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Abstract

Biofluid spectroscopy is an emerging tech-
nology in the field of clinical investigation,
providing a simple way to extract diagnostic
and observational information from easy to
acquire samples. Infrared spectroscopy is
well suited to analyse a large range of bio-
fluid samples, including blood and its deriva-
tives, due to flexible sampling modes and
high sensitivity to subtle biological changes.
As the technology advances towards the
clinic, factors influencing successful clinical
translation are becoming apparent. Here, we

Physical Sciences Research Council,
Grant/Award Numbers: EP/L015595/1,
EP/L505080/1

KEYWORDS

1 | INTRODUCTION

In recent years, applications of Fourier-transform infrared
(FTIR) spectroscopy have been rapidly expanding beyond
simple structural characterisation of molecules, regardless
of their chemical or biological contexts [1-3]. As molecular
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present the current understanding of clinical translation in the field of biofluid
spectroscopy, and to facilitate other clinical applications to advance to the clinic.
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vibrations are represented in the mid-IR range, the advan-
tages offered by FTIR are not solely attributed to its intrin-
sic fundamental principles but also operational simplicity
and analytical sophistication [4]. The technique allows for
rapid, label-free and non-destructive analysis of biofluid
samples with none-to-minimal sample preparation and
produces results that are reproducible both qualitatively
and quantitatively [5]. Furthermore, low analysis cost and
minimal reagent use during analysis makes this technique
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cost-effective and economically sustainable for clinical
biofluid investigations. Additionally, FTIR combined with
advanced chemometrics permits interpretation of complex
biological spectra of metabolomic, forensic and clinical
samples [6, 7].

FTIR spectroscopy may be performed with different
sampling modalities for biofluid applications, either
utilising attenuated total reflection (ATR-FTIR), trans-
mission, or transflectance mode approaches. Principally,
FTIR spectrometers irradiate mid-IR light on to a sample
deposit where resultant absorption by sample constitu-
ents at specific frequencies enables determination of their
molecular composition [8]. Absorbed frequencies appear
at fundamental resonant vibrational frequencies of the
atoms within the molecule and reflect the vibrational
transitions from a lower/ground vibrational energy state
to a higher vibrational state. These transitions appear on
the spectrum as peaks which can be interpreted qualita-
tively and/or quantitatively using their position, shape
and intensity [9].

The FTIR spectrum of biofluids contains a wealth of
biological information and can be seen as a fingerprint-
like biochemical snapshot of the condition of the sample/
patient [5]. The most important regions in the IR spec-
trum for biological samples is the fingerprint region
(1800-900 cm ™), which contains the region where amide
I and II bands are seen (1700-1500 cm™'), as well as
higher wavenumber regions (3500-2550 cm™') where
stretching vibrations from O-H, S-H, C-H and N-H bonds
can be seen [10]. In addition to this, the FTIR spectrum
can also provide information on the secondary structures
of proteins in biofluids; for instance, the position of
Amide I and II band can be used to infer a-helical or
f-sheet structures of proteins [11, 12]. The ability to quali-
tatively and quantitatively characterise biofluids is
extremely valuable in a clinical context as samples contain
several biomolecules, such as carbohydrates, lipids, nucleic
acids and proteins, which interact with internal organs
across the human body, which interact with internal
organs across the human body [7, 13-15]. These biomole-
cules fundamentally share a structure and functional rela-
tionship influenced by their physiological environment
and may be treated as biomarkers that can be used to diag-
nose pathologies and monitor disease progression and
treatment therapeutics [7, 13-15]. Thus, FTIR spectros-
copy represents an attractive analytical technique for clini-
cal biofluid tests to aid patient diagnosis, prognosis,
disease stratification and medical observation.

Infrared spectroscopy for biofluids is an ever-evolving
field that has rapidly advanced over the past decades
and demonstrated significant analytical capabilities for
medical research; facilitating clinical investigations
with a plethora of biofluids, including blood and blood

derivatives [16], sputum and saliva [17-19], urine [20],
amniotic fluid [21], bile [22], cerebrospinal fluid [23] and
pleural fluid [24]. Previously, Heise demonstrated the tre-
mendous potential of mid-infrared spectroscopy for clini-
cal biofluids, showing quantification of multiple blood
chemistry biomarkers in blood plasma [25], and later
whole blood and serum [26], utilising multivariate
models and ATR, transmission and diffuse reflectance
spectroscopy. At a similar period in time, Mansch's
research, and later that of Petrich [27], also demonstrated
quantification of specific blood serum constituents, such
as total protein, albumin, triglycerides, cholesterol, glu-
cose and urea, using transmission spectroscopy [28].
These seminal studies advanced the field by showing
detection of clinically important biomarkers and, in the
case of Heise, subsequently facilitated nanolitre quantifi-
cation of glucose, firstly in aqueous solutions [29], and
later in blood serum [30], at physiological concentrations
towards a minimally-invasive detection strategy. Later,
Heise's research demonstrated transmission FTIR detec-
tion of urea in blood plasma, by evaluating characteristic
spectral peaks with multi-variate models, towards mid-
infrared monitoring of patients during dialysis [31]. The
pioneering work of Petrich further extended the potential
of mid-infrared spectroscopy for detection of clinical dis-
ease, where spectroscopic serum analysis with multi-vari-
ate and advanced feature selection models showed
sensitive and specific discrimination of rheumatoid
arthritis patients [32]. Subsequently, Petrich demon-
strated the far-reaching clinical utility of mid-infrared
spectroscopy, with the ability to distinguish patients with
myocardial infarction with high clinical accuracy within
6 hours of presentation of acute symptoms [33]. The
promise of infrared spectroscopy for biofluids has further
extended to oncology, with several important studies
showing identification of numerous cancers of distinct
biomolecular pathologies, including lung [18], brain [34,
35], breast [36-38], bladder [39], ovarian [4], cervical [40]
and prostate [41] cancers, utilising transmission and
ATR-FTIR spectroscopy. Additionally, spectral character-
isation of biofluids has demonstrated quantification of
biomarkers associated with infections [42] and metabolic
disorders, and extended beyond disease diagnostics [7,
43-48], to treatment monitoring strategies [49-51], and
understanding of molecular pathologies [52].

Recently, technological innovation, particularly
regarding quantum cascade lasers (QCL's), has further
advanced the field with the possibility to interrogate bio-
fluids with a broadly tunable, coherent light source of
high spectral density compared to traditional Globar
infrared sources [53]. Analytically, QCL's have important
implications for biofluid applications, allowing increased
sensitivity and improved spectral characterisation of
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liquid samples, as well as the ability to interrogate
samples at discrete frequencies for multi-component
quantification and reduced analysis time. Pioneering
work of both Lendl and Petrich have shown adoption of
QCL based spectroscopic systems for sensitive detection
of amide I and amide II peaks [54, 55] and continuous
monitoring of glucose [56], respectively, in aqueous sam-
ples, enabling qualitative and quantitative studies of pro-
teins and other clinical biomarkers in liquid biofluid
samples. Practically, QCL's are semi-conductor devices
that operate at room temperature and may be thermal
electrically cooled, and are, hence, ideally suited for
miniaturisation and development of portable “point-of-
care” instruments for spectroscopic biofluid applications
in clinical settings.

