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Abstract 

The growing dominance in terms of industrial applications has helped polymer-based composite 

materials in conquering new markets relentlessly. But the presence of fibrous residuals and 

abrasive particles as reinforcement in polymer matrix composites (PMCs) affects the output 

quality characteristics of micro-drilling operations. The output quality characteristic aims at 

reducing overcuts and momentous material removal rate (MRR). In such perception, multi-

objective particle swarm optimization (MOPSO) evident to be a suitable optimization technique 

for prediction and process selection in manufacturing industries. The present paper focuses on 

multi-objective optimization of electrochemical discharge drilling (ECDD) parameters during 

drilling of SiCp and glass fibers reinforced polymer matrix composites (PMCs) using MOPSO. 

The Response Surface Methodology (RSM) based Central Composite Design was used for the 

experiment planning. Electrolyte concentration, inter-electrode gap, duty factor, and voltage 

were used as process parameters whereas MRR and overcut were observed as output quality 

characteristics (OQCs). The obtained experimental results were initially optimized by RSM 

based desirability function and later with multi-response optimization technique MOPSO to 

achieve best possible MRR with lower possible overcut. The comparative analysis proves that 

output quality characteristics can be effectively improved by using MOPSO. 
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1. Introduction 

The improved mechanical strength of polymer-based composite materials (PMCs) has replaced 

conventional materials in industrial and aviation applications in last one decade [1]. The 

enhanced polymer matrix composites are reinforced with abrasive particles as secondary 

reinforcement which strengthens their usage in the adverse slurry environment [2].  Nowadays, 

these composites are effectively used in the aviation sector where these require accurate 

machining for the assembly purpose [3]. But the presence of secondary reinforcement like silicon 

carbide deteriorates drilling characteristics by increasing tool wear [4]. These complications 

motivated research fraternity to develop unconventional machining process for drilling of these 

materials. The PMCs lie in the category of nonconductive material which is difficult to be a 

machine with available machining processes. Because of nonconductive nature of PMCs, 

Electrochemical discharge drilling (ECDD) process comes out to be a suitable process for 

drilling operations. ECDD is unconventional drilling process for non-conductive materials were 

first introduced by Kurafuji [5]. Nowadays, substantial research work has been conducted to 

improve the machining quality. The researchers have adopted various techniques like Taguchi’s 

approach [6], response surface methodology [7], neural networks [8] and Grey theory [9], 

genetic algorithm [10-11], particle swarm optimization [12] etc. for single and multi-response 

optimization of the process. The optimized combination of the process parameters influences the 

performance of the machining process. For the multi-response optimization, it becomes 

necessary to assess the effect of each process parameters on each response parameter. The multi-

objective optimization of the machining process can be performed with the response surface 

methodology (RSM) [13]. As per available research literature, Hari Singh et al. [14] analyzed the 

turning process for possible tool wear and surface roughness using RSM. Mojtaba et al. [15],  

Benyounis et al. [16] and Neseli et al. [17]  used response surface methodology for optimizing 

wing model for drones, weld bead parameters and tool geometry factors during turning 

respectively. Davim et al. [18] studied the delamination developed during drilling of medium 

density fibreboards using response surface models. Hashmi et al. [19] obtained the optimum 
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conditions which can be useful for the machining Ti-6Al-4V alloy using RSM. Kumar et al. [20] 

analyzed the state of surface roughness produced during turning of Al 7075/10/SiCp and Al 7075 

composites. 

As far as novelty is concerned, Multi-response Particle Swarm Optimization (MOPSO) 

technique is comparably newer to RSM.  In the mid-decade 1990, Kennedy & Eberhart [21] 

introduced particle swarm optimization, an algorithm that impressionists the flocking pattern of 

the birds. Carlos A. Coello [22] in 2002 further modified the algorithm to handle multi-objective 

problems. In recent times, a combination of response surface methodology (RSM) and particle 

swarm optimization (PSO) is quite popular among research fraternity to obtain the best possible 

solution for machining processes. Arindam et al. [23] clubbed desirability factor with PSO for 

optimizing electric discharge machining process. Gupta et al. [24] used RSM and PSO to find 

out the optimal combination of machining parameters for machining titanium alloy. Guilong et 

al. [25] used RSM and PSO to obtain the optimal design for heating and cooling channels for 

quick heat cycle moulding.   

