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Abstract 87 

Background. Population pharmacokinetic evaluations have been widely used 88 

in neonatal pharmacokinetic studies, while machine learning has become a 89 

popular approach to solving complex problems in the current era of big-data. 90 

The objective of this proof-of-concept study was to evaluate whether combining 91 

population pharmacokinetic and machine learning approaches could provide a 92 

more accurate prediction of the clearance of renally eliminated drugs in 93 

individual neonates. 94 

Methods. Six drugs that are primarily eliminated by the kidneys were selected 95 

(vancomycin, latamoxef, cefepime, azlocillin, ceftazidime, amoxicillin) as “proof 96 

of concept” compounds. Individual estimates of clearance obtained from 97 

population pharmacokinetic models were used as reference clearances, and 98 

diverse machine learning methods and nested cross-validation were adopted 99 

and evaluated against these reference clearances. The predictive performance 100 

of these combined methods was compared to the performance of two other 101 

predictive methods: a covariate based maturation model; and a postmenstrual 102 

age and body weight scaling model. Relative error was used to evaluate the 103 

different methods. 104 

Results. The extra tree regressor was selected as the best-fit machine learning 105 

method. Using the combined method, more than 95% of predictions for all six 106 

drugs had a relative error of less than 50% and the mean relative error was 107 
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reduced by an average of 44.3% and 71.3% compared to the other two 108 

predictive methods. 109 

Conclusion. A combined population pharmacokinetic and machine-learning 110 

approach provided improved predictions of individual clearances of renally 111 

cleared drugs in neonates. For a new patient treated in clinical practice, 112 

individual clearance can be predicted a priori using our model code combined 113 

with demographic data. 114 

 115 

Key Points 116 

1. The objective of this study was to investigate whether the combination of 117 

population pharmacokinetic modelling and a machine-learning approach 118 

provides more accurate predictions of the individual clearances of 6 renally 119 

eliminated drugs using data from 2272 neonates. 120 

2. The prediction models that combine population pharmacokinetic modelling 121 

and machine learning approaches can provide improved predictions of the 122 

individual clearances of renally cleared drugs in neonates compared to two 123 

other predictive population pharmacokinetic models. 124 

3. The final prediction models are available as a package in Python. The 125 

individual clearance of a new patient who is being treated in clinical practice 126 

can be predicted a priori using our model code and demographic data. As a 127 

consequence, the initial dose can be determined more precisely. 128 
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1. Introduction 129 

Despite governmental regulations to promote drug research in neonates in 130 

the United States and Europe, most drugs in this vulnerable population are still 131 

used off-label. Drug development to support neonatal drug dose requirements 132 

is limited because many innovative technologies cannot be directly applied to 133 

neonates [1, 2]. Furthermore, such patients present many challenges due to 134 

rapid maturational changes during early life, resulting in extensive inter-135 

individual variability in pharmacokinetics and pharmacodynamics [3]. 136 

Consequently, clinical pharmacology research is a crucial component of drug 137 

dose optimization for neonates. Population pharmacokinetic analysis has been 138 

widely used in neonatal pharmacology and optimal drug dosages based on 139 

model-based simulation techniques have been proposed [4-6]. Machine 140 

learning, a data-driven approach, uses algorithms to learn from data, and then 141 

makes decisions and predictions about events in the real world. Unlike 142 

traditional software programs that solve specific tasks with hard coding, 143 

machine learning uses training data to learn how to accomplish tasks through 144 

various algorithms [7]. It has become indispensable for solving complex 145 

problems in this era of “big data”, and has opened up many new possibilities 146 

for clinical applications. Examples include prediction of either cardiovascular or 147 

all-cause mortality [8], enhancement of radiology decisions [9], prediction of 148 

mental illness [10], and optimization of antibiotic dosing strategies [11]. 149 
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Combining population pharmacokinetics with machine learning approaches 150 

may result in more computationally powerful data science tools that could 151 

enhance the achievement of precision medicine in this vulnerable, neonatal 152 

population [12, 13]. 153 

For renally eliminated drugs, clearance in neonates is often expressed as 154 

a function of growth (size), maturation (gestational, postnatal or postmenstrual 155 

age) and kidney function; all based on developmental population 156 

pharmacokinetic analyses [14]. In this proof-of-concept study, we hypothesized 157 

