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ABSTRACT

Improving the autopilot capability of ships is particularly important to ensure the safety of maritime
navigation.The unmanned surface vessel (USV) with autopilot capability is a development trend of
the ship of the future. The objective of this paper is to investigate the path planning problem of USVs
in uncertain environments, and a path planning strategy unified with a collision avoidance function
based on deep reinforcement learning (DRL) is proposed. A Deep Q-learning network (DQN) is
used to continuously interact with the visually simulated environment to obtain experience data, so
that the agent learns the best action strategies in the visual simulated environment. To solve the
collision avoidance problems that may occur during USV navigation, the location of the obstacle ship
is divided into four collision avoidance zones according to the International Regulations for Preventing
Collisions at Sea (COLREGS). To obtain an improved DRL algorithm, the artificial potential field
(APF) algorithm is utilized to improve the action space and reward function of the DQN algorithm.
A simulation experiments is utilized to test the effects of our method in various situations. It is also
shown that the enhanced DRL can effectively realize autonomous collision avoidance path planning.

1. Introduction

With the acceleration of globalization, maritime traffic
has become increasingly important. The International Mar-
itime Organization (IMO) report indicates that more than 80
percent of maritime accidents are attributed to human de-
cision failures caused by people’s misunderstanding of the
situation and failure to comply with the International Regu-
lations for Preventing Collisions at Sea (COLREGS). There-
fore, enhancing the autopilot capabilities of ships has be-
come an urgent problem to be solved [32, 34]. Furthermore,
the marine environment is complex and variable. In some
cases, manned ships are not suitable for performing tasks,
while USVs are more suitable for coping with variable ma-
rine environments [42]. To effectively complete the task, the
unmanned ship needs to have highly autonomous path plan-
ning and collision avoidance capabilities.

In the practical application of USVs, the conditions of
maritime navigation in some areas, such as the coast of Fu-
jian Province and the Taiwan Strait, are complicated. The
Taiwan Strait is a maritime passage between Northeast Asian
countries, Southeast Asia and countries along the Indian
Ocean. The maritime map of the Taiwan Strait is displayed
in Fig.1. According to statistics from the Fujian Maritime
Safety Administration, there have been 119 collisions in the
Taiwan Strait in the past five years. Therefore, the path plan-
ning method for USVs requires a comprehensive consider-
ation of static obstacles and dynamic obstacles [10]. Many
path planning methods with elimination collision functions
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Figure 1: Maritime map of the Taiwan Strait.

have been proposed in the field of USVs, but most of them
can only be realized under the conditions of known environ-
mental information, which is contrary to practical applica-
tions.

There have been many research results on the path plan-
ning of ships. An improved A* algorithm-based path plan-
ning method was proposed in [2], which implemented the
path planning of USVs in a complex environment. Song et
al. proposed a USV smooth A* path planning method [21],
that used a path smoother to smooth the A* result to provide
a more continuous moving path. A path planning method
that utilized the V-graph and grid map based on the A* al-
gorithm was proposed in [41]. The method realized path

Page 1 of 15



planning by establishing a grid map and designing an opti-
mal path search strategy. Zhang et al. proposed an improved
rapid-exploration random tree (RRT) [38], which used adap-
tive hybrid dynamic step size and adds attractiveness to the
target to achieve USV path planning. Particle swarm opti-
mization (PSO) is a commonly used and effective parame-
ter optimize method [33], which can also used in path opti-
mization problem. A PSO-based path planning method was
proposed in [6], which established a mathematical model
of USVs and marine environments and uses PSO to opti-
mize path generation. An ant colony optimization (ACO)
and clustering based algorithm was proposed to settle path
planning of the USV in [16]. This method used an improved
ACO algorithm to adaptively select a suitable search range,
and used a smoothing mechanism to adjust the path to realize
global path planning. Wang et al. proposed a membrane evo-
lution artificial potential field method [27], which combined
membrane calculation with a genetic algorithm and APF to
handle the path planning problem. These methods belong to
global static path planning methods based on a prior environ-
mental data. However, global path planning has limitations
in practical applications that cannot deal with moving ob-
stacles in a dynamic environment, so it is difficult to avoid
collisions with other ships.

The collision avoidance problem in a dynamic environ-
ment can be effectively addressed with local dynamic path
planning based on local sensor data. In actual navigation,
USVs primarily rely on perceptual sensors to obtain surround-
ing dynamic environment information, such as light detec-
tion and ranging (LiDAR), radar and vision sensors. Lyu et
al. proposed a method to achieve deterministic path planning
for USVs in the dynamic environment [17], that utilized the
modified APF to settle the collision avoidance path planning
problem. Beser et al. proposed a USV elimination colli-
sion path planning method based on Fast-Marching Square
algorithm [1], which considered visual guidance aided nav-
igation in the case of partial sensor failure. A velocity ob-
stacle (VO) and improved PSO based method was proposed
to achieve local path planning in [35], which converted the
local path planning in the continuous space into the multi
objective optimization problem under multiple constraints.
These methods handle the local collision avoidance path plan-
ning problem by establishing the collision avoidance model
of ships.

The collision avoidance model of ships has been pro-
posed by many research groups. Goodwin et al. established
the ship domain model of open water areas through obser-
vation and statistical analysis of open water areas [8]. The
ship domain is a virtual safety zone composed of several sec-
tors, and collision avoidance actions are executed when ob-
stacles enter the virtual safety zone. To measure the peril
of collision avoidance, Wang et al. proposed a time to close
point of approaching (TCPA) and distance of closest point of
approaching (DCPA) based risk assessment system to mea-
sure the risk of ship collision [28]. Kuwata et al. proposed
a COLREGS and VO based method to eliminate collisions
[29]. Zhen et al. proposed an elimination collision method

using DSCBN cluster analysis of AIS ship data [40], which
constructed the collision peril index of ships based on DCPA
and TCPA. Xie et al. proposed an improved Beetle An-
tenna Search (BAS)-based method [36], which referred to
the Model Predictive Control (MPC) idea to establish a real-
time collision avoidance prediction optimization strategy with
COLREGS as a constraint. The model-based method of ship
collision avoidance path planning has good effects on the
problems of known models. However, with the complexity
of modern maritime systems, it is difficult to establish the
complete collision avoidance model for many problems, and
most model-based algorithms have difficulty predicting the
uncertainty in practical applications.

