. There
is very good agreement between ERA5 and the observations.
BARRA-C shows some improvements over BARRA-R in
correlation and Mbias as well as over coastal regions and
mountains.

3.2 Comparison with gridded analysis of daily
maximum and minimum screen temperature

The reanalyses are compared against a gridded daily
0.05◦× 0.05◦ analysis of observed maximum and minimum
screen temperature from the Australian Water Availability
Project (AWAP; Jones et al., 2009) in Fig. 3. BARRA outper-
forms the driving model ERA-Interim in reducing the cold
(warm) bias during summer DJF (winter JJA), particularly
over the SY and TA domains. BARRA-C shows a smaller
extent of summer cold bias in daily maximum temperature
over the Great Dividing Range than both BARRA-R and
ERA5, but it shares a similar bias with BARRA-R elsewhere.
BARRA and the global reanalyses also exhibit a considerable
warm bias in the northwest of the AD domain, the Nullarbor
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Figure 3. Mean difference in (a) summer (DJF) daily maximum temperature, (b) winter (JJA) daily minimum temperature, and the (c) number
of days with temperature exceeding 35 ◦C in various models during 1990–2018 with respect to AWAP. The models are regridded onto the
AWAP grid using nearest-neighbour interpolation.

Plain, but this is likely an artefact of the AWAP station den-
sity and is discussed later.

The warm bias in daily minimum temperature in winter is
also similar between BARRA-C and BARRA-R. BARRA-
C has largely inherited the biases from BARRA-R but with
small local-scale differences. Despite such similarities in
summer bias, there are more hot days (i.e. days exceeding
35 ◦C or 308.15 K) in Fig. 3c in BARRA-C than in BARRA-
R over inland Australia. By contrast, the summer cold tem-
perature bias in both ERA reanalyses is also reflected by
fewer hot days and vice versa for MERRA-2. Further analy-
sis of the temperature extremes is considered in Sect. 3.6.

Figures 4 and 5 examine the inter-seasonal and inter-
annual variations in temperature bias with respect to AWAP

for daily maximum and minimum temperature, respectively.
They are similar between BARRA-C and BARRA-R, with
BARRA-C showing slightly wider inter-seasonal variability.
The inter-seasonal range of bias in BARRA is around 2 K,
which is similar to ERA-Interim and MERRA-2 in most do-
mains but is larger than ERA5 with the exception of TA. For
AD and PH, the daily maximum temperature is positively bi-
ased during summer months (DJF) and is negatively biased
during winter (JJA). The negative bias in daily maximum
temperature is smallest during summer for SY and TA and
is largest during winter for SY. For daily minimum tempera-
ture these are reversed; e.g. the associated positive bias peaks
during winter for AD, PH, and SY, and the negative bias is
maximum during summer for AD and PH.
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Figure 4. Time series of monthly mean difference in daily maximum temperature averaged over various BARRA-C domains with respect to
AWAP. The time series are shaded around their individual 1990–2018 means.

There is both inter-annual variability and a trend of the
temperature biases in BARRA. For daily maximum tempera-
ture bias, there is a cooling trend in AD and PH and a warm-
ing trend in TA. These trends can also be seen in ERA5 and
MERRA-2. For daily minimum temperature bias, trends in
BARRA are less apparent than in ERA5 and MERRA-2. We
also observe in the TA domain that BARRA shows a small
warming trend with respect to AWAP.

This analysis of variability in the bias is repeated for the
standard deviation of the modelled temperature and AWAP
in Figs. S4 and S5 in the Supplement. BARRA-C shows
a slightly wider dispersion of daily maximum temperatures
than AWAP (by 0.4 K) and BARRA-R (by 0.1 K), with the
exception of the TA domain. For BARRA-TA, the standard
deviation of BARRA is similar to AWAP and is higher than
the global reanalyses. For daily minimum temperature, both

BARRA versions are similar and generally underdispersed
by 0.3 K compared to AWAP.