Despite the potential of FTIR spectroscopy for the
study of biofluids [43, 52, 57, 58], development of this
technique for clinical translation is still in the early
stages. Current processes performed in clinics and hospi-
tals throughout the UK for biofluid analysis typically
involve the use of wet chemistry and electrophoresis
techniques. Immunoassays like the Biuret method is a
common wet chemistry technique used for the detection
of total protein in solution; however, like many other wet
chemistries, this technique requires extensive sample
preparation, requires large volumes (up to 1 mL) of the
biofluid being assessed and can take up to several hours
for results. Similarly, colorimetric and fluorometric
assays, based on Enzyme-Linked Immunosorbent Assay
(ELISA) platforms, are time-consuming multi-step pro-
cesses, and further critically rely on availability of specific
antibodies for proteins of interest [59-61]. Electrophore-
sis involves the separation of molecules present in a bio-
fluid via migration through a matrix upon application of
an electric field, separating the biofluid into various frac-
tions based on their molecular weight and electric char-
ges [62]. Electrophoresis techniques are also subject to
interference with substances such as free lipids, drugs,
haemoglobin and bilirubin which affect analytical results
[63]. Furthermore, this technique can often take several
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minutes to hours for final results and requires the acces-
sibility of different support media depending on the type
of test being performed. Nevertheless, current analytical
techniques are widely employed in clinical biochemistry
laboratories, since these technologies offer capabilities to
perform highly automated, standardised testing, which is
of critical importance for analysis of high volume clinical
biofluid samples. Hence, development of rival analytical
techniques must not only offer distinct practical and eco-
nomic advantages, such as rapid, simple, label-free testing,
but must also be conducive to automation and demon-
strate a high degree of standardisation for high-throughput
clinical testing. A comparison of FTIR spectroscopy and
commonly employed biofluid techniques including the
Biuret immunoassay method, ELISA assay and electropho-
resis techniques is displayed within Table 1; which out-
lines the time required at each analysis step, sample
volume size and limit of detection.

Recently, tremendous progress has been made regard-
ing the development of high-throughput technologies for
FTIR of biofluids [35, 69], with emergence of multi-well
systems for both transmission and ATR-FTIR platforms.
Nevertheless, the design, implementation and adoption
of standard protocols is critically required to pave the
way from the laboratory to the clinic and to make routine
adoption of FTIR for biofluids a reality [16, 35, 70].

2 | EXPERIMENTAL DESIGN
2.1 | FTIR modes and sample
considerations

Biofluid investigations may be conducted with FTIR spec-
troscopy utilising different sampling modalities; namely,
attenuated total reflection (ATR-FTIR), transmission and
transflectance mode approaches, where respective tech-
niques have vitally important sample considerations.
ATR-FTIR is a spectroscopic sampling modality
characterised by total internal reflection of infrared

TABLE 1 Comparison of analytical techniques for clinical translation in biofluid studies
Analysis step Biuret method ELISA Electrophoresis FTIR spectroscopy
Preparation time 2-4h [64] 2.5 h* [65] 3-4h [66] 10 min [10]
Sample volume <1 mL [60, 61] <1 mL [65] <1 mL [66] <1 mL [10]
Drying time N/A N/A N/A <10 min [10]
Analysis time <30 min [60, 61] 3.5h [65] 45-90 min [66] 20 min [10]
Data analysis time N/A N/A N/A 1 hour - 2 days® [10]

Limit of detection (LOD) 0.4 mg/mL [61]

“Depending on ELISA kit purchased. Overnight incubation may also be required.

"Depending on size of data set and analysis required.

39 pg/mL [65]

6-8 pg/mL [67] 7.5-150 pg/mL [68]
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radiation incident on an internal reflection element (IRE)
where evanescent waves penetrate sample components to
identify their molecular composition. The IRE comprises
an infrared transparent material where the refractive
index of the material must exceed the refractive index of
the sample to satisfy total internal reflection of the inci-
dent infrared beam. Materials with a high refractive
index are chosen to minimise the critical angle since the
angle of incidence must exceed the critical angle to insti-
gate total internal reflection [71]. The critical angle, 6.,
may be calculated as a function of the refractive index of
the sample, n1, and the refractive index of the IRE, n2.

n2
Oc=sin—1—
nl

Total internal reflection of infrared radiation at the
interior surface of the IRE causes propagation of evanes-
cent waves parallel with and confined to the surface of
the IRE with a typical depth of penetration of ~1.0-
2.0 pm in the fingerprint region [10, 72]. The penetration
depth is defined as the distance from the external surface
of the IRE where the electric field amplitude decreases by
1/e of its initial value [73]. The penetration depth of the
evanescent wave, d,, may be calculated given the wave-
length of applied light, 4, the angle of incidence with
respect to normal of the IRE, 0, the refractive index of
the sample, n1, and the refractive index of the IRE, n2.

A
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Consideration of the optical properties of ATR crys-
tals is imperative for successful spectroscopic interroga-
tion of biofluid samples, since the angle of incidence and
refractive index of the IRE have significant influence on
the resultant amplitude of evanescent waves. In particu-
lar, the angle of incidence of infrared radiation should be
appropriately aligned with respect to the calculated criti-
cal angle for a given IRE to maximise spectroscopic sig-
nals for biofluid experiments, since the depth of
penetration of evanescent waves decreases exponentially
further from the critical angle.

Careful consideration should further be given to
selection of the appropriate IRE for a given spectroscopic
biofluid application since component design has a pro-
found influence on acquired infrared spectra and capabil-
ities for high-throughput clinical testing. Currently, IREs
are predominantly manufactured from diamond, zinc sel-
enide and germanium materials due to both their high
refractive index and superior optical transparency over
mid-infrared wavelengths. Arguably, diamond is

considered the gold-standard IRE for biofluid experi-
ments since the substrate provides access to the entire
biologically relevant spectral window, while boasting sig-
nificant robustness and chemical inertness over the full,
1-14, pH range, albeit at an increased overall cost. Con-
versely, zinc selenide IREs are not suitable for analysis of
biofluid samples of pH <5 and >9 due to surface sample
interactions, while germanium IREs give rise to a lower
wavenumber cut-off of 780 cm™' that may obscure bio-
logical information and produces a reduced depth of pen-
etration for a fixed angle of incidence relative to other
IRE substrates. While conventional IRE materials have
demonstrated excellent performance for biofluid diagnos-
tics, these substrates have limited sample capacity and
are cost-prohibitive for high-throughput testing given the
fixed point of analysis [35]. Furthermore, implementation
of standard IREs into fast paced clinical environments
may be challenging since the fixed nature of substrates
pose risks of biological contamination between sample
analyses and would require thorough and time-consum-
ing sterilisation procedures. Therefore, careful consider-
ation should be given to prospective biofluid applications
prior to selection of an appropriate IRE material to estab-
lish whether the substrate is conducive to a particular
clinical context, whether that be basic research or high-
volume clinical testing.

Recently, silicon wafers have been successfully
utilised as low-cost ATR crystals, in both single and
multi-reflectance formats, where the reduced optical pat-
hlength permits access to the biologically important fin-
gerprint region previously obscured with standard silicon
hemisphere IREs [35, 74, 75]. Traditional silicon IREs
have a long optical pathlength that promote significant
silicon multi phonon and interstitial oxygen absorptions
and result in poor transmission of infrared radiation
<1500 cm™* [35, 74, 76, 77]. Consequently, pertinent
vibrational modes in the fingerprint region will undoubt-
edly be obscured from spectroscopic analysis with stan-
dard silicon IREs that have previously been shown to
provide vital biological information on biofluid compo-
nents related to disease pathophysiology [35]. Similarly,
conventional multi-reflectance silicon ATR crystals
exhibit poor transmittance of infrared light <1500 cm™
since multiple reflections increase the optical path length
and accentuate intrinsic silicon lattice vibrations [75].
Hence, micro-fabricated silicon IREs based on silicon
wafer technology should be selected over standard silicon
IREs for biofluid experiments, and may provide a low-
cost, high-throughput alternative to other previously
mentioned IRE substrates.