Model-free reinforcement learning methods can adapt to
complex systems well by learning the best strategy through
interaction with the environment [22]. Q-learning is a clas-
sic value-based and model-free RL algorithm [30]. A method
based on Q-learning and a neural network planner was pro-
posed in [7], which was used to solve collision avoidance
path planning. Chen et al. proposed a Q-learning based
path planning method for unmanned ships [3], that obtained
the best action strategy by learning the action-state model.
However, reinforcement learning (RL) algorithms have in-
sufficient perception of the environment, and it is difficult to
explore all action-state information.

Deep reinforcement learning (DRL) combines the per-
ception capability of deep learning (DL) and the decision-
making capability of RL [13] and has been diffusely utilized
in robot control and decision-making. The deep Q-learning
network (DQN) was proposed in [19], which bridged the
divide between high-dimensional sensory input and actions
and has human-level decision-making capabilities. Subse-
quently, many researchers have studied the application of
deep reinforcement learning in path planning. Woo et al.
proposed a DQN-based elimination collision method [31],
that included a semi-Markov decision model and neural net-
work architecture specifically designed for USV elimination
collision problems. Experimental results have proven that
this method can effectively deal with the multi ship collision
avoidance problem. However, visual image information was
utilized as the input of the DQN, which will result in slower
calculation speed. Guo et al. proposed an elimination col-
lision path planning method based on DRL [9], that used
automatic ship identification system (AIS) data to train the
DRL model. However, many ships, such as small fishing
boats and warships, will not install and use AIS. Zhao et al.
proposed a proximal policy optimization (PPO)-based elim-
ination collision method of USVs [39], that combined the
ship motion mathematical model and COLREGS to achieve
autonomous collision avoidance for USVs in a multi-ship
environment. However, this method relies on the ship mo-
tion mathematical model and PPO is an on-strategy method,
which is difficult to migrate to practical applications of ships.

The objective of this paper is to settle the elimination
collision path planning conundrum of the USV with known
local dynamic environmental information, and a path plan-
ning method with COLREGS collision avoidance function
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based on DRL and APF is proposed. This method combines
the characteristics of DQN and APF, and the APF algorithm
idea is used to improve DQN. The DQN action-state model
under the constraint of COLREGS is established, and the
DQN action space and return function are improved by APF
to realize USV path planning and collision avoidance in a
dynamic environment. The main contributions of this study
are summarized as follows:

(1). A DRL method is designed to handle COLREGS
collision avoidance path planning, which can ensure that each
action of the USV is the optimal solution in the current state.

(2). Simulated real-time sensor information is chosen as
the input data of the DQN, which is used to simulate the
practical navigation of the USVs.

(3). The APF algorithm is utilized to improve the action
space and reward function of the DQN to solve the sparse
reward conundrum.

The rest of the paper is organized as follows. Path plan-
ning and COLREGS collision avoidance problems are de-
scribed in Section 2. Section 3 introduces the collision avoid-
ance path planning method based on DQN and APF. The
simulation experimental design and experimental result anal-
ysis are presented in Section 4. Conclusions and future work
are presented in Section 5.

2. Collision avoidance path planning problem

2.1. Problem definition

Path planning problems are separated into global path
planning and local path planning. The path planning and col-
lision avoidance of USVs in the dynamic environment can
be described as local path planning problems, which aim to
determine the optimal condition in the present state.

To determine the optimal condition in the present state of
the USV, a method that is good at solving the local optimal
decision-making problem is needed. The DRL method is a
combination of DL and RL, which has strong perception and
decision-making capabilities, and can provide solutions for
the local optimal path planning problem of the USV.

The local optimal path planning problem based on DRL
is composed of a reward function and boundary conditions.
The state space is represented by the set X, and x is the con-
crete state of the state set X. X, C X is the set of obstacle
structure states that represent forbidden districts of the USV.
Xpan C Xis the set of states which represent feasible dis-
tricts of the USV. The initial and goal states are respectively
represented by X ;,,,and X g,,;. The problem definition of lo-
cal optimal path planning can be delimited as follows:

Definition 1. The path planning is executed to discover
an available path @, which can be written as: ¢ : [0,n] —
{0(0) = X, () = Xgou} € Xpypon € Randn >
1. Let x, be the state of the USV at time t, and let x,, be
the next state. The local optimal path planning problem is
performed to find the optimal path @(t) € @ : [0, n], which
is the collision-free path.

Definition 2. For a given local optimal path planning
problem (X 41, X5 X,41). Let r(t) be the reward to the x,

along the path @(t). The total reward function r(@)can hence
be formally determined as follows:

r@) = [y @), {@@) € [0,n], ¢ : [0,n] > X0} (1)

2.2. COLREGS

Before applying DRL to solve path planning and obsta-
cle avoidance problems, maritime collision avoidance rules
should be considered. COLREGS is a mandatory maritime
traffic regulation formulated by IMO to ensure ship safety
and reduce ship collisions. The various situations of mar-
itime traffic and the corresponding avoidance directions are
stipulated by COLREGS. Therefore, USVs should also for-
mulate actions based on COLREGS to guarantee the security
of maritime navigation [26]. According to the COLREGS
rule, the relative position of the two ships is divided into
four obstacle avoidance strategy areas as displayed in Fig.2.

Crossing
stand on

Crossing
give way

112.5°

Overtaking

Figure 2: Four collision avoidance action zones divided accord-
ing to relative position.

The four collision avoidance rules involved in COLREGS
Chapter 2 Regulation 13 to 17 are as follows. The corre-
sponding collision avoidance actions are displayed in Fig.3.

(a) Head-on

When the relative azimuth of the target-ship (TS) and
own-ship (OS) is in [355°,360°] or [0°,5°] and there is a
risk of collision, both parties should turn to the right, to pass
by the port side of the other ship. The head-on situation is
displayed in Fig.3 (a).