 

1.1 The motivation for Problem Formulation 

Better strength to weight ratio and nonconductive behaviour of PMCs has gained vast reputations 

in aviation industries. The components used in these industries undergo precise drilling operation 

before assembly to structures. But abrasive nature of advance PMCs deteriorates drilling 

performance which leads to high rejection rate and time delay. Keeping in mind this requirement, 

the research work is articulated in the existing paper. The RSM based Central Composite Design 

was used for the experiment planning. The levels of process parameters are presented in Table 1. 

The influence of these input parameters on response parameters was optimized using RSM and 

MOPSO. 

2. Material and Experimental Planning  

The experimentation was performed on the in-house fabricated SiC/glass fiber reinforced PMC 

[1]. The silicon carbide particles having approximately 37-micron size were mixed with the 

matrix as additional reinforcement. The machining of SiC/glass fiber reinforced PMC was 

performed on electrochemical discharge drilling (ECDD) setup [26] as presented in Figure 1. 

The NaOH solution was used as an electrolyte, whereas MRR (mg/min) and overcut (mm) were 
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perceived as response parameters. The tool electrode was used in the form of hardened steel 500 

microns for each experiment.  

 

3. Experimental Analysis 

3.1 Response Surface Methodology (RSM) 

RSM explores the associations between numerous process parameters and one or more response 

characteristics.  This methodology is a pooling of arithmetic and numerical methods for 

prototypical empirical building and used to optimize the output characteristics which are affected 

by multiple process parameters using an experimental design. In this work, experiments were 

planned as per central composite design. RSM is primarily used for describing the correlation 

amid process parameters and response characteristics. During RSM, a quantifiable practice of 

correlation between input parameters and output response can be stated as [27] 

Z = ɸ (V, EC, IEG, DF)                                                                                                      (1) 

Here Z is anticipated output and ɸ is output function. V, EC, IEG and DF stands for voltage, 

electrolyte concentration, inter electrode gap and duty factor respectively. A quadratic model was 

developed for the analysis, which can be written as 

𝑍 =  𝑏0 + ∑ 𝑏𝑖
𝑘
𝑖=1 𝑥 +  ∑ 𝑏𝑖

𝑘
𝑖=1 𝑥2  +  ∑ 𝑏𝑖𝑗𝑖<𝑗 𝑥𝑖𝑥𝑗                                                                    (2) 

Here b0 and bi are 2nd order regression coefficients and bii, bij represents a quadratic effect. 

The obtained results for the central composite design are presented in Table 2. The experiments 

were conducted based on experimental design, and two output response characteristics (ORC) 

were measured. Design expert 10 was used to generate the regression equation for ORCs by 

using experimental values and equation 2. Equation 3 and 4 shows the regression equation in 

actual terms for MRR and overcut.  

3.1.1 Mathematical Model for MRR and Over Cut 

The backward elimination method was used to obtain analysis of variance (ANOVA) as 

presented in Table 3 and Table 4 for material removal rate (MRR) and overcut respectively. The 

model possesses P value < 0.05 which means the model is significant for the experimental 

results. Also, the lack of fit data comes out as insignificant for the obtained model which is 
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desirable. The obtained mathematical model in actual values for anticipated ORCs can be written 

as 

𝑀𝑅𝑅 =  2.4126666666667 +  0.025025 × 𝑉 −  0.00334 × 𝐸𝐶 −  0.0344 × 𝐼𝐸𝐺 

− 0.64633 × 𝐷𝐹 −  0.000038 × 𝑉 × 𝐸𝐶 −  0.00024 × 𝑉 × 𝐼𝐸𝐺 

+  0.00195 × 𝑉 × 𝐷𝐹 +  0.000157 × 𝐸𝐶 × 𝐼𝐸𝐺 −  0.0024 × 𝐸𝐶 × 𝐷𝐹 

+  0.01035 × 𝐼𝐸𝐺 × 𝐷𝐹 +  0.0000532 × 𝑉2  − 0.000027 × 𝐸𝐶2  

+  0.000132 × 𝐼𝐸𝐺2  

−  0.00333 × 𝑉2                                                                                                (3) 