ATR-FTIR spectroscopy represents an attractive ana-
lytical tool for biofluid diagnostics since the technique
offers a rapid, economical and non-destructive platform
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that requires minimal sample preparation and negates
the need for costly labels and reagents [10]. ATR-FTIR
spectroscopy has previously demonstrated considerable
promise as a diagnostic platform for the clinical arena,
with successful proof-of-concept studies involving a
wide range of biofluids, such as blood serum [4, 38, 78],
blood plasma [4, 19], saliva [17, 19] and urine [19, 79].
ATR-FTIR spectroscopy is particularly suited for bio-
fluid applications since the penetration depth of the eva-
nescent wave is well-defined and sample pathlength
remains constant between measurements irrespective of
small deviations in sample thickness, in contrast to
transmission approaches [80]. This is a particularly
important consideration for dried samples where coffee-
ring, gelation and cracking patterns together contribute
to formation of inhomogeneous biofluid films of non-
uniform thickness [44]. To this extent, careful consider-
ation should be given to temperature, humidity and the
consequent evaporation rate when performing sample
drying to maximise spectral reproducibility, since such
parameters profoundly influence drying patterns [44,
81, 82]. Furthermore, sample volumes should be care-
fully considered during sample preparation protocols,
such that deposited biofluids should cover the entire
surface of the IRE and provide a minimum sample
thickness of three to four times the penetration depth of
evanescent waves, both to prevent scattering artefacts
and promote sufficient spectral signal to noise, respec-
tively [10].

ATR-FTIR spectroscopy should be preferentially con-
sidered for liquid biofluid analysis over other FTIR
methods since the reduced sample pathlength and expo-
nentially decaying evanescent waves reduces interaction
with the strong dipole moment of water molecules [44].
Hence, adoption of ATR-FTIR approaches for wet bio-
fluid analysis should permit reduced absorption of infra-
red light by water molecules, which often saturates
infrared spectra in transmission FTIR studies [47, 83].
While water molecules still obscure pertinent biological
signatures in ATR-FTIR spectra, Sala et al. have recently
successfully demonstrated digital drying of liquid blood
serum sample spectra to remove spectral contributions
from water, enabling discrimination of brain cancer from
non-cancer patients with sensitivities and specificities
greater than 93% and 83%, respectively [84]. Nevertheless,
dry sample analysis is still conventionally employed for
biofluid ATR-FTIR studies, given the substantial
increases in absorption signals of biological spectral fea-
tures [80]. Overall, ATR-FTIR spectroscopy is an effective
and widely recognised spectroscopic technique for bio-
fluid diagnostics, and considering recent advances in IRE
technology, may now be on the cusp of clinical
translation.

PHOTONICS

Transmission FTIR is a spectroscopic sampling modal-
ity characterised by the projection of a spectrum of infra-
red radiation on to an optically transparent cell where
the wavelength and intensity of transmitted infrared light
permits molecular classification of sample constituents.
Infrared light absorbed by the sample, A, corresponds to
the intensity of incident, Io, and transmitted light, I, and
is a function of molar absorptivity, e, pathlength, 1, and
concentration, c, of the sample, in accordance with the
Beer-Lambert law [26].

I
A:loglO(TO) =elc

The sample pathlength in transmission FTIR spec-
troscopy is not wavelength dependent and instead perme-
ates the sample producing spectra indicative of bulk
sample components in contrast to ATR-FTIR spectros-
copy [71]. Sample path length is imperative to acquisition
of quality spectra with transmission FTIR spectroscopy
and should be specified at 1-20 pm to prevent signal sat-
uration and non-linearity of the Beer-Lambert law, both
of which are detrimental to clinical spectroscopic ana-
lyses [71]. Furthermore, liquid interrogation of aqueous
biological media should necessitate implementation of a
significantly reduced sample path length, ~6 pm, to
account for the strong infrared absorption of water mole-
cules [83]. Practically, transmission FTIR spectroscopic
analysis of wet biofluid samples may be difficult to imple-
ment in the context of high-volume clinical testing, given
reproducibility issues with spacer thicknesses, surface
interactions, presence of air bubbles in samples, and the
laborious and time-consuming configuration of current
liquid cells [83]. Furthermore, transmission FTIR spec-
troscopy is notoriously challenging for wet biofluid analy-
sis with regards to sample reproducibility and the ability
to accurately maintain a consistent level of sample wet-
ness. Alternatively, discrete frequency infrared spectros-
copy that utilises a quantum cascade laser (QCL) source
may be considered for transmission mode experiments of
wet biofluids, since the increased brilliance and emission
power of the source facilitates interrogation of liquid
samples at increased optical pathlengths [85]. Adoption
of transmission FTIR spectroscopy is widespread for
dried biofluid films, and the recent emergence of a silicon
high-throughput transmission FTIR accessory (HTS-XT)
has enabled high-throughput clinical biofluid testing on a
384 well silicon plate [5, 86]. Sample dilution protocols
should be carefully considered prior to clinical biofluid
testing with HTS-XT platforms, since 3-fold dilutions
were found to promote reproducible drying patterns of
serum samples resulting in improved spectral acquisition
[5, 86]. However, the ratio of amide I and II peaks and
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defined band positions were still found to shift with
transmission HTS-XT platforms compared to ATR-FTIR
systems, attributable to dispersion effects and should be
recognised prior to data interpretation [86]. Additionally,
consideration should be given to implementation of
transmission HTS-XT systems into clinical laboratories,
since provided silicon multi-well plates do not offer the
possibility of a disposable testing platform. In this regard,
comprehensive cost benefit analyses should be conducted
to determine the practical implications of introducing
high-throughput transmission FTIR systems into clinical
environments prior to biofluid diagnostic testing.
Transflection FTIR describes the projection of
infrared light onto a sample deposited on a reflective
coated slide where a small proportion of incident light is
specularly reflected, with the majority transmitted to the
underlying metal surface and then projected back
through the sample. The reflected component of infrared
light enables identification of characteristic frequencies
of sample constituents and it should be noted that
absorption bands on resultant infrared spectra are signif-
icantly larger than those from transmission and ATR-
FTIR spectroscopy experiments, due to the increased
sample path length [71]. Therefore, transflection FTIR
spectroscopy is not applicable for wet biofluid diagnos-
tics because the increased sample path length causes
increased absorption of infrared light by water molecules
relative to ATR-FTIR and transmission FTIR platforms.
However, transflection FTIR spectroscopy boasts several
practical and analytical advantages for dried biofluid
analysis, including use of economical low emissivity
slides which provide potential for high-volume, dispos-
able testing, in contrast to conventional fixed mode
ATR-FTIR platforms [70]. Furthermore, transflection
FTIR spectroscopy provides increased absorbance of
infrared light by dried biofluid components given the
increased sample pathlength [70]. Nevertheless, trans-
flection FTIR experiments are particularly susceptible to
spectral artefacts for dried sample analysis given the
increased interaction of infrared light with inhomoge-
neous biofilms and resultant resonant Mie scattering
[10]. Hence, the signal-to-noise ratio (SNR) of infrared
spectra is recognised to be poorer for trans-flection FTIR
measurements in comparison to ATR-FTIR approaches
[10]. Furthermore, transflection FTIR has been shown to
suffer from the electric field standing wave effect where
the intensity of absorption bands varies across infrared
spectra, with the phenomena strongly influenced by
sample thickness of dried biofluid films [1, 10, 71, 87].
For such reasons, it has previously been recognised that
trans-flection FTIR may not be best suited to study bio-
logical materials in comparison to transmission FTIR
and ATR-FTIR approaches [10]; we believe this is

particularly true for biofluid applications given practical
difficulties in achieving reproducible biofilm drying
patterns.