3.3 Comparison with rain gauges over Sydney

Hourly modelled precipitation from BARRA and ERA5 is
compared against observations from 27 rain gauges within a
1◦ radius around Sydney during the warmer months (NDJF)
in 2008–2013 in Fig. 6. During these months convection
processes dominate and can produce a distinct diurnal dis-
tribution in thunderstorm activity. The greatest frequency
of severe thunderstorms occurs in November and Decem-
ber (Griffiths et al., 1993). ERA5 and to a lesser extent
BARRA-R both underestimate the frequency of heavy rain
rates > 8 mmh−1. By contrast, BARRA-C underestimates
the frequency of light rain rate and overestimates heavy rates.
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Figure 5. As Fig. 4 but for daily minimum temperature.

BARRA and ERA5 also distribute rainfall differently over a
day. BARRA-C shows a bimodal distribution similar to the
observations despite showing too much rain leading up to
the 06:00 UTC peak and too little rain during the daily mini-
mum around 18:00 UTC. BARRA-R shows less diurnal vari-
ation in rainfall with too much rain distributed during 00:00–
06:00 UTC, whereas ERA5 shows a pronounced early timing
bias.

3.4 Comparison with daily rainfall analysis

Figure 7a compares the modelled precipitation against the
daily rain-gauge analysis from AWAP including MERRA-2’s
hourly time-averaged precipitation (PRECTOTCORR) prod-
uct. BARRA-C shows a wet bias over the Great Dividing
Range and the southeast area of the AD domain but improves
the dry bias in BARRA-R and ERA reanalyses over the east-

ern and western seaboards and the Fleurieu and Yorke penin-
sulas of South Australia. BARRA-C also shows dry biases on
the western borders of the AD and SY domains, possibly due
to inconsistencies with the zero lateral moisture mass flux
on the boundary conditions (Sect. 2.1). A striking difference
between BARRA and the global reanalyses is over western
Tasmania where the latter displays a dry bias.

In Fig. 7b, BARRA-R, ERA5, and ERA-Interim show
too few heavy rain days (> 10 mmd−1) over the coast-
lines, SA peninsula, and western Tasmania. BARRA-C im-
proves on this but generally simulates more heavy rain days
than other reanalyses and too few moderate–light rain days
(< 10 mmd−1, not shown) in all domains. BARRA-R and
MERRA-2 generally show too many light rain days, and the
ERA reanalyses show too many light rain days in SY and
eastern Tasmania and too few in AD, PH, and western Tas-
mania.
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Figure 6. Distribution of (a) hourly rain rate (mm per hour) and
(b) rain over 24 h in UTC over Sydney during November to Febru-
ary in 2006–2018.

The inter-seasonal and inter-annual variations in precipi-
tation bias with respect to AWAP are plotted in Fig. 8. As
with temperature (Fig. 4), they are similar between BARRA-
R and BARRA-C, although the latter shows a larger range in
all BARRA-C domains except TA. In particular, a wet bias is
generally observed during the wet season (JJA for AD, DJF
for PH), wetter months (JJA for TA), and thunderstorm sea-
son (DJF for SY). A dry bias generally occurs during the
dry season or drier months, i.e. SON for AD, PH and TA.
This is consistent with the tendency of BARRA-C to over-
estimate heavy rain rates and underestimate light rain occur-
rence. Some of the inter-annual variations in bias are clearly
common amongst BARRA and the global reanalyses, e.g. in
AD and PH domains during the Millennium Drought (1996–
2009) when the various models share a dry bias. BARRA
also shows different trends to the global reanalyses. There is
a wetting trend post-2009 for BARRA in AD, but this is op-
posite for the other models. In SY, BARRA also displays a
wetting trend, while ERA trends are drier.

It should, however, be noted that, as is often found for grid-
ded interpolated data, AWAP tends to underestimate the in-
tensity of extreme rainfall events and overestimate the fre-
quency and intensity of low rainfall events (King et al.,
2012). The errors are larger at high elevations (SY and TA)
where gauges are fewer, when there is frozen precipitation,
and/or topography is exposed to prevailing winds (Chubb
et al., 2016).