𝑂𝐶 =  0.340458 +  0.0000375 × 𝑉 −  0.00265 × 𝐸𝐶 −  0.00236 × 𝐼𝐸𝐺 −  0.07733 × 𝐷𝐹 

+  0.0000037 × 𝑉 × 𝐸𝐶 −  0.000013 × 𝑉 × 𝐼𝐸𝐺 +  0.0001 × 𝑉 × 𝐷𝐹 

−  0.0000013 × 𝐸𝐶 × 𝐼𝐸𝐺 +  0.0004 × 𝐸𝐶 × 𝐷𝐹 − 0.0001 × 𝐼𝐸𝐺 × 𝐷𝐹 

+  0.000010 × 𝑉2 +  0.000012 × 𝐸𝐶2  +  0.0000215 × 𝐼𝐸𝐺2  

+  0.04933

× 𝐷𝐹2                                                                                                                   (4) 

 

3.2 Material Removal Rate (mg/min) 

The effect of various input parameters on MRR has been examined through generated response surface 

plots (Figure 2).  The obtained plots show the MRR has direct and inverse proportion with the voltage 

and inter-electrode gap respectively. The surface plot as shown in Figure 2 (a), specifies that the 

maximum value of MRR is obtained at maximum voltage and minimum inter-electrode gap. It is 

because, during electrochemical discharge drilling of the composite at a lower value of the inter-

electrode gap, the formed spark becomes further effective and spark concentration rise with a 

rise in voltage [6]. The interaction effect of voltage and duty factor (Figure 2(b)) depicts that a 

higher value of voltage and duty factor produces spark for longer duration and removes material 

in high amount. The increase in duty factor increases the effective discharge frequency and 

results in increased discharge energy which increases material removal rate during ECDD. The 

fizz is generated in high amount by increasing the levels of electrolyte concentration and voltage. 

As a result of high-pressure energy, these populous fizzes start bursting and keep discharging 

over the surface. The higher discharge over surface increases material removal. The interaction 
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between voltage and electrolyte concentration (Figure 2(c)) demonstrates that MRR rises at a 

slow rate with an increase in levels of parameters because the incremental degree of dissolution 

effectiveness at higher concentration is reduced as equated to low concentration. The residual 

plots for MRR as shown in Figure 3, shows that the residual is routinely scattered near a straight 

line which implies that errors are normally distributed.  

3.3 Over Cut (mm) 

The effect of various input parameters on overcut has been examined through generated response 

surface plots (Figure 4). The interaction effect for duty factor and the inter-electrode gap is 

plotted in Figure 4. The observation specifies that overcut is directly proportional to the duty 

factor and inter-electrode gap because of the orientation of spark. The material from surface 

removed at a higher rate with higher duty factor because of long spark duration but increase in 

IEG scattered the orientation of spark which results in fuzzing of matrix. Whereas, the lower 

value of the duty factor offers sufficient time to remove the drilled material by electrolyte action. 

The overcut increases with an increase in the inter-electrode gap because in spite of 

concentrating at the drilling zone, the produced spark got scattered. A higher level of voltage 

generates high current density and as a result overcut increases. Also, the residual plots as shown 

in Figure 5, implies that errors are normally distributed for overcutting during ECDD of PMCs. 

 

3.3 Desirability Function 

The MRR and overcut are considered as output response characteristics in the present 

experimental work. The simultaneous results for optimal MRR and overcut are quite tricky in the 

case of ECDD as both the output characteristics are opposite. But, overcut proves to be more 

significant parameters for precise drilling. So now it is apparent desirability to generate such a 

parametric setting whereby surrendering amount we can improve eminence. In such a dilemma, 

RSM offers a transitional method for finding the finest excellent elucidation through desirability 

approach. Back in the decade of 1980 [28], existing theoretic plan [29] was revived to evaluate 

the desirability of precise output and the joint desirability of all the outputs. The joint desirability 

can be assessed by  

𝐷 = (𝑑1
𝑤1 ×  𝑑2

𝑤2 × … × 𝑑𝑛
𝑤𝑛)                                                                                   (5) 
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Here 𝑤𝑗  (0 <  𝑤𝑗 > 1) is the weight value given for the importance of jth response variable and 

∑ 𝑤𝑗
𝑛
𝑗=1 = 1. According to this theory, the obtained set of parameters which will achieve 

supreme value i.e. close to 1 will be the best solution. In the present experimental work, the key 

objective is to find out the optimal set of parameters where the highest MRR can be achieved 

with minimum possible overcut. The values of input and output parameters in the form of range 

and targets are listed in Table 5. The best set of parameters for obtaining a higher value of 

desirability shown in Table 6. Figure 6 shows the generated contour plots to express the 

inclusive desirability. The plots show that with the change in the set of parameters towards the 

left of the upside, the value steadily falls. From the available set of parameters, the actual values 

come out as 91.45 g/l; 80 mm; 0.50 and 69.99 V for electrolyte concentration, inter-electrode 

gap, duty factor and voltage respectively The desirability based results for outputs are presented 

in Figure 7. 