2.2 | FTIR microspectroscopy

FTIR microspectroscopy describes the coupling of conven-
tional FTIR modalities with microscopy and facilitates the
acquisition of spatially resolved information on chemical
constituents within biological samples. To date, FTIR
microspectroscopy has been successfully demonstrated on
a plethora of cell and tissue samples [88-91] and provides
a chemically rich alternative to traditional histopathologi-
cal and cytological inspection of tissue architecture.
Similarly, FTIR microspectroscopy has recently been suc-
cessfully employed on biofluid samples [69, 92], where
simultaneous analysis of sample arrays has enabled reali-
sation of a high-throughput liquid biopsy screening strat-
egy for clinical environments. The ability to spatially
resolve dried biofluid films further permits comprehensive
evaluation of heterogeneous samples influenced by drying
patterns and the coffee-ring phenomenon.

FTIR microspectroscopy may be performed in either
point or wide-field mode and spectral acquisition or
imaging/mapping modes determined by the selection of
either single element or linear array and focal plane array
detectors and aim of the experiment, respectively. Princi-
pally, point mode mapping describes a raster scan
approach where use of an infrared aperture allows spec-
tral acquisition at localised sample points in stepwise
fashion. Conversely, wide-field FTIR microspectroscopy
describes exposure of a deposited sample to an infrared
light source of increased divergence, where multi-ele-
ment detectors allow simultaneous acquisition of consid-
erable quantities of spectra representative of larger
sample areas. Critically, selection of either spectroscopic
approach has practical implications for experimentation
and influences analytical performance, and should there-
fore be carefully considered prior to implementation for
biofluid studies.

Point mode mapping measures spectra with a high
SNR with spatial resolution defined by the diameter of the
infrared aperture with respect to the diffraction limit.
However, the nature of point mode mapping approaches
results in considerable analytical time for analysis of entire
biofluid samples, without reduction in the scan time per
pixel that would consequently produce lower SNR spectra.
In contrast, wide-field FTIR microspectroscopy is a rapid
technique that collects spectra with good SNR where spec-
tral resolution is limited by the diffraction limit. Therefore,
wide-field FTIR microspectroscopy is strongly advocated
for high volume biofluid applications where timely
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diagnosis is imperative in clinical laboratories. Alterna-
tively, point mode FTIR microspectroscopy facilitates
detailed acquisition of spectroscopic information confined
to a particular sample location and therefore may be partic-
ularly useful in research activities for identification of bio-
molecular signatures within heterogeneous biofluid films.

Consideration should also be given to instrumentation
when selecting the appropriate FTIR microspectroscopy
platform for biofluid studies. The light source is funda-
mental to spectral acquisition and may feature globar, syn-
chrotron or QCL sources. Currently, globar sources are
commonly used for FTIR microspectroscopy where emis-
sion of black body radiation at a specified temperature
provides a stable and economical source with high SNR
and peak energy density in the mid-IR region [93]. How-
ever, synchrotron radiation provides significant advantages
for FTIR microspectroscopy when the spatial resolution
approaches the diffraction limit, where the increased
source brightness relative to globar light beams improves
SNR of acquired spectra [94]. Furthermore, QCLs have
recently demonstrated significant potential for FTIR micro-
spectroscopy and operate on the principle of inter-sub-band
transitions where the coherent light source emits photons
of narrow line widths with increased power densities com-
pared to globar sources [53]. Practically, QCLs offer the
prospect of reduced sample scan time given the ability to
produce discrete frequencies of mid-infrared light that can
be engineered to correspond to pertinent diagnostic fre-
quencies of biofluid samples [95]. The discrete frequency
approach further circumvents the need for a Michelson
interferometer, resulting in low cost, compact instrumenta-
tion. Nevertheless, globar sources represent a mature and
economical infrared technology where component simplic-
ity currently offers an attractive and accessible tool for inte-
gration in to spectrometers within clinical laboratories.

The choice of infrared detector further influences spec-
troscopic experimentation and may feature either a ther-
mal or photonic component. Thermal detectors utilise
pyroelectric materials, commonly deuterated triglycine sul-
phate, which convert temperature fluctuations to readable
electrical signals and offer primary advantages of low cost
and room temperature operation at the expense of reduced
response time and sensitivity. Photonic detectors utilise
semiconductor materials with narrow band gaps, com-
monly mercury cadmium telluride (MCT), which produce
electronic excitations in response to incident infrared pho-
tons, and provide superior spectral SNR although require
cooling with liquid nitrogen. Overall, there is a trade-off
between practicality, cost and analytical performance when
selecting appropriate instrumentation for FTIR micro-
spectroscopy platforms and respective parameters should
be carefully considered prior to conducting biofluid studies.

PHOTONICS

2.3 | Spectral acquisition

It is imperative that a background spectrum is obtained
prior to the deposition of biological samples to
account for atmospheric conditions, particularly changes
in carbon dioxide and water vapour, which may other-
wise negatively influence spectroscopic data analysis.
For standard FTIR approaches, one background spec-
trum is performed prior to repeat and replicate measure-
ments of a particular biofluid sample to reduce the
impact of fluctuating laboratory environments. For FTIR
microspectroscopy, one background spectra is typically
acquired for every 5-10 consecutive sample spectra,
hence, multiple background measurements must be col-
lected at specified sample points for experiments given
the longer experimental time scales.

Spectral quality is of paramount importance for spec-
troscopic disease diagnostics and is characterised by SNR
of infrared spectra, which is dependent on analytical time
and scan resolution, as summarised by the FTIR trading
rules. The first rule states spectral quality increases at the
expense of analytical time, where the resultant SNR is
proportional to the square root of accumulated scans
[93]. The second rule states that spectral quality
decreases as the scan resolution increases, attributed to
the increase in spectral noise with the acquisition of addi-
tional information, where the SNR is proportional to scan
resolution [93].

2.4 | Data processing

There are numerous pre-processing options to explore
when it comes to large spectroscopic datasets, to improve
multivariate and classification algorithms by reducing
computational burden. Raw spectral data can be difficult
to interpret as it often contains unwanted noise and arte-
facts, therefore pre-processing is usually required [96-
98]. Some common pre-processing steps include spectral
cut, binning, smoothing, normalisation, and baseline cor-
rections such as extended multiplicative signal correction
(EMSC) [4, 96, 97].

Selection of the spectral region of interest is often the
first step in pre-processing. Many studies will use the full
IR spectrum for their data analysis; however, it is com-
mon practice to cut the spectra to a desired region to
enable faster analysis with less data points. When interro-
gating biofluids, the spectra are often cut to the finger-
print region where biomolecules are known to vibrate
(1800-900 cm™"). Many studies also include the high
wavenumber region (~3700-2700 cm™") which relates to
proteinaceous and lipidic vibrations.
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Binning involves reducing the number of data points
by averaging adjacent data points, to lower the dimen-
sionality of the dataset. The number of data points to be
averaged is represented by a bin factor [96, 97]. For
example, a bin factor of 1 is considered as no binning,
but a bin factor of 4 results in each 4 data points being
averaged and is substituted by the mean value. Binning is
useful in both reducing the computational burden of a
dataset and improving the SNR by reducing the impact of
small fluctuations between adjacent data points. It is partic-
ularly useful with datasets that contain a large range of
wavenumbers, therefore thousands of data points; how-
ever, decimation of data points can increase the SNR by
increasing the data spacing within a spectrum, ultimately
losing spectral resolution. Therefore, when choosing a bin
factor it is important to keep these potential issues in mind.