that we could predict individual clearance values by combining population 158 

pharmacokinetics with machine learning approaches. Six drugs that are 159 

primarily eliminated by the kidneys: vancomycin, cefepime, latamoxef, 160 

amoxicillin, azlocillin and ceftazidime were selected as “proof of concept” 161 

compounds. The objective of the study was to evaluate whether a combination 162 

of the two methods could accurately predict the individual clearances of renally 163 

eliminated drugs in neonates. 164 

 165 

2. Methods 166 

This study consisted of three steps: population pharmacokinetic analysis, 167 

machine learning analysis, and predictive performance comparison. The 168 

essential information for each step is summarized in Figure 1. The study 169 
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protocol was applied to all six drugs. Six different models were built using this 170 

combined approach. 171 

2.1 Population pharmacokinetic model analysis 172 

Pharmacokinetic data were extracted from previous studies of vancomycin, 173 

cefepime, latamoxef, amoxicillin, azlocillin, and ceftazidime [4, 15, 16, 5, 17, 174 

18]. These studies had been approved by the institutional ethics committees 175 

and were conducted according to the ethical principles of the Declaration of 176 

Helsinki.  177 

Population pharmacokinetic analysis was carried out using the nonlinear 178 

mixed-effects modeling program NONMEM V 7.4 (Icon Development Solutions, 179 

USA). This part repeated the analyses conducted to determine the original six 180 

pharmacokinetic models. The first-order conditional estimation (FOCE) method 181 

with interaction was used to estimate pharmacokinetic parameters, inter-182 

individual variability and residual variability. Covariate analysis followed a 183 

standard forward and backward selection process.  184 

Individual estimates of clearances were obtained for each neonate from 185 

these population pharmacokinetic models via Bayesian estimation and defined 186 

as “reference clearances”, i.e. the “reference clearance” is the post hoc 187 

clearance derived from individual concentration data and the population 188 

pharmacokinetic model for each antibiotic. 189 

2.2 Machine learning analysis 190 
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To fit individual reference clearances derived from step 1, diverse state-of-191 

the-art machine learning methods were adopted for exploratory analyses, 192 

including k-nearest neighbor (KNN) [19], decision tree [20], adaptive boosting 193 

(Adaboost) [21], extra tree regressor (ETR) [22], random forest (RF) [23], 194 

gradient boosted regression with trees (GBR) [24] and logistic regression with 195 

ridge [25], lasso [26] and elastic net regularization (EN) [27]. 196 

The input predictors were birth weight (BW), current weight (CW), 197 

gestational age (GA), postnatal age (PNA), postmenstrual age (PMA), and 198 

serum creatinine valueconcentration (CREA). (For the data format, see 199 

Supplementary Material “Input data example”). All machine learning models 200 

were implemented in “scikit-learn” (sklearn) using Python 3.6 [28]. 201 

Nested cross-validation (NeCV) was used to validate all machine learning 202 

models. NeCV has been accepted widely in the machine learning community 203 

as “state-of-the-art”, as it has been found to be an (almost) unbiased model 204 

assessment method when estimating the true error [29, 30]. The inner cross-205 

validation is used to select the best parameters while the outer cross-validation 206 

is used to evaluate the performance of the model using the best parameters of 207 

the inner cross-validation selection (see figure 2).  208 

The detailed data set partition information was as follows (figure 2): 209 

(1) The whole data set was randomly divided into five parts, on average.  210 
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(2) One part was selected as the outer testing set and the remaining four parts 211 

as the outer training set. This step was repeated five times, each time taking a 212 

different part as the outer testing set. 213 

(3) The inner training set was randomly divided into five parts on average. One 214 

part was then selected as the inner test set and the remaining four parts as the 215 

inner training set.  216 

(4) Each inner training set was used for initial model fitting and the inner testing 217 

data set was used to tune and optimize the parameters of the model. The best 218 

machine learning model was then chosen across tested scenarios. 219 

(5) The outer test set was then used to evaluate the best machine learning 220 

model. 221 

(Through each training of the ML algorithm, each outer test set of reference 222 

clearances was not used for model development.) 223 

Graphical and statistical criteria were used to select the optimal machine 224 

learning approach and validate the performance of the final model. Scatterplots 225 

of individual reference clearances (dependent variable) versus individual 226 

predicted clearances were initially used for diagnostic purposes. Two statistical 227 

metrics, the coefficient of determination (r2 score) and the mean squared error 228 