3.5 Storms over Sydney

The point gauge-based assessment in Sect. 3.3 is harsher
to higher-resolution models than coarser models due to the
compound error of space and time near-misses, which in-
creases as the grid cells shrink. Therefore, we compare the
simulated rainfall from BARRA-SY with the Bureau’s radar
nowcasting rainfall product (Rainfields2; Seed et al., 2007)
and use the fractions skill score (FSS) to allow assessment
at different spatial scales following the approach described
in Roberts and Lean (2007), Jermey and Renshaw (2016),
and Acharya et al. (2020). The FSS provides an evaluation
of the rainfall skill as a function of spatial resolution. The
radar product, blended with gauge observations using con-
ditional merging (Sinclair and Pegram, 2005), is available
from 2014 onwards on a mosaic grid consisting of the do-
mains of multiple radars. Following Acharya et al. (2020),
the largest 36 storm events during 2014–2016 are selected
based on domain-averaged daily precipitation.

FSS is categorized as a “neighbourhood verification” met-
ric (Ebert, 2009) in which fractional coverages of grid cells
close to observations are valued equally. The FSS tallies the
relative number of “hits” between the model and the obser-
vation at different spatial scales and different rain thresh-
olds. An FSS of 1 represents a perfect forecast wherein the
number of cells with precipitation above a threshold within
a neighbourhood is identical between the model and obser-
vation grids for all possible neighbourhoods. Here, BARRA
hourly rain rates are regridded to the radar grid of 1.5 km,
and the accumulated rain amounts over moving 6 h windows
are analysed. From the 36 multi-day storm event set, 1323
different 6 h events are produced using a moving window.
FSS is computed for each 6 h event for each model, and then
the scores are aggregated to give an average for all events.
Given that inherent bias between the observation and the
models exists due to differences in their representativity, and
also to focus on the spatial accuracy of the models, we use
percentile-based thresholds computed across all the storm
events. This ensures that the model and observed rain fields
have an identical fraction of rain events for each threshold
value (explained further in Sect. E in the Supplement). Fig-
ure 9 illustrates the striking differences between BARRA-R
and BARRA-SY for five events in 2014. BARRA-SY can
show more realistic organization in the 1.5 km model ow-
ing to the explicit modelling of convection and can produce
higher rainfall intensity. The event on 7 December 2014 in
Fig. 9v illustrates a summer storm case in which BARRA-R
shows rainfall accumulation lacking the spatial pattern com-
mon to convective organization that is evident in BARRA-
SY and in observations. BARRA-R also shows excessive
grid-point precipitation over the mountains, which is absent
in both observations and BARRA-SY. At the same time,
BARRA-SY can show too many cells (Fig. 9ii), which can
produce streaks of light rainfall (Fig. 9iv).
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Figure 7. Mean difference in (a) annual precipitation and (b) annual count of wet days with depth ≥ 10 mm. The models are regridded onto
the AWAP grid using nearest-neighbour interpolation.

The FSS results in Fig. 10 show that BARRA-SY is more
skilful over all scales than BARRA-R for all threshold lev-
els. FSSuniform is the FSS of a forecast field with a uni-
form fractional coverage equal to the fraction of points ob-
served with any rain (> 0.2 mmh−1). Scores greater than
FSSuniform are considered skilful. For the lowest threshold
(56 %, i.e. 4 mm in the observed radar values), the uniform
score (FSSuniform) is reached at scales of 0.3◦ (BARRA-SY)
and 0.65◦ (BARRA-R). At the highest threshold (99.9 %,
64 mm), the uniform score is reached at scales of 2.4◦ and
3.35◦, respectively. The contrast between the two BARRA
FSSs is therefore greater at the higher precipitation thresh-
olds. FSSs for higher rainfall thresholds are also generally
lower as the area of rain being sampled becomes more lo-
calized and is more challenging to reproduce correctly in the
models.

3.6 Added-value analysis for temperature and rainfall
extremes

We apply an approach similar to Di Luca et al. (2015)
to quantify the added value (AV) in the representation of
climatological extremes from BARRA-C by comparing its
skill to the skill in BARRA-R. The warm extremes of daily
maximum temperature, the cold extremes of daily minimum
temperature, and the wet extremes of daily precipitation
are assessed against AWAP. The statistics for extremes (X)

are given by the percentiles of the daily temperature
and precipitation values over the 29-year time period.
We use AVd = [d(XBARRA-R,XAWAP)− d(XBARRA-C,

XAWAP)]/[d(XBARRA-R,XAWAP)+ d(XBARRA-C,XAWAP)]

from Di Luca et al. (2016), where d defines a distance
metric between the model-derived and AWAP-derived
statistics computed across the grid cells. To capture both
the total errors and spatial patterns of the statistics, we let
d ≡MSE(A,B)=E

[
(A−B)2] to define the mean squared

error and also use d ≡ Corr(A,B)= 1−R(A,B), with R as
Pearson’s correlation. Larger positive AV values suggest
smaller errors in BARRA-C than in BARRA-R and thus
substantial added value by the downscaling of BARRA-R.