(b) Crossing give-way

When two ships meet and there is a risk of collision, the
relative position of the target ship and the own ship is in
[5°,112.5°]. In this case, the target-ship is a stand-on ship,
and the own-ship should give way to the target-ship. Accord-
ing to COLREGS, the own-ship must turn right to avoid col-
lision. The crossing give-way situation is displayed in Fig.3
(b).

(c) Overtaking

When the own-ship chases the target ship in a certain
direction 22.5 degrees behind the target-ship, the target-ship
is a stand-on ship and the own-ship should give way to the
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Figure 3: Collision avoidance strategies corresponding to the
four situations specified by COLREGS.

target-ship. The overtaking situation is displayed in Fig.3
(©).

(d) Crossing stand-on

When two ships meet and there is a risk of collision, if
the relative position of the target ship and the own ship is in
[247.5°,355°]. In this case, the ship is a stand-on ship, and
the target-ship should give way to the own-ship. If the target-
ship does not take collision avoidance actions, the own-ship
should take appropriate collision avoidance actions to pre-
vent collision accidents. The crossing stand-on situation is
displayed in Fig.3 (d).

2.3. COLREGS-based multiship collision
avoidance
The COLREGS can be extended to scenarios where own-
ship encounters multiple target-ships. The multi-ship colli-
sion avoidance scenario under the COLREGS can be sum-
marized as displayed in Fig.4.
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Figure 4: COLREGS based multiship collision avoidance

strategies.

In Fig.4(a), Fig.4(b) and Fig.4(d), the own ship encoun-
tered two different types of target ships. In these scenarios,
they should comply with the COLREGS and move to the
right to avoid collision. In the single-ship collision avoid-
ance scenario, the overtaking action described in the COL-
REGS does not stipulate that the ship must move left or right.
However, in the multiship collision avoidance scenario, the
overtaking action of the own ship under the COLREGS must
move to the right as displayed in Fig.4 (c), otherwise it will
collide with the target ship.

3. Method for real-time path planning and
collision avoidance based on DQN and APF

3.1. DQN

Reinforcement learning is generally described using the
Markov decision process (MDP) [20]. The RL agent takes
action a in a certain state s and interacts with the environ-
ment to change its state to s’and obtain the reward r. The
probability of transition from state s to state s’ is called state
transition probability P’ . The agent continuously inter-
acts with the circumstance to study, and finally learns the op-
timal policy to attain the goal. The RL process is displayed
in Fig.5. In realistic RL tasks, it is difficult to know the re-
ward function and state transition probability of the environ-
ment. If the RL algorithm does not rely on environmental
modeling, it is called "model-free learning", which is more
challenging than model learning [14].

Q-learning is a model-free RL algorithm, whose main
advantage is the utilization of temporal-difference algorithm
[24] to achieve off-strategy learning. The Bellman equation
is used to solve the optimal strategy of the Q-learning MDP.
The final strategy of Q-learning is obtained through the state-
action value function Q(s, a), where s” and a’ represent the
next state and action, and y represents the attenuation of fu-
ture reward r'.

O(s, a) = O(s, @) + alr’ + ymaxQ(s', a') - O(s, a)] (2)

The deep Q-learning network has evolved from Q-learning,
which associates Q-learning with DL to learn control strate-
gies directly from high-dimensional data. During the update
process, DQN first evaluates the strategy and then improves
the strategy. It calculates the rewards of all actions in the next
state and selects the action with the largest reward value. The
DQN algorithm consists of two deep neural networks which
are used to determine the Q-value, and an experience e re-
play memory M, = {ey,e,, :-,e;}. The structure of the
DQN algorithm is displayed in Fig.6.

During the training process, the current net generates
empirical data by interacting with the environment, the tar-
get net learns optimization strategies from empirical data.
DQN uses the current net to explore and to provide diverse
data to continuously optimize the target net. This structure
could solve the problem of exploitation and exploration in re-
inforcement learning [37]. Exploration emphasizes the dis-
covery of more information from known and unknown envi-
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Figure 6: Deep Q-learning network algorithm structure.

ronments, and exploitation emphasizes the maximization of
reward from information.

The e-greedy algorithm [25] takes both exploration and
exploitation into consideration for selection actions. It ran-
domly selects an action from the action space N,.;,, With
probability P = e, and selects the action a corresponding to
the maximum state-action value function Q(s, a) with prob-
ability P = 1—e. The selection action process can be written
as follows:

randomN.;;,n» P =€ 3)
argmaxQ, P=1-¢

The deep neural network approximates the optimal state-
action value function Q(s, a) of the DQN to O(s, a; 8,), where
0, is the neural network parameter. The update process of 6,
can be written as follows:

0,41 = 0,+a[r+quxQ(s',a’,H‘)—Q(s, a;0)IvVo 4)

The loss function of DQN is the residual discrepancy
between the true value and the predicted value, which is
utilized to iteratively update the action-state value function.
The Bellman equation of the loss function L(6) can be writ-
ten as follows:

L(0) = Ep[(r + ymaxQ(s',d',07) = O(s, a;0)*] (5)

Another feature of DQN is the experience replay mem-
ory pool. It stores the experience e, = (s;,a,,7;,5;,1) Ob-
tained by the agent interacting with the environment at each
step t in the experience pool M, = {ej,e,, -+, ¢,;}. In the
training process, a batch of the experience is randomly se-
lected to train the neural network can reduce the data cor-
relation and enhance the stability of the network. The Bell-
man equation for the iterative update of the action-state value
function can be written as follows:

Q,41(s,a) =Eglr+ ymﬁth(s’, a)] 6)

The combination of DQN and APF to achieve collision
avoidance path planning will be described in Section 3.3.

3.2. APF

APF is a local path planning method [12], and its ba-
sic algorithm idea is to add virtual attraction and repulsion
potential fields to the environment. There is a virtual repul-
sion potential field around the obstacle preventing the agent
from moving to the obstacle. The virtual attractive potential
field around the target point attracts the agent to approach
it. Finally, the combined force of attraction and repulsion is
calculated to guide the agent to move.