(MSE), were used to assess the performance of the machine learning model. 229 

The coefficient of determination is the squared correlation coefficient between 230 

the estimated values (reference clearances) and the predictor values, which 231 
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normally ranges from 0 to 1. The bigger value of the r2 score represents a better 232 

prediction of the model. MSE is an estimator that measures the average of the 233 

square of the errors. 234 

 Individual predicted clearances were obtained using the final optimal 235 

approach and parameters. The importance of each clinical factor was 236 

calculated and visualized using Python [31]. 237 

2.3 Comparison of predictive performances 238 

In this part, we compared the predictive performances of the following three 239 

prediction methods: 240 

Predictive method 1: proposed combined model (population pharmacokinetic 241 

and machine learning) 242 

Predictive method 2: maturation model 243 

Predictive method 3 [32]: PMA and body weight scaling model 244 

For predictive method 1, individual predicted clearances were obtained 245 

using the final, combined model. 246 

For predictive methods 2 and 3, the predicted individual clearances were 247 

parameterized as follows:  248 

CLprediction = θCL * Fsize * Fage * Frenal 249 

Where θCL represents the typical value of clearance and Fsize, Fage, and Frenal 250 

represent the effects of size, age, and renal function, respectively.  251 
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For predictive method 2, Fsize, Fage, and Frenal were estimated according to 252 

different population pharmacokinetic models (step 1). For example, for 253 

latamoxef, Fsize characterizes the effect of current weight (CW), Fage the effects 254 

of birth weight (BW) and postnatal age (PNA) and Frenal is 1 (no effect). Detailed 255 

equations for the six drugs are as follows: 256 

vancomycin [4], CL=0.068*(CW/1.35)0.863
*(PMA/32)0.544

*1/(0.72*CREA/54)0.666; 257 

cefepime [15], CL=0.589*(CW/3.35)0.75
*(PMA/40)1.16

*1/(CREA/28.5)0.218; 258 

latamoxef [16], CL=0.268*(CW/3.22)0.75
*(BW/3.10)0.288

*(PNA/8)0.214; 259 

amoxicillin [5], CL=0.812*(CW/3.21)0.75
*(GA/38.1)4.19

*(PNA/7)0.281;  260 

azlocillin [17], CL=0.440*(CW/3.34)0.75
*(BW/3.39)0.907

*(PNA/3)0.367;  261 

ceftazidime [18], CL=0.356*(CW/3.08)0.75
*(GA/38.6)1.57

*(PNA/11)0.22; 262 

where CW is current weight, BW is birth weight, GA is gestational age; PNA is 263 

postnatal age; PMA is postmenstrual age; CREA is creatinine. 264 

For predictive method 3, proposed by Wang et al, [32], fixed and unified 265 

functions of Fsize and Fage were applied and θCL represents adult clearance. The 266 

functions were as follows: 267 

Fsize = ( Weight / Weightstd )0.75 268 

Fage = PMA3.4 / ( PMA3.4 + 47.73.4 ) 269 

where Weightstd is the standard adult weight of 70 kg and PMA is postmenstrual 270 

age. The detailed equations for the six drugs are as follows: 271 

vancomycin, CL=5.9*(CW/70)0.75
*(PMA3.4/(PMA3.4+47.73.4)); 272 
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cefepime, CL=7.74*(CW/70)0.75
*(PMA3.4/(PMA3.4+47.73.4)); 273 

latamoxef, CL=5.2*(CW/70)0.75
*(PMA3.4/(PMA3.4+47.73.4)); 274 

amoxicillin, CL=18*(CW/70)0.75
*(PMA3.4/(PMA3.4+47.73.4)); 275 

azlocillin, CL=10.5*(CW/70)0.75
*(PMA3.4/(PMA3.4+47.73.4)); 276 

ceftazidime, CL=11.4*(CW/70)0.75
*(PMA3.4/(PMA3.4+47.73.4)); 277 

θCL values of 5.9, 7.74, 5.2, 18, 10.5, and 11.4 L/h represent the adult clearance 278 

values for each drug. 279 

Five data sets (the five outer test data sets in the machine learning analysis 280 

step) were used as the evaluation data sets for the three methods. The 281 

prediction performance of the three predictive methods was evaluated using 282 

relative errors, which were calculated as follows:  283 

Relative errors = | CLprediction - CLreference | / CLreference 284 

Where CLprediction represents predicted clearance values and CLreference 285 

represents individual “reference clearances”. 286 

3. Results 287 

3.1 Population pharmacokinetic model analysis 288 

A total of 2272 neonates were included. The mean (SD) values of CW and 289 

PMA were 2.99 (1.18) (range 0.415 to 11.4) kilograms and 34.7 (5.6) (range 290 

23.3 to 52.4) weeks. Correlations between BW and GA and between PMA and 291 

CW had coefficients of 0.920 and 0.868, respectively. Patient characteristics 292 
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and the population pharmacokinetic models of the six renally-eliminated drugs 293 