Smoothing removes high frequency noise while pre-
serving low frequency components in order to reduce the
appearance of noise within the dataset. Occasionally,
spectral features or unresolved peaks can be mistaken for
high frequency noise, therefore each smoothing tech-
nique comes with a substantial risk [96, 99]. Three com-
mon smoothing techniques include Savitzky-Golay (SG)
filtering, wavelet denoising and local polynomial fitting
with Gaussian weighting. The SG filtering technique is
commonly used within FTIR spectroscopy and is a
method based upon a local least-squares polynomial
approximation. The least-squares smoothing maintains
peak morphology while minimising high frequency noise
and involves fitting a polynomial within a moving win-
dow of a fixed degree [96, 97]. Wavelet denoising is par-
ticularly useful within FTIR spectroscopy for spectra that
have high SNRs and is known to improve visual spectral
quality. This technique estimates the smoothed result by
looking at one data point and a collection of data points
following, resulting in a noise-free signal as the output
[96, 100]. The third smoothing technique for FTIR
spectroscopy involves estimating and fitting Gaussian
curves to the spectrum at varying bandwidths, which can
be useful for general denoising [97].

Normalisation is a common pre-processing technique
in FTIR spectroscopy that further allows the removal of
any spectral artefacts, which includes min-max scaling
(between 0 and 1), vector normalisation in biological
samples [96, 97]. Min-max scaling sets the minimum and
maximum absorbances to 0 and 1, respectively, which
results in all areas of the spectrum being scaled in rela-
tion to each other. For vector normalisation, each
wavenumber variable is initially averaged and then sub-
tracted from the original spectrum to equal zero. Follow-
ing this, each wavenumber is squared, then divided by
the square root of the total sum of squared wavenumber
variables, thus normalising the spectral dataset to a

magnitude of one [101]. Additionally, peak normalisation
can be used where the intensity corresponding to a par-
ticular absorbance band is used as a reference, such as
the Amide II or Amide A bands, or most commonly the
Amide I band. Normalisation to the Amide I band
ensures all spectra is scaled according to the maximum
intensity of the peak within the Amide I wavenumber
region (1700-1600 cm™') [96, 97, 102]. The choice of
normalisation technique is often in conjunction with the
baseline corrections that are applied and are discussed
below.

Baseline corrections for pre-processing also have
numerous options including Savitzky-Golay derivative fil-
ters (or differentiation—first and second), rubberband
baseline correction, polynomial baseline correction and
EMSC [97]. Derivative filters are very commonly used
within FTIR spectroscopy as they are a straightforward
mathematical transformation which reduces baseline dif-
ferences and improves spectral resolution. The shape of
the spectra will be altered by differentiation; however, it
has the ability to resolve any overlapping bands [10].
Rubberband baseline corrections are useful when the
background noise within a spectrum is non-linear and
adjusts the baseline within specific areas by fitting a con-
vex polygonal to the troughs of the spectrum [99]. Poly-
nomial baseline correction is more widely used within
Raman spectroscopy as baselines are often less consistent
than with FTIR spectroscopy; however, can still be
utilised for this type of analysis [96]. EMSC scales each
data point according to a reference spectrum, while irrel-
evant polynomial trends are subtracted. The addition of
prior knowledge about spectral patterns from the reference
spectrum allows for an improvement in data quality by
correcting unwanted additives and multiplicative effects
[103, 104]. There is no universal method approach to
which is the best baseline correction, or any pre-processing
technique, and choices are typically based on visual prob-
lems within the individual spectral dataset [10].

Each of these pre-processing techniques discussed
here can be used in conjunction with each other and the
order they are applied to the raw data can be vital
towards the output of pre-processed data, as shown by
Butler et al. [96] Generally they are applied as a trial-
and-error approach depending on the individual dataset,
analysis goal and the computing power available [10].
Schematic overview as displayed by Butler et al. is shown
in Figure 1.

2.5 | Exploratory analysis

After the raw spectral data has been pre-processed it is
common for principal component analysis (PCA) to be
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FIGURE 1 Schematic overview of pre-processing steps including binning, smoothing, normalisation and baseline corrections; to be

applied before exploratory or classification analysis (Random forest as an example) [96]

used as an exploratory technique to determine variance and establishes covariance between variables within the
between classes. It involves an orthogonal linear transfor- spectra [96, 102]. The covariance matrix is converted into
mation which reduces the dimensionality of the data set scores and loadings to allow each covariance to be
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displayed as principal components. The first principal
component represents the greatest covariance within the
dataset and is typically the greatest interest for FTIR
spectroscopic data. The PCA scores plots are used to visu-
alise the covariance between certain principal compo-
nents and the corresponding PCA loadings identify
the wavenumber regions that contain the covariance
between spectral classes [102].

Another technique commonly employed in spectro-
scopic research is hierarchical clustering analysis (HCA),
which is used to explore the similarity between observa-
tions and/or clusters [105, 106]. HCA repeatedly per-
forms the following two steps: (a) identify the two
observations that are closest together, and (b) merge the
two most similar clusters. This iterative process continues
until all the clusters are merged together, and the result
can be visualised using heat maps or dendrograms, which
are tree diagrams describing the hierarchical relationship
between objects [107].

Exploratory techniques are classified as unsupervised
methods of analysis as they only have input variables and
will not be influenced by corresponding output variables,
training and test sets; however, they can be useful in pre-
liminary analyses to gain an understanding of the
wavenumber regions (and therefore biological compo-
nents) that are responsible for the covariance within the
dataset.

2.6 | Classification analysis

For disease diagnostics there are a variety of machine
learning algorithms for classifications. For example, neu-
ral networks [108], random forest (RF), linear discrimi-
nant analysis (LDA), partial least squares-discriminant
analysis (PLS-DA), soft independent modelling by class
analogy (SIMCA) [109] and support vector machine
(SVM), are all supervised techniques that create a classifi-
cation function from training data [35, 102, 110, 111].
Prior to classification, datasets are generally split into two
parts: a training and a test set. The training set is used to
identify disease biosignatures, and the test set is used for
the prediction. Moreover, cross-validation is often used to
achieve a significant approximation of how the classifica-
tion would perform in a real-world environment. In this
process, training and test sets are sampled multiple times
(ie, k-fold), and the test set is examined against the train-
ing set in every fold to evaluate the true performance of
the model and minimise the bias in sample selection
[112]. RF, PLS-DA, SIMCA and SVM are four classifica-
tion techniques that have shown excellent performance
and reliability for disease diagnostics [35, 102, 110,
111, 113]. Each of them can be optimised by tuning their

parameters according to the cross-validation perfor-
mance. To build a robust diagnostic model, the classifica-
tion should be repeated a number of times (ie,
resampling) in order to minimise the error in the results.
Bootstrapping analysis can be utilised to determine an
acceptable number of iterations required to obtain
reliable results.

RF is a widely used machine learning algorithm and
is a robust, accurate technique for spectral diagnostics.
This method averages the predictions of several indepen-
dent base models for an output prediction that is a binary
classification. It involves using the Classification and
Regression Trees (CART) algorithm to build an ensemble
of decision trees where the classification prediction is a
result of majority vote of all the decision trees within the
forest [97, 114]. Within this technique there are three
main training parameters; ntree, mtry and nodesize. The
number of trees is represented by ntree, the number of
descriptors available at each split is represented as mtry
and the depth of the trees is referred to as nodesize [97,
115]. Palmer et al. investigated the effect of RF classifica-
tions with a variety of training parameters (ntree from
1 to 5000, mtry from 1 to 126 and nodesize from 1 to 50)
and ultimately observed little variation within the ranges;
ntree from 250 upward, mtry between 40 and 126, and
nodesize between 5 and 10 [115]. When choosing a value
for ntree, it is suggested not to use less than 250, as results
did deteriorate; however, higher values (above 500) did
not see an improvement in classification only an added
increase on computational burden. Using a smaller value
for mtry (<40), the predictive quality decreases as not
enough descriptors are available at each split, therefore
values of 40 and above are recommended. While a
nodesize that is too big increases the size and range of the
trees, and ultimately there is a decrease in predictive
accuracy [115].