Figure 11 plots AV scores for different BARRA-C do-
mains, showing that AV is not gained consistently across
the percentiles, variables, and domains. For warm extremes
of daily maximum temperature, BARRA-C shows positive
AVMSE over BARRA-R in the TA and AD domains. Low
or negative AVMSE for AD, PH, and SY (inland region) is
mainly due to the warm and wet bias in BARRA-C seen
in Figs. 3c and 6a and b. The positive AVCorr indicates that
BARRA-C captures the spatial patterns of the warm extremes
across the domains, particularly over the coastal and high-
topography regions (see also Fig. S6 in the Supplement).

For cold extremes in Fig. 11b, BARRA-C still shows pos-
itive AVMSE over all domains except SY. This AV is mostly
contributed by coastal regions, as seen in Fig. S6. Negative
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Figure 8. Mean difference in seasonal precipitation totals over various BARRA-C domains with respect to AWAP. Black curves are shaded
around the 1990–2018 means. Note that the y axes in (a–d) are different.

AVMSE in SY is related to warmer cold extremes, particularly
over the Great Dividing Range. Positive AVCorr is seen in TA
but not in the other domains. However, it should be noted that
the BARRA versions are generally strongly correlated with
AWAP, with R mostly between 0.7 and 0.9.

AV from BARRA-C for wet extremes of precipitation re-
lates more to the spatial patterns of the extremes (Fig. 11c).
There is negative AVMSE for all domains except TA, which
remains near zero, highlighting the BARRA-C rainfall bias.
On the other hand, the AVCorr is positive for all domains ex-
cept AD for the three highest rainfall percentiles, which in-
dicates better spatial correlation of rainfall than BARRA-R.

4 Discussion

The BARRA-C 1.5 km models are strongly forced by
BARRA-R with both initial conditions every 6 h and hourly
boundary conditions. BARRA-C has therefore inherited
much of the same quality of BARRA-R; however, it does
provide additional information about local near-surface me-
teorological conditions. BARRA-C provides better repre-
sentative point-scale estimates of screen temperature, 10 m
wind speed, and surface pressure at some areas with com-
plex topography or near coastlines, and it mainly inherits the
skills of BARRA-R over other areas. The degradation from
BARRA-R is slight, within (RMSD) 0.6 K for temperature
and 1 ms−1 for wind speed.

BARRA-C also shows a 10 m wind speed bias that is pos-
itive (negative) during light (strong) wind conditions, simi-
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Figure 9. Simulated 6 h rainfall accumulation [mm] in BARRA-SY and BARRA-R compared with rainfall derived from the composite radar
network around the Sydney area for five events.

lar to the bias in BARRA-R. Many factors such as boundary
layer mixing, form drag for subgrid orography, and surface
properties can influence wind estimation over land. The rep-
resentation of the stable boundary layer remains challeng-
ing due to the multiplicity of physical processes and their
complex interactions, i.e. turbulence, radiation, land surface
coupling and heterogeneity, and turbulent orographic form
drag. Models typically suffer biases in 2 m temperature and
wind speed under such conditions (Steeneveld, 2014, and ref-
erences therein).

BARRA-C also inherits the domain-averaged biases in
daily maximum and minimum temperature from BARRA-
R. It reduces some bias over the Great Dividing Range but
simulates more hot days than seen in observations, particu-
larly over inland Australia. However, in some inland regions
the AWAP analyses are poorer quality due to low observing
station density. For example, in the northwest of the AD do-
main – the Nullarbor Plain – both BARRA and the global
models show a large warm bias in daily maximum tempera-
ture; however, the station density used in AWAP is less than
two per square degree (Sect. A in the Supplement).
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Figure 10. Aggregated FSS across 1323 6 h storm events as a func-
tion of neighbourhood distance (degrees) for 6 h rainfall above three
percentile thresholds (distinguished by colours, percentile values,
and observed amount in mm). The solid curves indicate the score
for BARRA-SY, dotted curves for BARRA-R, and the dashed hor-
izontal lines the uniform score (FSSuniform) for each threshold as
specified by Roberts and Lean (2007).