are presented in Table 1 [4, 5, 15-17]. 294 

3.2 Machine Learning analysis 295 

The Machine Learning analysis was applied separately to each of the six 296 

drugs and the results of the different machine learning approaches are 297 

presented in Table 2. ETR (extra tree egressor) was the optimal machine 298 

learning approach for latamoxef, amoxicillin and ceftazidime and although it 299 

was not the best approach, it also performed well for vancomycin, cefepime 300 

and azlocillin. Consequently. ETR was selected as the final uniform machine 301 

learning approach. Detailed results of the final ML outcomes for the five outer 302 

test data sets can be found in the ESM (“ML outcomes for the five outer test 303 

data sets”). 304 

Goodness-of-fit results for the final models of all six drugs are shown in the 305 

scatterplots presented in Figure 3. In order to show the results more intuitively, 306 

only one of the five test sets was selected for display. Good predictions of 307 

individual clearances were achieved with the combined method.  308 

The relative importance of the main factors influencing the individual 309 

clearances of each of the six drugs is presented in Figure 4. Current weight was 310 

the most important predictor for cefepime, amoxicillin, azlocillin and ceftazidime, 311 

whereas PMA was the most important predictor for vancomycin and PNA for 312 

latamoxef.  313 
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3.3 Comparison of predictive performance  314 

Table 3 shows the mean relative errors for all three methods for all 315 

antibiotics. The mean relative errors for the combined predictive method 316 

(method 1), were 15.4%, 2.2%, 2.8%, 16.9%, 10.1% and 2.0% for vancomycin, 317 

cefepime, latamoxef, amoxicillin, azlocillin and ceftazidime, respectively. With 318 

the exception of method 2 for azlocillin (9.9%) all the mean relative errors were 319 

higher with methods 2 and 3 than with method 1. The overall mean relative 320 

error of the combined method was 8.24%, which was lower by an average of 321 

44.3% and 71.3% than the other two predictive methods (14.8% and 28.7%), 322 

respectively.  323 

Figure 5 shows the percentages of patients whose relative errors were 324 

within 10%, 30% and 50% for each of the three analysis methods. The highest 325 

percentages were consistently achieved with method 1; differences were 326 

particularly notable in the 10% and 30% ranges. For all six drugs, method 1 327 

achieved more than 95% of predictions for all antibiotics within a relative error 328 

of 50%.  329 

 330 

4. Discussion 331 

To the best of our knowledge, this is the first study to demonstrate an 332 

innovative method that uses a combination of population pharmacokinetic 333 

models and machine learning approaches to predict individual clearances of 334 
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renally eliminated drugs in neonates. Since the introduction of population 335 

pharmacokinetics by Sheiner in the 1970s [33], several developments have led 336 

to models based on mechanistic and pharmacological principles that support a 337 

biological interpretation of parameters [34]. Individual pharmacokinetic profiles 338 

can be described and the pharmacokinetic behavior of many individuals can be 339 

characterized by simultaneously quantifying the covariates that are known to 340 

be sources of variability [35]. Population pharmacokinetic methods also 341 

facilitate the analysis of sparse data, which reduces the burden of multiple 342 

sample collection [36]. This is particularly relevant for neonates, from whom 343 

only sparse samples can be collected due to ethical and practical limitations. In 344 

clinical practice, Bayesian parameter estimation can then be used to estimate 345 

parameters and adjust dosage regimens for individual patients by combining a 346 

validated pharmacokinetic model with observed concentration data. 347 

Despite these developments, prediction of individual neonatal parameters from 348 

a population pharmacokinetic model has its challenges. For renally eliminated 349 

drugs, clearance is often expressed as a function of growth (size or current 350 

weight), renal maturation, and/or renal function (serum creatinine/estimated 351 

glomerular filtration rate). Due to the colinearity of the covariates, size 352 

correction is necessary and current weight is typically incorporated into the 353 

basic model using an allometric size approach [37]. Different age indicators, 354 

such as birth weight (BW), postmenstrual age (PMA), postnatal age (PNA), 355 
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gestational age (GA) and combination formulas have been incorporated into 356 

different models without a clear consensus on the best approach. This is 357 

illustrated by Wade et al., who used a combination of GA and PNA in their 358 

fluconazole model [38], Li et al., who used BW and PNA to describe the 359 

population pharmacokinetics of piperacillin [39] and Cohen-Wolkowiez et al. 360 

who used PMA to describe renal maturation changes in their piperacillin model 361 