We use p, nd p, to represent the coordinates of the agent
and goal. The attractive potential field function U ,(p,) and
repulsion field function U, ,(p,) can be written as follows:

Uatt(pa) = %ép(pa’ pg)2 (7)
11 L2
(5 —5) DD,

UepPa) = 2 0 Prov M ®)
0’ D > Drep

Where & and 7 represent the coefficient of attraction and re-
pulsion, and p(p,, pg) represent the Euclidean distance be-
tween the agent and the goal. The Euclidean distance be-
tween the agent and the obstacle is represented by D, and
D,,, represents the distance threshold of the repulsion po-
tential field.

The total potential field U(p,) and the resultant force F

can be written as follows:

U(pa) = Urep(pa) + Uatt(pa) (9)

F=-VU(p,) (10)
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3.3. Proposed APF-DQN for collision avoidance
path planning
3.3.1. Modified algorithm structure

In practical applications, the USV cannot obtain com-
plete prior information of the environment, it can only obtain
environmental information within certain range centered on
itself through various sensors. The maximum detection range
of sensors is set to D,,,,. We assume that the environmen-
tal information in the range can be completely detected by
the sensors. The ship domain is the effective area around a
ship which a navigator would like to keep free with respect to
other ships and stationary obstacles [4]. There are three def-
initions of safety criterion in ship domain: own domain not
violated, target domain not violated and domains not over-
lapping. The most commonly used safety criterion is that the
own ship domain has not been violated [23]. Therefore, the
ship domain is based-on the safety criterion of own ship do-
main not violated and simplified into circular domain. It is
mainly used to evaluate the risk of collision, calculate the re-
ward of the action of the DRL agent and as an event trigger
mechanism to mandatory collision avoidance actions. The
design of the circular domain is displayed in Fig.7.

In order to evaluate the risk of collision and calculate
the reward of the action of the DRL, the circular domain is
divided into safe zone, collision avoidance zone and manda-
tory collision avoidance zone. The minimum safe encounter
distance for ship is 2 nautical miles. The advance distance is
the minimum distance for the ship to avoid collision, which
is generally set to 6 8 times the length of the ship L. If the
ship length is 100 meters, the collision avoidance distance
threshold should be: 8L + 2N M = 800m + 3704m ~ 45L.
Therefore, the threshold of USV circular domain is set to
45 times the USV length and USV is calculated as a mass
point. The thresholds of the collision avoidance zone and
the mandatory collision avoidance zone are represented by
D, and D,,, respectively. When the obstacle is in safe zone,
there is no risk of collision between own ship and the ob-
stacle. When the obstacle is in collision avoidance zone
D,,. < D < D,,, own ship needs to avoid collision to ensure
navigation safety. When the obstacle is in mandatory colli-
sion avoidance zone D < D,,,, it will trigger the mandatory
collision avoidance action of own ship to ensure navigation
safety.

@ Safe zone D, < D <Dy
Collisionavoidance ) <D< D
zone mz — cz
Mandatory collision
@ avoidance zone D < D,,,;

Figure 7: Circular domain around the agent.

After obtaining prior information of the local environ-
ment, local collision avoidance path planning can be real-

ized. The conundrum of collision avoidance path planning
can be solved by the DQN algorithm and APF algorithm.
The advantage of the DQN algorithm is that it can realize
collision avoidance path planning without the aid of envi-
ronmental prior information, but it also has the problem of
sparse reward [5]. APF considers the advantages of sim-
plicity, effectiveness and excellent real-time capability, but
only using the APF algorithm will have the problem of local
minimum and unreachable location. Therefore, we use APF
to improve the DQN algorithm, so that the improved algo-
rithm adopt the advantages of APF and improves the defects
of DQN. The improved algorithm structure of APF-DQN is
displayed in Fig.8.

DQN Algorithm

APF Environment

APF APF

| resultant

Action
Controller

Information
Fusion Module

Target net

DQN
action

APF
resultant

Navigation Reward
Information Info Function

Storage empirical data

Update

Action

- Current net

Sample data

Experience Replay
Memory

Figure 8: Improved algorithm structure combining DQN and
APF.

3.3.2. Improved collision avoidance action

The DQN algorithm has a good effect on the problem
of discrete action space, and it is troublesome to handle the
defect of continuous action space. To solve the collision
avoidance problem of USV path planning, the action space
of DQN was modified to a unit vector that only represents
the direction of movement. The APF result is mapped to the
action step coefficient 7, and the final action step is obtained
by multiplying the basic action step v,,,, and the action step
coefficient 7.The modified action space allows the continu-
ous action of the USV to be calculated as discrete values in
DQN. In addition, the APF repulsion potential field function
has been improved according to the collision avoidance area
design. The repulsion potential field function can be written
as follows:

0, DCZSD<Dmax

1 1 1 2.2

- (— — — <
anZ(D_DmZ D”) > sz —_ D < DCZ
D<D,,

Lo (L__Lyp2
zrlmz(D sz)ps

Urep(pa) =

)

where 7., and #,,, represent the repulsion coefficient of the
collision avoidance zone and the mandatory collision avoid-
ance zone of the repulsion potential function.