PLS-DA combines PLS regression and LDA. It
reduces the dimensionality of the data that in turn
reveals hidden patterns and can be used to extract impor-
tant information out [116]. Classes are separated into two
distinct regions by a straight line, where data points are
projected perpendicular to the line, known as a discrimi-
nator. Discriminant scores are the distances from the dis-
criminator and provides new variables called PLS
components [116]. The first component (PLS1) will
account for the greatest variation in the dataset, the sec-
ond (PLS2) will account for the second greatest variation,
and so on. Like PCA, PLS has scores and loadings plots
that outline the general inconsistences and which
wavenumber regions have the highest disparity
[102, 116].

In datasets where there are many variables, PLS is
particularly useful as it replaces the original variables
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with fewer latent variables (LVs), which is a tunable
parameter. Over-fitting can occur when too many LVs
are selected and the output information includes data as
well as noise, while too little LVs provide insufficient out-
put data information and represent an under-fitted
model. Selecting the number of LVs can be a crucial step
in building the model as both over- and under-fitting is
undesirable. The most common method for prediction
ability is to employ a cross-validation in order to tune the
PLS model [117].

SIMCA is a well-established supervised classification
model for spectroscopic data that employs PCA to evalu-
ate spectra within a data training set. SIMCA performs
independent PCA analysis on spectra of respective sam-
ple classes in the training set such that sample groups
have a distinct PC space, based only on significant princi-
pal components, for classification of unknown samples.
In a binary classification model, constructed PC spaces
are utilised to assign samples in a test data set to one of
four outcomes, in particular, samples may be assigned to
one of respective classes, or sample belongs to both or
neither class, from which performance statistics are sub-
sequently calculated [118].

SVM provides an optimal dimension, known as the
hyperplane, for the separation of the data. Each support
vector is a co-ordinate of an individual observation and
the hyperplane is used to categorise samples. Tuning
parameters for SVM classifications can have a significant
effect on the output. The parameter cost, for example, is
the trade-off between the ability to classify data and the
smooth boundaries [97, 102].

Each classification model described here will provide
an output of sensitivity, specificity, kappa and balanced
accuracy [102]. The sensitivity and specificity refer to the
ability of predicting true positives and true negatives,
respectively, within the dataset. The kappa value gives a
measurement of the agreement between observers and
helps to understand the reliability of the model. While
the balanced accuracy illustrates the overall performance
of the model by averaging the accuracy of either class
[102]. Examples from the literature highlight the impor-
tance and applicability of each of these models for classi-
fications within biofluid studies. This includes examples
such as a study by Smith et al. who utilised RF to identify
spectral features within serum for distinction between
cancer and non-cancer patients [110]; a study by Dickens
et al. who relied on PLS-DA to differentiate between dis-
ease stages in multiple sclerosis (MS) patients [119]; and
a study by Zhang et al. who developed an SVM based
algorithm for the classification and prediction of breast
cancer in peripheral blood [120]. Table 2 highlights the
main advantages and disadvantages for each model
described here.

PHOTONICS

TABLE 2 Advantages and disadvantages of RF, PLS-DA,
SIMCA and SVM algorithms (Partially adapted from Gromski et al.
[121] and Granato et al. [122])

Model
type Advantages Disadvantages
RF « Can handle noisy « Sensitive to the
and missing data number of variables
« Robust to outliers selected at each node
« Estimates what
variables are
important in
classifications
PLS-DA  « Reduces « Often results in over-
dimensionality fitting
« Can handle » Model validation is
noisy data essential

« Can draw confidence
intervals around
groups

» Can predict either
continuous or
categorical variables

SIMCA  « Good for high-within ~ « Neglects between-
class variability
+ Can evaluate model

class information
that could aid in

performance based classification
on classification » Metrics used in
outcomes classifications are
« Can recognise pre-determined
outliers « Results dependant on
number of
chosen PCs
SVM » Less likely to over-fit « Computationally

» No local minima expensive with large

» Robust to outliers datasets

« Useful in both linear « Binary classifier
and non-liner data

3 | MATERIALS

Materials necessary for optimum sample preparation and
analysis will be dependent upon the study aim and
design. The authors guide the readers the Experimental
Design section for further information and provide rec-
ommendations below for key materials that may be
useful.

3.1 | Reagents

« Biofluid sample, such as; blood, blood derivatives, sal-
via, sputum, urine, bile, sweat, breast milk, tissue fluid,
cerebrospinal fluid, pleural fluid.
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CAUTION: All human biofluid samples must be
obtained with ethical approval, usually granted by
local research ethics committee, following review of
study design and patient participation consent forms.

« Fixative reagents, such as; formalin, ethanol, or metha-
nol, where sample fixation may be required.
CAUTION: Fixatives are often irritants, and may have
additional associated hazards, so careful risk assess-
ment (RA) using material safety data sheets (MSDSs),
and control of substances hazardous to health
(COSHH) is essential.

« Physiological water, or equivalent dilutive agent, for
dilution studies where concentrated biofluid sample
may be unsuitable for analysis, such as; transmission
investigations with limited pathlengths, or to prevent
the impact of the Vroman effect as thoroughly dis-
cussed by Cameron et al. [44]

« Reagents for containing spillages, such as; ethanol (70%)
or disinfectant agents like Virkon (Antec, DuPont), that
can be applied in the circumstance of sample escape,
and/or general cleaning of surfaces and substrates.

3.2 | Equipment

3.21 | Sample handling

« Storage facilities, including refrigerator (4°C), freezer

(=20°C), or ultra-low freezers (—80°C)
CAUTION: Human tissue samples will degrade at
room temperature over time, which will be spectrally
apparent. A consistent low temperature is preferred for
stable sample storage. For samples containing cellular
matter, ultra-low temperature storage is critical.

« Sample storage containers such as; Eppendorf tubes and
cryogenic vials, dependent upon chosen storage method.
Sample acquisition containers may differ, such as blood
collection tubes, which may act as temporary storage of
sample.

« Sample substrates for sample deposition and
containment, such as; BaF, and CaF, slides, or sili-
con multi-well plates for transmission measure-
ments; low-E slides (Kevley Technologies, UK) for
transflection measurements; or IREs made of
germanium, diamond, silicon carbide, or silicon.

« Sample handling accessories such as; microtitre pipette
and pipette tips.

3.2.2 | Spectrometer

« Commercial FTIR spectrometer, including but not limited
to those produced by the following original equipment

manufacturers; Agilent Technologies, Bruker Optics,
JASCO, Perkin Elmer, Thermo Fisher and Shimadzu.

» FTIR accessory units for analysis modes, such as; ATR,
specular and diffuse reflectance, accessories, transmis-
sion cells and novel optical systems. These are pro-
vided by spectrometer manufacturers, as well as
specific accessory providers including, but not limited
to, Specac Ltd and Pike Technologies.

3.2.3 | Software

« Data acquisition software, often provided by instru-
ment manufacturer.

« Data analysis software, available either with limited
functionality within instrument manufacturer acquisi-
tion software, or by using external statistical program-
ming packages, such as Matlab, Python, R, and custom
analysis packages. Many spectral analysis functions are
available as open source packages within the afore-
mentioned programming languages; however, some
are provided commercially such as the Cytospec image
analysis software.

4 | PROCEDURE

The following protocols represent examples of commonly
employed methods. However, it is important to note that
the parameters may vary depending on the instrumenta-
tion, project aim and the needs of the analyst. Optimisa-
tion studies should be carried out to determine the best
methodology for the desired application.