[40]. Serum creatinine concentration is commonly used as a biomarker for the 362 

glomerular filtration rate in population models. However, this approach has 363 

limitations as in the first few days after birth, creatinine concentration is 364 

significantly affected by maternal levels and does not reflect neonatal renal 365 

function [41]. 366 

Neonates have extensive intra- and inter-subject variability in drug 367 

disposition and clinical response due to rapid physiological changes and 368 

specific pathophysiology [42]. Population pharmacokinetic studies have often 369 

found that a large proportion of inter-subject variability cannot be explained by 370 

covariates (fixed effects) and is instead captured as random effects. For 371 

example, Wang et al. described a renal maturation model based on size, age 372 

and renal function that could predict the clearances of renally eliminated drugs 373 

in newborns [32]. The model resulted in high uncertainty with prediction results 374 

ranging from 0.6-2.0 (prediction bias) [32]. This demonstrates that fixed-effect 375 
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models are not always able to explain sufficiently the variability found in clinical 376 

settings.  377 

In recent years, machine learning methodology has become increasingly 378 

popular in different domains. These approaches can handle large numbers of 379 

predictors and allow the use of new types of data, whose sheer volume or 380 

complexity would previously have made their analysis  unimaginable [43]. 381 

Machine learning is not based on the results of programming, its processing is 382 

not a causal logic, but a correlation conclusion drawn through inductive thinking. 383 

Furthermore, machine learning is a data-driven approach, thereby eliminating 384 

the need for mechanistic assumptions. From a pharmacological perspective, 385 

these features might be considered as a “black-box” method, and 386 

pharmacologists and clinical researchers may be reluctant to embrace this 387 

approach without making assumptions based on developmental pharmacology 388 

[35]. Even though machine learning has been successfully applied in the 389 

prediction of preterm infant survival rate [44] and neonatal hyperbilirubinemia 390 

[45], predicting neonatal drug clearance is a challenge due to fast-changing 391 

maturation processes and a lack of diagnostic feature values. Moreover, the 392 

selection of influencing factors has additional challenges to ensure that they are 393 

physiologically relevant and easily available in clinical practice. 394 

Based on the above challenges, combining population pharmacokinetic 395 

and machine learning approaches may prove useful. The population approach 396 
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can utilise basic knowledge of physiology and pharmacological development 397 

while machine learning models can implement physiologically significant 398 

covariates preselected by the population model as part of the study design. In 399 

the present study, it was found that for all six drugs, the combined approach 400 

achieved more than 95% of predictions within a 50% relative error (Figure 5), a 401 

result that was superior to those obtained with the ‘stand-alone’ 402 

pharmacometric models (predictive methods 2 and 3). This improvement in 403 

predictive performance demonstrates that a combination of machine learning 404 

and population pharmacokinetics is feasible and accurate.  405 

The final prediction models have been incorporated into a package in 406 

Python and the codes for these models can be accessed in the Supplementary 407 

Material “final model code”. The models can be used to predict individual 408 

clearances of each drug in neonates, based on the patient’s demographic data 409 

(e.g. BW, CW, GA, PNA, PMA, CREA). These clearance estimates can then 410 

be used to determine a more accurate, personalized, starting dosage regimen 411 

for each patient. Further optimization of this initial dosage regimen to achieve 412 

target concentrations or exposure would involve MAP Bayesian analysis to 413 

determine revised individual parameter estimates by combining information 414 

from measured concentrations with parameters from the population 415 

pharmacokinetic model.  416 
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Even though developmental, pharmacology-based clinical characteristics 417 

were used in building the machine learning models, the contributory factors for 418 

each drug were still different in the final prediction models. This may be 419 

explained by differences in drug properties (e.g. plasma protein binding, 420 

molecular mass) and mechanisms of elimination. Renal elimination consists of 421 

glomerular filtration, tubular secretion, tubular reabsorption, and intracellular 422 