When the obstacle is in the safe zone or no obstacle is
detected, the agent is only affected by the attractive potential
field of the target point. In this case, the moving direction
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of the agent is obtained by adding the DQN output action
direction A, and gravity direction F,, and the action of the
agent can be written as follows:

A= (A, + F)0p (12)

‘When the obstacle is in the collision avoidance zone, the
agent is affected by the repulsion potential field of the obsta-
cle and the attractive potential field of the target point. At
this time, the magnitude and direction of the resultant force
obtained by the agent are divided into F and F. The sig-
moid activation function is used to map the resultant force
to the action step coefficient. It is a neural network activa-
tion function that can map any real number to (0, 1). The
sigmoid activation function can be written as follows:

1 (13)

sigmoid(x) = o=

The value of action step coefficient 7 after being mapped
by the sigmoid function is in the interval (0.5, 1), and the cal-
culation process of the action step coefficient can be written
as follows:

T = sigmoid(F) (14)

The final action step is 1 to 1.5 times the basic action
step. The action calculation process can be written as fol-
lows:

A= (0 + DA, + F)Upge (15)

When the obstacle is in the mandatory collision avoid-
ance zone, the agent has a high risk of collision with the
obstacle. To prevent collisions, the agent is forced to ex-
ecute collision avoidance direction Z that conforms to the
COLREGS so that the agent could gradually approach the di-
rection that conforms to COLREGS. The action of the agent
can be written as follows:

A=(GA;+ A)Upu (16)

3.3.3. Improved reward function

The reward function is utilized to evaluate the actions of
the agent. However, when traditional DQN is used for path
planning and collision avoidance, the agent can only obtain
positive and negative sparse reward functions by reaching
the target point and colliding with obstacles. Therefore, the
other actions will not receive any positive or negative feed-
back, and most of the data cannot reflect its own quality. The
model will not receive any feedback until it receives the first
reward, so it may stop learning and fail to improve.

To settle the sparse reward conundrum of the DQN, the
reward function R has been improved. The reward func-
tion is divided into the normal action reward function R,

collision avoidance action reward function R. , and end re-

ca’

ward R,,;.The modified reward function can be written as
follows:
Ra’ D> Dcz
R: Rca’ szsD<DCZ (17)
R.,, 0<D<D,,
R,,;. Other

The normal action reward function is calculated based
on the distance between the point of the agent and target and
the APF attractive potential field. Taking the inertial coor-
dinates as the benchmark, the distance between the initial
point of the agent and target is represented by d,,,,,., the dis-
tance between the current position of the agent and target is
represented by d,,,, and the direction angle of the attrac-
tion of APF to the agent and the current direction angle of
the agent are respectively represented by ¢, and ¢,.The re-
ward function value of normal action gradually increases as
the distance between the point of the agent and target de-
creases. The normal action reward function can be written
as follows:

- dpax—d
R, = sigmoid(| %L |) Tres el (18)

max

The collision avoidance reward function is affected by
APF results and COLREGS actions. When the obstacle is
in the collision avoidance zone or the mandatory collision
avoidance zone, the agent is simultaneously affected by the
repulsion of the obstacle and the attraction of the target point.
The direction angle of the resultant force received by the
agent is ¢. At this time, the reward function value de-
creases as the distance between the agent and obstacle in-
creases. The collision avoidance reward function can be writ-
ten as follows:

R,, OS stand-
Rca - a s.an on (19)
Rgive—ways OS give-way
1 D
R B 5y + ﬂz)D—”, D,, <D, 0
ey = 3 ] b ‘
give—way 5/12D,,,Z’ 0 < D < sz
A= Sigmoid(|_¢a(;¢an D @1
att
Ay = sigmoid (| 22 ) 22)
dF

The modified reward function converts the reward value
of each action-state into a continuous value between (0, 1),
which solves the sparse reward problem. The calculation
process of the reward function is displayed in Fig.9.
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Figure 9: Flow chart of reward function.

Remark 1: The three methods of DQN, Deep Deter-
ministic Policy Gradient (DDPG) [15] and Asynchronous
Advantage Actor-Critic (A3C) [18] have their own advan-
tages and disadvantages in solving problems, the deficien-
cies of RL are improved from different points of view. DQN
is effective in solving discrete action space, but it performs
poorly in continuous action space. DDPG has a high algo-
rithmic similarity with DQN, it can be regarded as the expan-
sion of DQN in the continuous action space. It has a good
effect on solving continuous space problems, but the deter-
ministic policy will lead to insufficient exploration of the
action-state space. A3C algorithm is an asynchronous and
concurrent RL method, which has good effect when training
in multi-threaded GPU clusters. Navigation strategy can be
expressed in discrete or continuous action space, but in most
situations, the navigation strategy of ship can be expressed
in a limited action space. Taking these factors into consid-
eration, DQN algorithm is chosen to improve from another
point of view.

4. Simulation experimental results

To verify the utility and feasibility of the collision avoid-
ance path planning method based on DQN and APF, the Ten-
sorFlow framework and Python are used to build the algo-
rithm model, and Python GUI is used to create a visual simu-
lation environment that can observe the training and verifica-

tion process in real time.The visual simulation environment
and algorithm model, as well as the analysis of experimental
results are introduced in this chapter. The rest of this chapter
is organized as follows. The visual simulation environment
and model design are introduced in Section 4.1.The experi-
mental results are presented in Section 4.2. Application of
the algorithm model in the environment of multiple moving
obstacles will be introduced in Section 4.3.

4.1. Simulation environment and DRL model
design
4.1.1. Visual training and verification simulation
environment

The visual simulation environment is designed as a top
view map of 500*500 meters, and the motion of the agent
is also calculated in meters. The action scope is limited to
the map. If the agent moves beyond the boundary of the
map, it will be considered a collision, and the environment
will be initialized. Static and dynamic obstacles are utilized
to simulate islands and other ships encountered during the
navigation of the USV.

The black polygon in the simulation environment is used
to simulate the island. If the agent moves to the black poly-
gon, it means a collision occurs and the environment will be
initialized. The goal is represented by a green circle in the
simulation environment. When the agent reaches the goal,
the environment will be initialized. In the simulation envi-
ronment the agent and the obstacle ship are represented by
blue and red boat-shaped patterns, and the collision avoid-
ance zone and mandatory collision avoidance zone of the
agent are represented by blue dashed lines.

4.1.2. DRL model design and training

In the action space design, we assume that the USV head-
ing angle is 0°, and the action space is designed to be nine
different action directions as:
N,

aetion = {—60°,—45°,-30°,—15°,0°,15°,30°,45°,60°}
In practical applications, the USV can only collect real-time
environmental information through sensors. To simulate the
navigation of the USV, we assume that the USV can perceive
360° environmental information within a certain distance,
which is utilized as the input of the APF-DQN.