 4.  Multi-Objective Particle Swarm Optimization (MOPSO) 

Kennedy et al. [21] introduced particle swarm optimization, a meta-heuristic algorithm that 

mimics the flocking behavior of the birds which was further modified for solving multi-objective 

problems [22]. In multi-objective particle swarm optimization, the flight direction of a particle in 

the flock is determined by the Pareto dominance. Throughout the search process, a global 

repository of non-dominant elite solutions is maintained, which acts as a guide for the other 

particles in the flock. After a particle performs a flight, it updates its experience with the global 

repository. A leader is chosen by the particles from the global repository, it guides them in the 

next iteration. In the algorithm, random initialization of the flock is carried out and the leader is 

selected amongst the non-dominating particles and stored in the external global repository. The 

fitness of particles in the flock is evaluated and the particle with the best fitness is selected as a 

leader at each iteration. After a flight is performed, turbulence operator is applied and the fitness 

of each particle is evaluated. The correlated 𝑥𝑃𝐵𝑒𝑠𝑡𝑖
 is updated and when a dominant solution is 

obtained a particle updates its 𝑥𝑃𝐵𝑒𝑠𝑡𝑖
. When all the particles update their positions, the set of 

leaders in the global repository is also updated and the process is carried out again till the 

specific stopping criteria is met. 

In PSO, the particle xi at generation t is given as: 
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 Where: 

  𝐽(𝜃), denotes the design objectives 

  𝑔(𝜃), denotation has been used for the design constraints.  

 𝜃𝑖 and 𝜃𝑖, denotes the maximum and minimum bounds on the search parameters. 

𝑚, denotes the number of design objectives 

𝑛, denotes the number of search parameters 

 

4.1 Experimental Analysis using MOPSO 

The objectives of MRR and overcut are conflicting in nature, i.e. it is not possible to improve one 

parameter without sacrificing the other. So, for offering an optimal response for electrochemical 

discharge drilling (ECDD) process, a trade-off amongst the design objectives has to be obtained, 

such that it satisfies the design requirements and constraints. So, in order to find the optimal 

values of design parameters electrolyte concentration, inter-electrode gap, duty factor and 

Voltage, we have posed the design problem as a multi-objective optimization problem as given 

in Equation 8  and has been solved using a multi-objective variant of particle swarm 

optimization. The optimization process works on finding the Pareto optimal set of solutions for 

design parameters that can improve MRR and reduce overcut in the machining process. The 

regression equations for MRR and OC are shown in Equation 3 and 4. The design intentions are 

to obtain optimal value of process parameters so that desired values of response parameters can 

be obtained. The design can be shown mathematically as: 

                                     𝐹𝑖𝑛𝑑   [

𝐸𝐶
𝐼𝐸𝐺
𝐷𝐹
𝑉

] , 𝑤ℎ𝑖𝑐ℎ [
𝑚𝑎𝑥(𝐽𝑀𝑅𝑅)

𝑚𝑖𝑛(𝐽𝑂𝐶)
]                                        (8) 

    Subjected to 
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Swarm Optimization (MOPSO) was also used to predict the optimal values for process 

parameters.  The obtained values were found as 94.86 g/l (electrolyte concentration); 80.05 mm 

(inter-electrode gap); 0.6099 (duty factor) and 69.98 V (voltage). The relative investigation of 

results obtained by RSM based desirability approach and actual result of MOPSO revealed that 

parametric values obtained through MOPSO could effectively improve the results by 0.18% and 

7.09% respectively for MRR and Overcut. Finally, some conclusive remarks from the present 

experimental work are obtained as MOPSO can be competently adopted for the multi-objective 

optimization of ECDD process for improvement in results.  
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