enzymatic processing [46] but even for a renally excreted drug, non-renal 423 

pathways, such as biliary excretion, or other (unknown) pathways frequently 424 

exist. The adult values of the various elimination processes of the six drugs in 425 

this study are summarized in Table 4 [32, 47-52]. The percentage of renal 426 

clearance ranges from 55% to 90% and the magnitudes of drug metabolism 427 

and other elimination routes are also variable, which may result in different 428 

predictive combinations and variability in drug clearance assessments. In 429 

neonates, differences in prediction performances might also be related to 430 

varying contributions of renal clearance to total drug clearance.  431 

Amoxicillin and azlocillin had the worst machine learning model testing set 432 

results based on MSE and r2. The reason may be that the mechanism of drug 433 

elimination is complex. Pharmacokinetic information on the mechanisms and 434 

proportions of renal and non-renal elimination are very sparse in this patient 435 

group and further research is required.  436 
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In the population pharmacokinetic analyses of this study, an opportunistic 437 

sampling strategy was used for all six models and this was assumed to provide 438 

reasonable estimates of clearance compared with a standard, predetermined 439 

sampling strategy [53]. All models have previously been evaluated by external 440 

validation methods [54] and one has also been validated clinically [17]. In 441 

addition, the ETA shrinkage (%) of clearance for all drugs was less than 30%. 442 

These findings demonstrate the reliability of the population pharmacokinetic 443 

models and justify the use of individual clearance estimates derived from these 444 

models as reference values.  445 

Our study has some limitations. Firstly, the methods are only valid within 446 

the covariate space used to build the models. Secondly, although serum 447 

creatinine, a widely used biomarker of renal function, is included in the model, 448 

residual, maternally derived creatinine or different creatinine assay methods 449 

may render this biomarker less than ideal to predict renal function in neonates 450 

[55, 54]. In the present study, serum creatinine was found to contribute more 451 

than 20% (20/100) when the relative importance of factors was assessed for 452 

vancomycin and cefepime. These two drugs have the highest percentage of 453 

renal clearance, lack significant tubular secretion and have low protein binding. 454 

Alternative biomarkers are needed to better reflect renal function in neonates.  455 

Building complex machine learning models from sparse data always carries 456 

a risk of data memorization and this study was not designed to identify the 457 
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number of neonates required to accurately predict the clearance of renally 458 

eliminated drugs using this approach. Nevertheless, the predictive 459 

performances were consistently good with patient numbers ranging from small 460 

(cefepime, 85 patients) to large (vancomycin, 1631 patients). Moreover, 461 

differences in age distribution were not considered. Although the key covariates 462 

associated with maturation were included in the current study, some drug-463 

related covariates were missing. Plasma protein binding affects the free drug 464 

concentrations that determine drug elimination and is influenced by various 465 

maturational factors, leading to high variability in the unbound fraction in 466 

neonates [38, 39]. Disease-related factors were also missing. Future studies 467 

using a combined population pharmacokinetic and machine learning analysis 468 

approach should evaluate the impact of these covariates on the prediction of 469 

individual clearances, examine drug clearance following non IV routes of 470 

administration and identify predictors for drugs that are also metabolized. 471 

 472 

5. Conclusion  473 

A combined population pharmacokinetic and machine-learning approach 474 

provided consistent descriptions of individual clearances of renally drugs in 475 

neonates. For new neonatal patients treated in clinical practice, individual 476 

clearances can be predicted in advance using the model code and 477 

demographic data and used to individualize the initial dosing regimen. 478 
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Table and Figure Legends 715 

Tab. 1: Patient characteristics and model information extracted from the published 716 

studies and from unpublished data. 717 

Tab. 2: Test sets performance measures for all regressors of all six drugs. 718 

Tab. 3: Mean relative errors for all six drugs. 719 

Tab. 4: Summary of published adult values of drug clearance and renal clearance for 720 

all renally cleared drugs examined in the study. 721 

 722 

Fig.1 The different steps of this study for all six drugs. 723 

Fig.2 Diagram representation of the nested cross-validation algorithm used in this 724 

study. 725 

Fig.3 Goodness-of-fit results for the final model. A) vancomycin B) cefepime C) 726 

latamoxef D) amoxicillin E) azlocillin F) ceftazidime. CLprediction represents individual 727 

predicted clearance values using the combined method, CLreference represents 728 

individual “reference clearances”. Solid circles represent training dataset results, open 729 

circles points represent testing dataset results (In order to show the results more 730 

intuitively, one of five test sets was selected to display). 731 

Fig.4 The relative importance of factors. 100 represent the most important factor and 732 

the values for other factors are relative to this factor. 733 

 734 
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Fig.5 Predictive performance of drug clearance (percentage of patients achieving 735 

relative error within 10%, 30%, and 50%) using three different predictive methods: 1 736 

is the combined method of population pharmacokinetics and machine learning, 2 is 737 

the maturation model and 3 is the scaling model based on postmenstrual age and 738 

body weight 3 [32] 739 
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 740 