The APF-DQN consists of two neural networks, the cur-
rent net and target net with three hidden layers. The struc-
ture of the deep neural network is displayed in Fig.10. The
input data consists of three parts: the 3600 environmental in-
formation scanned by the sensor, the distance and angle be-
tween the USV and the destination and the location of USV.
The environmental information includes the distance and an-
gle data of the surrounding objects of the USV, which type
is a two-dimensional array of shape (2, 360). The location of
USV and destination data type are two-dimensional array of
shape (2, 1). The data will be flattened into one dimension
before being input into the neural network, and the result of
the action will be output after being calculated by the fully
connected layer.
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Figure 10: Neural network structure of the current net and the
target net.

The neural network hyperparameters of APF-DQN are
designed through experiments. The hyperparameters of the
neural network are displayed in Table 1.The higher the re-
ward decay rate y, the greater the agent pays attention to fu-
ture actions.The time for the objective function to converge
to the minimum and whether it can converge to the minimum
are both determined by the learning rate /r. To maintain a
better learning effect, the learning rate is set to 0.01 at the
beginning of training. Then, the Adam algorithm is used as
an optimizer of the learning rate [11] to achieve adaptive up-
date of the learning rate. To maintain a certain exploratory
behaviour of the agent, the parameter € of the e-greedy al-
gorithm is set to 0.1. The maximum size of the experience
replay memory pool is set to 5000, and the batch size of ex-
perience replay learning is set to 64. The APF-DQN neural
network has a delayed parameter update mechanism. When
the parameters of the current net are updated c times, the
target net replicates the parameters of the current net and
updates it once. The target net update interval is set to 100.

Table 1

Hyper parameters of the DQN training algorithm.
Hyper parameter Symbol Value
Reward decay rate % 0.9
Learning rate Ir 0.01
e-greedy € 0.1
Experience replay memory M, 5000
Replay batch size b 64
Target net update interval ¢ 100

The maximum number of action of the agent in a single
training session is 300, and the reward and penalty values for
reaching the goal and collision are set to 200 and -200. The
model learns the action strategy by continuously interacting
with the environment, and the learning effect is represented
by the cumulative reward value of each training episode.

The number of steps in each training episode is displayed
in Fig.11. The curve of the first 60 training episodes shows
that the number of steps in a single training of the model

100 200 300 400 500
Episodes

o4

Figure 11: Number of steps in each training episode.

is rather small. It can be inferred that the agent touched an
environmental obstacle near the starting point or moved be-
yond the map boundary to trigger the training termination
condition. At approximately about the 60th training, the ac-
tion steps of the agent reached the maximum, which trig-
gered the training termination condition. Therefore, it can
be inferred that the agent has learned how to avoid collisions
with static obstacles. The increased number of training steps
means that the agent has learned more action strategies. Af-
ter approximately the 65th training episode, the number of
steps in each episode of training began to decrease. It can
be inferred that the agent is constantly trying to explore the
environment randomly at this time. After approximately 160
training episodes, the single training steps of the model re-
main at 130 steps, which suggests that the agent has found
a path to the goal. After 200 training episodes, three obvi-
ous fluctuations appeared in the moving step curve, which
may be caused by the exploratory strategy of the e-greedy
algorithm or the change of the collision avoidance path.

200 1

100 A

Rewards

—100 1

—200 1

T T T T T
100 200 300 400 500
Episodes

Figure 12: Total reward for each episode.

The total reward for each training episode is displayed in
Fig.12.Combining the results of Fig.11 and Fig.12 can ver-
ify the above inference of the training process. The curve
of the first 60 training episodes shows that the total reward
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value approaches the penalty value, indicating that the agent
triggered the training failure mechanism. Between 60 and 80
training sessions, the total reward value fluctuates to approx-
imately 0. The experimental results show that the model is
trying random exploratory actions and triggers the training
termination condition. Between 60 and 80 training sessions,
according to the total reward and the number of action steps,
the model is trying a different strategy. The agent reaches
the goal through some action strategies, and the training fail-
ure constraint is triggered by the remaining action strategies.
After approximately 160 training episodes, the reward value
curve fluctuates to approximately 300, and the result shows
that the agent reaches the goal and triggers the reward mech-
anism. According to the total reward curve, it can be seen
that the fluctuation of the action step has no obvious effect on
the reward. The result shows that the agent has also reached
the goal, which verifies the above hypothetical analysis of
the fluctuation of the action step.

4.2. Experimental results

To verify the effect of APF-DQN on path planning and
collision avoidance problems. The APF-DQN, DQN, DDPG,
RRT, A* and APF methods are used for path planning com-
parison experiments. The experimental results will be dis-
played in the visual simulation environment.

4.2.1. Path planning experiment

Two groups of starting and ending points were utilized
to test the ability of the six methods to handle path planning
problems under the same conditions to verify the capability
of the trained algorithm model. According to the charac-
teristics of algorithms, they can be divided into two cate-
gories: DRL-based methods (DQN, APF-DQN and DDPG)
and classic methods (APF, RRT and A*).

The start and goal point coordinates of the first set of ex-
periments are set at both ends of the simulation environment,
and the goal point is placed beside the environmental obsta-
cle. The purpose of the experimental design is to simulate
the route planning mission of the USV sailing to the shore.
The experimental results of the first group are displayed in
Fig.13, which includes the path planning trajectory, the dis-
tance to the destination and the displacement distance.

(a)Path planning trajectory ., (b)Distance to destination
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(c)Displacement

0

Figure 13: The first group of six path planning methods sim-
ulation experiment results.

Experimental results show that APF-DQN method uses
the fewest moving steps and shortest distance to reach the
destination in the first group, and the DRL-based method
performs better than the classic method. It can be seen from
Fig.13 (a) that the three classic methods perform better than
the DRL-based methods in the front part of the trajectory.
However, the performance of classic algorithms is poor in
the latter part of the trajectory, which is caused by their al-
gorithm characteristics. RRT and A* are respectively a sam-
pling based method and a search based method, their sam-
pling or searching node behavior is hard to generate smooth
and optimal trajectories. The APF method is affected by
the attraction of the destination and the repulsion of obsta-
cles, so that the agent can only move in the direction where
the attractive force is greater than the repulsive force. In
three DRL-based methods, it can be seen from Fig.13 (a)
and Fig.13 (c) that DDPG and APF-DQN achieved similar
results on trajectories and distances, and both are better than
DQON method. Compared with the DQN method, the im-
proved action space and reward function of APF-DQN can
effectively guide the path planning trajectory of the agent.