The daily temperature bias varies differently in time be-
tween the four domains, with AD and PH showing a change
of sign in bias between summer and winter months, while
SY and TA show a persisting negative (positive) bias for
daily maximum (minimum) temperatures. Such similarities
between the domains may be related to their similarities in
terms of climate and land cover. Bush et al. (2020) discussed
the fact that changes in RAL1 for land surface representa-
tions (Table 1, Sect. 2.1) are important to improve the diur-
nal biases in pre-RAL1 configurations. These could benefit
the biases seen over vegetated areas, particularly for daily
minimum temperature in SY and TA.

Differences in land classification between BARRA and
ERA reanalyses can explain some of the differences seen
in the comparison of gridded daily maximum and minimum
temperatures seen in Fig. 3. BARRA avoids the bias in ERA
over the salt lakes in SA by modelling them with land char-
acteristics based on IGBP, whereas ERA uses CCI.

The dry bias of higher rain rates seen in the coarser-scale
models during the thunderstorm seasons in the SY domain
is alleviated by BARRA-C. The underestimation of the peak
rain rates in BARRA-R and ERA5 was expected from the
lack of convection organization due to the use of a cumulus
parameterization, whereas BARRA-C evidently shows more

realistic organization and does not underestimate peak rain
rates. However, the latter also exhibits too much heavy rain
and not enough light rain, which is likely due to the still
under-resolved convection and the model’s inability to re-
solve detrainment from convective updrafts. This is consis-
tent with the findings reported in other studies. For exam-
ple, Lean et al. (2008) and Hanley et al. (2015) found that
1 km grid length UM simulations tend to produce cells that
are too intense, too far apart, and with not enough light rain.
The latter also noted insufficient small storms in both shower
cases and large storm cases, as well as too many large cells
in shower cases.

The short hindcast length in BARRA-C (Sect. 2.2) poses
a further limitation. The rainfall excess could result from
model spin-up. Extra energy (i.e. CAPE) builds up during the
early time steps when there is insufficient convection, which
is finally released in the form of convective precipitation in
later time steps (Lean et al., 2008). Champion and Hodges
(2014) have also noted that modelled precipitation intensities
are most accurate when the model is initialized 12 h before
the rain maxima. The moisture-conserving zero lateral mass
flux boundary conditions in BARRA-C exacerbate this issue.
Moisture variables are not advected across boundaries and
are instead allowed to develop via physical processes in the
model. These processes take some time to spin up in each
hindcast, leading to a near-boundary downstream moisture
bias, e.g. the western boundary of the annual rainfall maps
of the AD and SY domains (Fig. 7a). These issues of pre-
cipitation with short hindcasts can be improved with an as-
similation system that will allow high-resolution features to
propagate from one hindcast cycle to the next (Dixon et al.,
2009). In spite of these limitations, we find that BARRA-C
provides a more representative rainfall climatology for heavy
rain days near the coastal and mountainous regions, as well
as better sub-daily rain spatial patterns.

BARRA-C simulates peaks in the diurnal distribution of
precipitation better than BARRA-R and ERA5. However, we
also find that precipitation may be initiated too early and
grow too rapidly. Consequently, BARRA-C under-represents
off-peak rain rates, resulting in an overly pronounced diurnal
cycle, as seen in Fig. 4(b) for BARRA-SY in summer. This is
contrary to the expectation for all models to initiate too late
since subgrid-scale initial plumes cannot be represented. The
early initiation bias in BARRA-R is due to the CAPE-based
trigger mechanism of the convection scheme (Lean et al.,
2008). In the case of the kilometre-scale UM, there are likely
several reasons. Hanley et al. (2015) partly attributed tim-
ing bias in convection initiation, which is too early in shower
cases and too late in the larger storm cases, to unresolved
convection at the kilometre-scale grid length. Other reasons
may be that stochastic perturbations (Sect. 2.1) or model re-
sponses to the pre-convective profile are too strong or that the
profile has inadequate convective inhibition (CIN). The var-
ious aspects (intensity, size, and timing) of simulated cells
have been shown to improve with adjustments to the mix-
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Figure 11. Added-value (AV) analysis of the (a) warm extreme of daily maximum temperature, (b) cold extreme of daily minimum temper-
ature, and (c) wet extreme of daily precipitation for all four BARRA-C domains.

ing length used in the subgrid turbulence scheme, but not all
aspects improve simultaneously (Hanley et al., 2015).