Fig.1 The different steps of this study for all six drugs. 741 

 742 

 743 

 744 

Fig.2 Diagram representing the nested cross-validation algorithm used in this study. 745 

 746 

 747 

 748 

 749 

 750 

 751 
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Fig.3 Goodness-of-fit results of the final model. 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 
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Fig.4 The relative importance of clinical factors in the prediction of clearance. 100 760 

represent the most important factor and values for the other factors are relative to this 761 

factor.  762 

 763 

 764 

 765 

 766 
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Fig.5 Predictive performance of drug clearance (percentage of patients achieving 767 

relative error within 10%, 30%, and 50%) using three different predictive methods: 1 768 

is the combined method of population pharmacokinetics and machine learning, 2 is 769 

the maturation model and 3 is the scaling model based on postmenstrual age and 770 

body weight 3 [32] 771 

 772 

 773 
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Table 1. Patient characteristics and model information extracted from the published studies and unpublished data [4, 5, 15-18].  774 

 Vancomycin Cefepime  Latamoxef Amoxicillin Azlocillin Ceftazidime 

Patients 1631 85 128 187 95 146 

Samples 4894 100 165 224 167 203 

BW (kg) 1.24 (0.362-4.81) 3.12 (0.980-4.21) 3.10 (1.01-4.58) 3.05 (1.04-4.60) 3.39 (1.80-4.85) 3.00 (0.740-4.65) 

CW (kg) 1.35 (0.415-11.4) 3.35 (0.950-4.35) 3.22 (1.00-4.60) 3.21 (1.06-4.58) 3.34 (1.72-4.69) 3.08 (0.900-4.50) 

GA (weeks) 30.0 (22.3-42.1) 39.0 (28.0-41.6) 38.3 (27.3-41.4) 38.1 (28.3-41.4) 39.4 (31.6-41.4) 38.6 (26.0-43.4) 

PNA (days) 11.0 (1.00-90.0) 8.00 (1.00-25.0) 8.00 (1.00-54.0) 7.00 (1.00-37.0) 3.00 (1.00-6.00) 11.0 (1.00-81.0) 

PMA (weeks) 32.0 (23.3-52.4) 40.1 (30.6-45.1) 39.7 (28.4-46.1) 39.0 (28.4-46.3) 40.1 (32.1-42.0) 40.3 (26.1-47.4) 

       
PMX Model       

Compartment Two One Two Two One One 

Clearances (L/h) 
0.0798          

(0.0101-1.10) 

0.605       

(0.141-0.933) 

0.248          

(0.0614-0.516) 

0.742          

(0.0793-2.04) 

0.429          

(0.133-0.805) 

0.317          

(0.0469-0.787) 

Clearances (L/h/kg) 
0.0572   

(0.0120-0.281) 

0.180      

(0.128-0.243) 

0.0861          

(0.0498-0.142) 

0.250          

(0.0683-0.592) 

0.130         

(0.0696-0.202) 

0.110          

(0.0521-0.185) 

CL=θCL*Fsize*Fage*FRF       

θCL 0.0680 0.589 0.268 0.812 0.440 0.356 

Fsize (CW/1.35)θ1 (CW/3.35)θ1 (CW/3.22)θ1 (CW/3.21)θ1 (CW/3.34)θ1 (CW/3.08)θ1 

θ1 0.863 0.75 fix 0.75 fix 0.75 fix 0.75 fix 0.75 fix 

Fage (PMA/32)θ2 (PMA/40)θ2 (BW/3.10)θ2×(PNA/8)θ3 (GA/38.1)θ2×(PNA/7)θ3 (BW/3.39)θ2×(PNA/3)θ3 (GA/38.6)θ2×(PNA/11)θ3 