The start and goal points of the second set of experiments
are set beside the same environmental obstacle. The ex-
perimental results of the second group are shown in Fig.14,
which includes the path planning trajectory, the distance to
the destination and the displacement distance. The experi-
mental results show that although the trajectory of the APF-
DQN method is different from other trajectories, the trajec-
tory displacement is similar to RRT, A*, DDPG and DQN,
and the comprehensive result is the best. The reason for the
poor results of the APF method is that the obstacle surround
the destination, and the repulsive force field of the obstacle
directly acts on the agent, making it unable to approach the
obstacle. The agent can only move in the direction where
the attraction field is greater than the repulsion field.

(a)Path planning trajectory (b)Distance to destination
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Figure 14: The second group of six path planning methods
simulation experiment results.

Two sets of experimental results show that the APF-DQN
method can effectively solve the path planning problem. The
experimental results from Fig.13 and Fig.14 proved that the
DRL-based method performs better on the global trajectory,
and the continuous action space DRL method is better than
the discrete action space DRL method for path planning prob-
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Figure 15: APF-DQN COLREGS collision avoidance experimental results.

lems.

4.2.2. Collision avoidance experiments

The collision avoidance experiments were designed to
verify whether APF-DQN can achieve COLREGS-compliant
collision avoidance while implementing path planning. The
four COLREGS situations and experimental results are il-
lustrated in Fig.15.

In the head-on collision avoidance simulation experiment,
the course of the obstacle ship is set to face the USV. The

head-on collision avoidance path planning trajectory is demon-

strated in Fig.16 (a). From the navigation trajectory results,
it can be seen that the USV turned right to avoid the obstacle
after detecting it. The head-on collision avoidance trajec-
tory snapshot is displayed in Fig.16(b). It can be seen that
when the obstacle ship is detected by the USV, their rela-
tive position is in line with the head-on situation. The USV
is a give-way ship and the obstacle ship is a stand-on ship;
hence, the USV moves to the right to make way for the ob-
stacle ship. The collision avoidance operation of the USV
complies with COLREGS Chapter 2 Regulation 14.

(a) Head-on collision avoidance trajectory (b) Trajectory snapshot
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Figure 16: Head-on situation experiment result.

In the crossing give-way collision avoidance simulation
experiment, the course of the obstacle ship is set to the right
side of the USV. The crossing give-way collision avoidance
path planning trajectory is demonstrated in Fig.17 (a). From
the navigation trajectory results, it can be seen that the USV
turned right to avoid the obstacle after detecting it. The
crossing give-way collision avoidance trajectory snapshot is
displayed in Fig.17 (b). It can be seen that when the obstacle
ship is detected by the USV, their relative position is in line
with the crossing give-way situation. The USV is a give-
way ship, and the obstacle ship is a stand-on ship; hence, the
USV moves to the right to make way for the obstacle ship.
The collision avoidance operation of the USV complies with
COLREGS Chapter 2 Regulation 15 and 17.

(a) Crossing give way (b) Trajectory snapshot

collision avoidance trajectory |
500 — Agentusv |
— Agent/USV | 1751 — obstacle ship |
| Obstacle ship | 150 O Collision avoidance zone |
® Destination [ N | 125 o |
4 m Static obstacles
400 \ [ 100 /@, SR
| |7 e |
| S—”
/ s |
300 4
£ / : ', i ——
£ £ | %0 25 50 75 100 125 130 175 |
= / |
4 N 175
200 / : |
I 150
~ 7 Obstacie |12 :
P ~ ship start 100
100 - |
7 s ) |
Agent
ey L |
04+ e : = |
0 100 200 300 400  soo] - EEG—s—_|um
xm) T TT- T T-—-—-=

Figure 17: Crossing give way situation experimental result.

In the overtaking collision avoidance simulation exper-
iment, the course of the obstacle ship is set to travel in the
same direction as the USV. The overtaking collision avoid-
ance path planning trajectory is shown in Fig.18 (a). From
the navigation trajectory results, it can be seen that the USV
turned left to avoid the obstacle after detecting it. The over-
taking collision avoidance trajectory snapshot is illustrated
in Fig.18 (b). It can be seen that when the obstacle ship is
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detected by the USV, their relative position is in line with
the overtaking situation. The USV is a give-way ship and
the obstacle ship is a stand-on ship; hence, the USV moves
to the left to make way for the obstacle ship. The collision
avoidance operation of the USV complies with COLREGS
Chapter 2 Regulation 13.

(a) Overtaking collision avoidance trajectory (b) Trajectory snapshot
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Figure 18: Overtaking situation experiment result.

In the crossing stand-on collision avoidance simulation
experiment, the course of the obstacle ship is set to the right
side of the USV. The crossing stand-on collision avoidance
path planning trajectory is illustrated in Fig.19 (a). From
the navigation trajectory results, it can be seen that the USV
kept its course and continue sailing after detecting it. The
crossing stand-on collision avoidance trajectory snapshot is
displayed in Fig.19 (b). It can be seen that when the obstacle
ship is detected by the USV, their relative position is in line
with the crossing stand-on situation. The USV is a stand-on
ship and the obstacle ship is a give-way ship, hence, the USV
keeps its course. The collision avoidance operation of the
USV complies with COLREGS Chapter 2 Regulation 17.
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Figure 19: Crossing stand on situation experiment result.