4.1 | Sample preparation

Biofluids should be stored in a —80°C freezer in cryovials
or Eppendorf tubes after collection from pathology labo-
ratories or biobanks. The period of time concerning long-
term storage of biofluid samples does not appear to influ-
ence acquired spectral data as established by previous
work exploring pre-analytical factors with human serum
samples [123]. Whole biofluid samples are most often
used, but some studies may involve dilution [86], filtra-
tion or centrifugation (eg, to examine the low molecular
weight fraction of serum) [68, 87]. Similarly, whole blood
samples are commonly subjected to centrifugation pro-
cesses to extract serum or plasma constituents prior to
clinical testing. Differences in centrifugation speeds and
time intervals between protocols have not been found to
influence spectral data, although it is important to high-
light that minor spectral differences have been observed
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between different serum collection tube types [123]. Vol-
umes of required sample are dependent on mode of spec-
tral collection. ATR analysis only requires minute volumes
of samples, whereas greater volumes are often needed for
transmission measurements due to the longer pathlength
[10]. For quantification purposes sample concentrations
are required to lie within the linear range of the Beer Lam-
bert Law, given that the Law deviates from linearity at
higher concentrations due to alterations in the absorption
characteristics and refractive index of the solution [10].
Biofluids may be spotted directly onto the IRE (eg, dia-
mond, silicon, germanium etc.) for ATR measurements,
which are generally left to dry on the ATR crystal to
negate the spectral interference of water and ensure suffi-
cient sample-IRE contact [44]. Likewise, biofluid films can
be developed for transmission measurements by
dehydrating samples onto IR transparent substrates, such
as CaF, and BaF,. Optimal sample drying procedures
should be determined through preliminary analysis [9].

Examples of a typical step-by-step sample preparation
procedures include:

1. Remove biofluid sample from —80°C storage and
allow to thaw at room temperature;

2. (a) Deposit blood serum directly onto ATR substrate

with an appropriate volume to fully cover the entire
surface area of the ATR substrate and leave to dry for
10 minutes prior to ATR mode spectral analysis [78];
(b) (i) Dilute each serum sample with distilled water
to obtain a 2-fold dilution;
(ii) Deposit 5 mL aliquots of diluted sample onto wells
of a 96-well silicon plate, and dry for 30 minutes at
room temperature prior to transmission mode spectral
analysis [124].

4.2 | Spectral Acquisition

The acquisition of IR spectra can be achieved through stan-
dard laboratory benchtop FTIR instruments or by using
more complex synchrotron facilities. For example, ATR-FTIR
spectroscopy (A) and transmission FTIR microspectroscopy
(B). In general, there are several collection parameters that
must be selected prior to acquisition, such as the number of
background/sample scans and the spectral resolution. Collec-
tion settings may be altered to suit the needs of the user.
Some examples of spectral acquisition include:

42.1 | (A) FTIR spectroscopy

1. Open instrument software (eg, Perkin Elmer Spec-
trum acquisition software);

PHOTONICS

2. Insert the appropriate sample accessory into the FTIR
spectrometer depending on intended measurement
technique, either ATR, transmission or transflection
FTIR spectroscopy;

3. If utilising an ATR accessory, ensure the fixed IRE
crystal is thoroughly cleaned with ethanol and
then distilled water and air dried prior to the acquisi-
tion of background measurements. Similarly, if using
disposable IRE's [35], ensure the substrate is clean
prior to spectroscopic analysis. Go to step 6.

4. If utilising a transmission FTIR accessory, ensure IR
transparent optical windows (eg, CaF,, BaF,) are
cleaned with isopropanol using a cotton-tipped appli-
cator to prevent abrasive scratches. Go to step 6.

5. If utilising a transflection FTIR accessory, ensure the
reflective substrate (eg, MirrIR Low-e microscope
slides, silicon) are cleaned successively with ethanol
and distilled water and air dried prior to collection of
background measurements.

6. Apply instrumental settings (eg, wavenumber range of
4000-450 cm™, 4 cm ™" resolution, data spacing of 1 cm™
and 16 co-added scans for background and sample);

7. Input appropriate naming convention for sample
scans and select path location for files to be saved;

8. Ensure instrument is calibrated and ready for
acquisition;

NOTE: follow accessory calibration procedure if signal
is low.

9. Acquire background measurement, with no sample
present on the substrate. Ensure a background mea-
surement is recorded prior to respective sample
depositions to account for possible changes in
atmospheric conditions over time.

10. For ATR measurements, deposit biofluid sample
onto the IRE and ensure the sample fully covers the
exposed IRE surface area. The minimum sample
thickness should be 3-4 times the depth of penetra-
tion of the evanescent wave to prevent spectral arte-
facts arising from interactions between evenascent
waves and substrate surfaces. Go to step 13.

11. For transmission FTIR measurements, deposit bio-
fluid sample directly onto IR transparent optical win-
dows for dried spectroscopic analysis and allow
spotted sample to fully air dry before placing optical
windows in sample holder. For wet biofluid analysis,
introduce the biofluid sample into a liquid cell where
the sample pathlength is determined by the defined
spacer thickness. Go to step 13.

12. For transflection FTIR measurements, deposit bio-
fluid sample directly onto reflective substrate
mounted to transflection FTIR accessory and allow
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sample to fully air dry. Preliminary investigations
may be required to determine optimal sample
volume for specific biofluids.

13. Acquire sample spectrum, either when the sample is
in liquid state or fully dried depending on experi-
mental design. NOTE: Transflection FTIR spectra
may promote significant Mie scattering depending
on dried sample morphology and may further give rise
to standing wave artefacts, hence, transflection FTIR
measurements should be considered with caution.

14. Repeat steps 7-13 for biological and technical repli-
cates, as required.

4.2.2 | (B) FTIR microspectroscopy

1. Switch on microscope and instrument;

2. Fill the detector with liquid nitrogen (N,) to ensure
cooling, if using an MCT detector;

NOTE: allow detector to stabilise for ~ 20 minutes
before continuing and top up the detector with N, as
required (eg, every 7 hours).

3. Open instrument software (eg, Bruker Opus acquisi-
tion software);

4. Apply instrumental settings (eg, wavenumber range of
4000-600 cm™', 8 cm™' resolution, 256 background
scans and 128 co-added sample scans);

5. Place the sample onto the microscope stage and focus
the microscope as explained in the microscope
instructions manual;

6. Move to a sample-free area and check signal quality
by adjusting the stage position to bring the substrate
surface into focus;

7. Choose the aperture size (eg, 10 x 10 pm);

NOTE: use the smallest possible aperture size in order
to acquire spectra with high SNR.

8. Select a clean sample-free area of the substrate and
acquire background spectrum;

9. Move the joystick to move the sample slide around
the microscope stage and identify points of interest.

NOTE: background measurements should be taken at
regular intervals to account for atmospheric changes.

10. Acquire sample measurement (eg, point spectra or
image map);

NOTE: ensure measurement does not exceed time
frame for liquid N, cooling.

11. Save spectra and/or image map until data processing.

4.3 | Data pre-processing

When approaching the pre-processing of a set of data, it
must be kept in mind that the outcome of each step
depends on the specific features of the dataset, but also
on the data acquisition settings. It is always advised to per-
form spectral correction to eliminate unwanted minor spec-
tral interferences when analysing a considerable set of data,
such as baseline variation and spectral noise. However, the
selection and order of pre-processing parameters depends
entirely on the dataset chosen for analysis.

+ Depending on the size of the dataset and the chosen
steps, pre-processing can require from less than an hour
to several hours. It is often a trial-and-error approach,
which can be time consuming. By using a grid search, it
is possible to examine several combinations of pre-
processing to individuate the optimal method.

1. Selection of the spectral region of interest.

2. Baseline correction. SG differentiation (first or sec-
ond), rubberband, polynomial or EMSC.

3. Normalisation of the spectra. Min-max (0-1), vector or
normalisation to Amide I (or II) band.

4. Smoothing of the spectra. SG filtering, wavelet denoising
or local polynomial fitting with Gaussian weighting.

5. Binning of the spectra.

Further theoretical details about the abovementioned
pre-processing techniques can be examined in the Data
Processing section of the Experimental Design.