There are trends and/or inter-annual variability of the bias
in BARRA against analyses of temperature and precipitation
observations, and some of these trends are also apparent in
the global reanalyses. BARRA-C has similar bias variabil-
ity as BARRA-R, and its magnitude is similar to or less than
the global reanalyses. Spurious trends or artificial shifts in
reanalyses could result from abrupt changes to the amount
of data assimilated, e.g. at the start and end of satellite mis-
sions or the various observational data archives. In BARRA-
R, corrections were also made to the observation screening
and thinning rules mid-production (Su et al., 2019). How-
ever, it is outside the scope of this work to assess the impacts
of various observational changes.

BARRA-C shows better agreement with the pattern and
the relative distribution of radar-derived rainfall during
storms over Sydney. This improvement is due to the use of
explicit convection (Sect. 2.1) and a higher-resolution model
and is consistent with earlier studies with UM (e.g. Lean
et al., 2008). Comparisons of FSS from the same events in-
cluding ERA5 show that its lower resolution leads to larger
representation errors and lower FSS than BARRA-R despite
both parameterizing convection (Fig. S6, the Supplement).
While BARRA-C still shows considerable bias compared to
both rain gauges and radar observations, it adds value to
BARRA-R and ERA by providing more realistic and accu-
rate spatial representations of rainfall during storms at vari-
ous spatial scales and percentile thresholds.

The AV analysis of temperature and precipitation extremes
shows that BARRA-C provides some value over BARRA-
R in various aspects including the spatial patterns of the
warm temperature extremes and wet precipitation extremes
as well as the bias in cold extremes over coastal regions. Low

AV can be related to temperature and precipitation biases,
which differ between the regions. For example, the BARRA-
C wet bias relative to AWAP, particularly over the PH domain
(Fig. 7b), is responsible for the low AVMSE for rainfall. The
positive AVCorr for precipitation in BARRA-SY agrees with
the above FSS analysis, which somewhat avoids the wet bias
issue through percentile-based thresholding.

Assessing AV for wet extremes may also be problematic
with AWAP. As an interpolated dataset, AWAP tends to un-
derestimate the intensity of extreme heavy rainfall observed
at stations, and the issue is more pronounced at locations with
sparse observational sampling or high topography, particu-
larly in SY and TA (Chubb et al. 2016; King et al., 2012).

While this analysis suggests that limited value is added by
the downscaling of BARRA-R for these extremes, the true
AV of BARRA-C at its native resolution is not assessed here
given the limited resolution of AWAP and can be explored
further with the scale-dependent AV analysis of Di Luca et al.
(2016). Determining AV at the kilometre scale is also ex-
pected to be challenging as more accurate and representative
observational datasets are needed.

5 Conclusions

The recent development of CPMs in NWP has facilitated
the creation of kilometre-scale regional reanalysis and cli-
mate projections. BARRA is the first regional reanalysis that
focuses on the Australasian region. It has been developed
with significant co-investment from state-level emergency
service agencies across Australia. BARRA-C is the critical
component of the project that provides these agencies with
the means to develop a deeper understanding of past ex-
treme weather at local scales, especially in areas that were
not adequately served by observation networks (e.g. Fig. S3,
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the Supplement). The four midlatitude domains of BARRA-
C are designed to address these needs, and BARRA-R is
needed to establish a driving model for BARRA-C and utilize
more of the Australian local observations (Su et al., 2019).
Completed in June 2019, the 29-year BARRA-R reanaly-
sis (1990 to February 2019) and its downscaled counter-
part BARRA-C form a collection of high-resolution gridded
meteorological datasets with 12 and 1.5 km horizontal grid
lengths and 10 min to hourly time resolution, produced using
systems closely related to the Bureau’s present (as of October
2020) regional NWP systems. The hybrid model-level and
pressure-level gridded data from BARRA-C are also avail-
able to drive or force sub-kilometre weather or non-weather
models.