θ2 0.544 1.16 0.288 4.19 0.907 1.57 

θ3 - - 0.214 0.281 0.367 0.220 

FRF 1/(θ4×CREA/54) θ5 1/(CREA/28.5) θ4 1 1 1 1 

θ4 0.720 0.218 - - - - 

θ5 0.666 - - - - - 

CL-IIV (%) 18.2 15.3 15.8 40.0 22.6 24.7 

IOV (%) 19.1 - - - - - 

RUV(%)a -b 36.6 40.6 35.0 32.2 (1)29.5 (2)0.192µg/mL 

Patient demographic characteristics and clearance values are presented as median (range) 775 
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PMX Model: population pharmacokinetic model; CW: current weight; BW: birth weight; GA: gestational age; PNA: postnatal age; PMA: postmenstrual 776 

age; CREA: creatinine; IIV: inter-individual variability; IOV: interoccasion variability; RUV: residual variability 777 
a：Residual error models: exponential model was used for amoxicillin, latamoxef, azlocillin; proportional model was used for cefepime; combined 778 

additive and proportional model was used for vancomycin and ceftazidime ((1) is proportional part, (2) is additive part.) 779 
b：For vancomycin, each analytical method was separate estimated in the residual variability.780 
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Table 2. Test sets performance measures for all regressors of six drugs. 781 

 782 

MSE: mean squared error; VAN: vancomycin; CEP: cefepime; MOX: latamoxef; AML: amoxicillin; AZL: azlocillin; CAZ: ceftazidime; RF: random 783 

forest; EN: Elastic Net; KNN: K-nearest Neighbor DTR: Decision Tree Regressor; ABR: Ada Boost Regressor; GBR: Gradient Boosting Regressor; 784 

ETR: Extra Trees Regressor; XGBR: Extreme Gradient Boosting Regressor785 
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Table 3. Mean relative error results of six drugs using three predictive methods. 786 

 Predictive method 1 

 (combined model) 

 

Predictive method 2 

 

Predictive method 3 

   

 Mean (CV%) a Median (range) a  Mean (CV%) a Median (range) a  Mean (CV%) a Median (range) a 

Vancomycin 15.4% (116) 10.7% (0-282%)  25.6% (97.7) 18.9% (0-215%)  31.3% (98.0) 26.8% (0-373%) 

Cefepime 2.19% (208) 1.12% (0-24.8%)  5.56% (99.6) 3.73% (0-29.1%)  43.1% (16.5) 43.1% (22.3-56.6%) 

Latamoxef 2.82% (230) 1.91% (0-59.9%)  5.56% (84.5) 4.42% (0.1-24.3%)  20.7% (75.5) 18.2% (0.2-65.2%) 

Amoxicillin 16.9% (107) 11.6% (0-126%)  28.5% (122) 17.7% (0.3-781%)  33.9% (121) 30.5% (0.1-478%) 

Azlocillin 10.1% (110) 7.32% (0-89.0%)  9.90% (130) 6.32% (0.1-109%)  30.1%(76.0) 26.3% (0-152%) 

Ceftazidime 2.01% (166) 0.68% (0-20.2%)  13.4% (82.4) 9.80% (0.1-43.0%)  12.9% (50.1) 11.7% (0.5-41.4%) 

MEANb 8.24% 5.55%  14.8% 10.1%  28.7% 26.1% 

a: For methods 1, 2, and 3, the Mean(CV%) and Median(range) represent the mean(CV%) and median(range) values using five evaluation  787 

data sets(results of integration). 788 

b: MEAN represents the mean value of the mean/median of the six drugs. 789 

CV: Coefficient of Variation 790 

 791 
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Table 4. Summary of published adult values of drug clearance and renal clearance for all 

renally cleared drugs examined in the study. 

  

Drugs 

Total 

Clearance 

(mL/min) 

Renal 

Clearance 

(mL/min) 

% Renal 

Clearance 

Binding rate of 

plasma protein 
Note 

Vancomycin  98.3 88.3 ~90% ~30% 
Biliary excretion 

~10% Metabolism 

Cefepime  122-136 96-116 ~83% 16-19% No secretion 

Latamoxef  87 66 76% ~50% 

Low secretion 

Biliary excretion 

No metabolism 

Amoxicillin  ~300 ~166 ~55% ~20% 
Low biliary excretion 

~24% metabolism 

Azlocillin 150-200 100-140 ~65% 30-40% 

Low secretion 

15% metabolized 

~5% biliary excretion 

Ceftazidime  190 140 ~74% 5-10% 

No secretion 

No reabsorption 

Low biliary excretion 

No metabolism 

 

 

 

 

 

 

 

 

 

 

 

 