4.4 | Data analysis

The goal of data analysis for diagnostical purposes is rep-
resented by great outcomes in discriminating between
diseased and healthy patients. Exploratory analysis and
classification are both valid methods to achieve further
knowledge on the set of data. Exploratory analysis tech-
niques are useful to obtain information on discriminating
features in the dataset through interpretation of plots;
while, when looking at building a strong classification
model for future clinical applications, it is important to
find the approach that guarantees the best and most reli-
able performance.

+ Depending on the size of the dataset and the chosen
steps, data processing can require from several hours
to multiple days.
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A. Exploratory analysis. PCA (or similar) for correlation 2. Choose your supervised classification method (eg, RF,
or pattern analysis. PLS-DA, SVM etc.);
B. Classification analysis. PLS-DA, SVM or RF. 3. Perform bootstrapping and assess the correct number
of resampling iterations required;

A typical step-by-step classification process carried out 4. Perform some preliminary classifications with a k-fold
with a classification software or through programming, cross-validation procedure (eg, 5-fold) and determine
would be the following: optimal model tuning parameters;

5. Perform a classification with a k-fold cross-validation
1. Split the dataset in training and test set, according to procedure, the correct number of resampling and the
the size of the set of data; appropriate tuning.
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Stepwise process of each stage required in biofluid analysis, from sample preparation to data analysis
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Further theoretical details about the abovementioned
data analysis techniques can be examined in the Data
Processing section of the Experimental Design.

Figure 2 summarises all the general steps that need to
be performed from sample preparation to data analysis.

5 | FUTURE APPLICATIONS

Infrared spectroscopy shows significant promise in the
medical field aiding in the improvement of patient diag-
nosis, prognosis and medical observation while enabling
clinical management of disease, directing type and dura-
tion of treatment. The application of spectroscopic tech-
niques for “liquid biopsies” is a rapidly progressing field
in diagnostics. Traditional diagnostic methods typically
require invasive tests such as surgical biopsies or medical
imaging techniques which are expensive, require spe-
cialised technicians and consist of subjective histopatho-
logical examinations. Furthermore, patients who are
deemed at risk of an underlying malignancy are sub-
jected to significant waiting times to receive medical
imaging tests for diagnosing disease such as cancer [125].
Cancer screening tests have proven to be effective for
early diagnosis of certain cancers allowing for improved
survival rates for these patients [126-129]. However,
there is a distinctive gap in cancer diagnostics, with rou-
tine screening tests currently only available for a small
proportion of cancers. Numerous cancers, particularly
those involving internal body organs, do not employ rou-
tine screening programmes where late stage diagnosis is
common and associated with advanced disease and
poorer patient survival. Therefore, infrared spectroscopy
has significant potential to provide rapid and low-cost
screening tools for several cancers, which could either be
integrated with established diagnostic pathways, or
adopted within primary care facilities to identify patients
at an early disease stage who require further clinical
investigations. To date, numerous proof-of-concept stud-
ies have demonstrated the potential of infrared spectros-
copy as a powerful analytical clinical tool for the
diagnosis of cancer using blood samples. ATR-FTIR spec-
troscopy has been utilised to diagnose ovarian [130],
brain [78], melanoma [47], and breast cancers [38] to
name a few. Furthermore, FTIR spectroscopy has poten-
tial to monitor and predict the therapeutic response in
cancer treatment aiding towards the delivery of precision
medicine to promote successful treatment for the
patient [131].

Infrared spectroscopy has demonstrated to be
capable of the accurate identification of bacteria with
significant diagnostic capabilities in the field of micro-
biology [132-134]. The limitations of the current

methods of pathogen identification have been well
documented [135, 136]. Gram-negative bacilli clones
are responsible for the most frequent healthcare associ-
ated infection outbreaks [137]. Recently, Martak et al.
demonstrated that FTIR spectroscopy was able to iden-
tify and type bacterial clones within short time frames
to allow infection controls to be quickly implemented
[138]. Similarly, FTIR spectroscopy has allowed vari-
ous Pseudomonas, Escherichia and Bacillus strains to
be identified at both strain and species level [139]. Fur-
thermore, infrared spectroscopy has been utilised for
guiding treatment for infections well as in the determi-
nation of antibiotic resistance [140, 141]. Current diag-
nostic procedures for infections and sepsis are
insufficient and fail to diagnose patients at early stages
causing delays in the diagnosis and initiation of treat-
ment. There is great potential for translation of infra-
red spectroscopy into clinical environments to allow
for the rapid identification of infections in both the
community and hospital care settings.

Viruses are typically identified by the detection of
antibodies and antigens using serological assays and
molecular polymerase chain reaction based assays
which are time consuming, expensive, require bulky
equipment and specialised training [142]. Numerous
studies have demonstrated infrared spectroscopy to
overcome these limitations of conventional virus diag-
nosis by providing label-free, non-destructive analyti-
cal tool which requires little sample preparation [143].
FTIR spectroscopy has been evaluated for the detec-
tion of hepatitis B and C in serum samples [144] and
in the determination of human immunodeficiency
virus (HIV) in plasma samples [145]. ATR-FTIR spec-
troscopy has been applied as a point-of-care test for
identifying malaria parasites in whole blood samples
in malaria-endemic countries [146]. Furthermore,
with the increasing risk of pandemic viruses, like
Covid-19, spectroscopic methods can also be used to
gain an understanding into the evolution of new and
existing viruses by understanding how they mutate
and spread to allow for their effective control and
eradication [147].

FTIR spectroscopy techniques can detect the early
stages of disease including before clinical symptoms
have presented by analysing samples at the molecular
level. This has been particularly well demonstrated in
the case of degenerative neurological diseases includ-
ing Alzheimer's disease. ATR-FTIR analysis is shown
to be able to distinguish between different types of
dementia and neurodegenerative diseases using blood
samples [148]. Mordechai et al. found that FTIR analy-
sis of plasma and white blood cell samples whole blood
samples can be used as an early diagnosis tool for
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Alzheimer's disease, improving on the current subjec-
tive tests used in the diagnosis [149]. FTIR spectros-
copy has also been investigated as a tool for the
identification of traumatic axonal injury [150],
Parkinson's disease [151] and in differentiating relaps-
ing-remitting MS from clinically isolated syndrome
(CIS) as well as identifying those CIS who will progress
to relapsing-remitting MS. [23]

Infrared spectroscopy has clearly demonstrated sig-
nificant potential as a rapid, economical and clinically
effective diagnostic tool suitable for several diagnostic
pathways within our current healthcare system. Never-
theless, infrared spectroscopy remains in the prelimi-
nary stage on the roadmap to clinical translation, and
several challenges must be addressed before clinical
adoption of infrared spectroscopic technologies within
healthcare can be realised. Firstly, future research must
demonstrate the clinical utility of infrared spectroscopy
in large, multi-centre studies on both retrospective and
prospective data with significantly greater sample
populations to validate the potential of proposed tech-
nologies. Secondly, comprehensive health economic
studies must be performed for proposed clinical scenar-
ios to demonstrate the health economic benefits associ-
ated with introduction of infrared spectroscopy within
clinical environments. Lastly, there is a dire need for
implementation of standardised methodologies for dif-
ferent infrared spectroscopic techniques to ensure
adopted technologies are simple to use and robust for
clinical laboratories. To this extent, we hope this tuto-
rial has provided valuable insights and discussions into
optimal methodologies for infrared spectroscopy of bio-
fluids, which we envisage will disrupt the current diag-
nostic pathway and transform the way in which
healthcare is delivered in the clinical environment.
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