This paper describes the experimental configuration of
BARRA-C and provides a preliminary assessment to illus-
trate its skills over BARRA-R and the global reanalyses at
their subgrid scales. As expected from a hindcast-only sys-
tem, it inherits the domain-averaged biases from BARRA-
R. On the other hand, our added-value analysis shows that
BARRA-C simulated different climatological extremes for
temperature. Altogether, there is added skill at the local scale
for temperature and wind, particularly in topographically
complex regions in SY and TA, as well as coastal regions
in all domains. As expected, the contrasts in skills and bi-
ases are most apparent between BARRA and the coarser-
scale reanalyses (ERA-Interim, MERRA-2). BARRA-R and
BARRA-C produce more distinctive precipitation estimates
for intensity, sub-daily timing, and hourly spatial patterns
that are characteristics of their physical schemes. BARRA-C
also provides a different spatial distribution of precipitation
over complex terrains and more skilful representations of
sub-daily rainfall fields. The latter suggests that BARRA-C is
more suited for studies of extreme rainfall events, although it
still has a high rainfall bias. The high rainfall bias also man-
ifests in the climatological extremes of precipitation. These
findings highlight the fact that improvements are still needed
for future kilometre-scale downscaled reanalysis, e.g. adding
kilometre-scale data assimilation and further model develop-
ment. At this stage, BARRA-R and BARRA-C can be used
conjunctively to improve individual estimates of tempera-
ture and precipitation. Some of their biases, including for
10 m wind, could also be addressed via post-processing using
multivariate regression models or quantile matching methods
such as those of Glahn and Lowry (1972) and Cattoën et al.
(2020). Users of BARRA are strongly encouraged to under-
take a local evaluation to ascertain the skills of BARRA-C
for their regions and parameters of interest.

BARRA lays some of the important groundwork for fu-
ture reanalysis-related activities and developing national cli-
mate risk services at the Bureau. Some of the issues identi-
fied in this work are being actively researched by collaborat-
ing national meteorological centres and academic institutions
within the “regional atmosphere” configuration development
framework (Bush et al., 2020). Future reanalyses will also

benefit from the recent advances in the Bureau’s NWP, with
an assimilation system (Rennie et al., 2020) and ensemble
introduced in its upcoming kilometre-scale models to allow
propagation of high-resolution information between hindcast
cycles and estimation of uncertainties.

Code availability. All code, including the UM (version 10.6) and
JULES (version 4.7), used to produced BARRA-C is version-
controlled under the Met Office Science Repository Service. The
UM is available for use under license at http://www.metoffice.gov.
uk/research/modelling-systems/unified-model (last access: 31 Au-
gust 2020). JULES is available under licence free of charge at
http://jules-lsm.github.io/access_req/JULES_access.html (last ac-
cess: 31 August 2020). The infrastructure for building and run-
ning UM–JULES simulations uses the Rose suite engine (https:
//metomi.github.io/rose/doc/html/index.html, last access: 31 Au-
gust 2020) and scheduling using the Cylc workflow engine (https:
//cylc.github.io/ (last access: 31 August 2020), Oliver et al., 2019).
Both Rose and Cylc are available under Version 3 of the GNU Gen-
eral Public License. The BARRA-C Rose/Cylc suite, with an iden-
tifier u-ak499, is version-controlled under the Met Office Science
Repository Service and contains the UM–JULES science namelist
and simulation configurations. Output from the model simulations
was converted from UM fieldsfile format to NetCDF4 format us-
ing Iris (https://scitools-iris.readthedocs.io/en/stable/, last access:
31 August 2020).

Data availability. The BARRA datasets for the period of January
1990 to February 2019 are available for academic use. Readers
are referred to http://www.bom.gov.au/research/projects/reanalysis
(last access: 31 August 2020; Bureau of Meteorology, 2020) for
information on available parameters, access, and licensing. The
BARRA-R datasets used to initialize and constrain BARRA-C at
the boundaries and the BARRA-C ancillary files can be requested
by contacting the authors directly and are subject to the same licens-
ing conditions.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-4357-2021-supplement.
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