In the mandatory collision avoidance simulation experi-
ment, the course of the obstacle ship is set to the right side
of the USV and its collision avoidance action does not fol-
low the rules. The crossing stand-on collision avoidance
path planning trajectory is demonstrated in Fig.20 (a). From

the navigation trajectory results, it can be seen that the USV
turned left to avoid the obstacle after detecting it. The manda-
tory collision avoidance trajectory snapshot is displayed in
Fig.20 (b). It can be seen that when the obstacle ship is
detected by the USV, their relative position is in line with
the crossing stand-on situation. The USV is a stand-on ship
and the obstacle ship is a give-way ship, but the obstacle
ship did not abide by COLREGS to give way to the USV. In
this situation, the mandatory collision avoidance action de-
termined by the circle domain of own ship will be triggered,
the USV travels to the left to avoid collision with the ob-
stacle ship. According to COLREGS Chapter 2 Regulation
15, the obstacle ship should give way to the USV, and the
USV should keep stand-on, but according to COLREGS, if
the giving way ship fails to comply with the regulations, the
standing ship can take mandatory actions to avoid collision.

(a) Mandatory collision avoidance trajectory (b) Trajectory snapshot
500 r _——'1: pvrva— ]|
— Agent/Usv | 175 — obstacle ship |
4 —— Obstacle ship | 150 O Collision avoidance zone |
® Destination S
2001 ® static obstacies | 125 |
| 100 |
(5 |
o i I
3001 | |
2
€ [ |
< | OB % B e deas |
200 A | s |
| | 150 o |
~ | A\ [
e {
_ I 100 N |
100 // " N |
- Agent e | |
start 50
o | |
0 — P |
0 100 200 300 400 500 o - |

Figure 20: Mandatory collision avoidance experiment result.

The results of the five sets of simulation experiments
prove that the proposed method can achieve COLREGS col-
lision avoidance while completing path planning.

4.3. Multi-obstacle path planning and collision
avoidance verification

In this section, three groups of multi-obstacle collision
avoidance experiments are designed to test our method. In
first group of experiments, four mobile obstacle ships are
added to the environment, which represent four COLREGS
collision avoidance situations. The multi-obstacle collision
avoidance trajectory and trajectory snapshot are displayed in
Fig.21.

Fig.21 (a) shows that the USV encounters four obstacle
ships in sequence during the process of sailing to the goal
point. When the USV detects that obstacle ship A enters the
collision avoidance area from the right side, it moves to the
right to avoid collision with the obstacle ship, and the cross-
ing give-way trajectory snapshot is demonstrated in Fig.21
(b).Then the USV continues to sail when obstacle ship B is
detected to enter the collision avoidance zone from the left,
and the crossing stand-on trajectory snapshot is illustrated
in Fig.21 (c).The USV detects that obstacle ship C is in the
collision avoidance zone and moves in the same direction as
the USV. To avoid collision, the USV moves to the left to
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(a) Multi-obstacles collision avoidance trajectory

(b)Crossing give way trajectory snapshot
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give way to obstacle ship C, and the overtaking trajectory
snapshot is shown in Fig.21 (d).In the last segment of the
trajectory, the USV detects that obstacle ship D is located in
the collision avoidance zone and is driving in the opposite
direction to the USV. To avoid collision, the USV moves to
the right to give way to obstacle ship D, and the head-on tra-
jectory snapshot is displayed in Fig.21 (e).The experimen-
tal results show that APF-DQN can effectively deal with the
collision avoidance problem in the process of path planning,
and the collision avoidance action of USV complies with the
COLREGS.

In the second group of experiments, the scenario when
own ship encountered two types of target ships at the same
time is displayed in Fig.22, which is designed to simulate the
multiship encounter scenario of case Fig. 4 (c).

Fig.22 (a) shows the collision avoidance path planning
trajectory when own ship encounters two types of target ships
at the same time while sailing to the goal. It can be seen from
Fig.22 (b), when USV detects that the obstacle ships A and
B enter the collision avoidance zone at the same time, USV
takes an action to the starboard side to avoid collision. The
collision avoidance action of own ship complied with the
COLREGS-based strategies shown in Fig.3 and the multi-
ship collision avoidance strategies is illustrated in Fig.4 (c).
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500
—— Agent/USV
Obstacle ship A I
—— Obstacle ship B I
400 O Goal |
300 4 ot |
— Ship A
g |
> I
200 R
I
I
100 A |
Agent
start |
0 +————————1— |
0 100 200 300 400 500 | |
x(m) Lo B _w__io s e s me)

Figure 22: Multiship collision avoidance trajectory and trajec-
tory snapshot of case Fig.4(c).

In the third group of experiments, the scenario when own
ship encountered two types of target ships at the same time is
displayed in Fig.23, which is designed to simulate the mul-
tiship encounter scenario of case Fig. 4(a).

The collision avoidance path planning trajectory of own
ship is displayed in Fig. 23 (a). It can be seen from Fig.
23 (b), when the obstacle ships A and C enter the collision
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avoidance zone of USV at the same time, USV sails to the
starboard side to avoid collision. The collision avoidance ac-
tion of own ship complied with the COLREGS-based strate-
gies shown in Fig. 3 and the multiship collision avoidance
strategies is illustrated in Fig. 4 (a).

(a) Multiship collision avoidance trajectory
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Figure 23: Multiship collision avoidance trajectory and trajec-
tory snapshot of case Fig.4(a).

5. Conclusion

In this paper, a path planning method with collision avoid-
ance function based on DRL and APF was proposed to achieve
collision avoidance path planning. Real-time collision avoid-
ance in path planning is essential in guaranteeing navigation
security in crowded seas.

The 360° environmental information detected by the sen-
sors of the drone is utilized as the input of the DQN. The al-
gorithm method of APF is used to improve the action space
and the reward function of the Deep Q-learning network al-
gorithm, and the improved method is named APF-DQN. To
convert the discrete action space of APF-DQN into a par-
tial continuous action space, the potential field is mapped to
the action step. The reward function is designed based on
the artificial potential field. There are different reward func-
tions according to different situations, which can effectively
reflect the experience of the agent in various situations.

To settle the collision avoidance problems that may oc-
cur during USV navigation, the location of the obstacle ship
is divided into four collision avoidance zones according to
the COLREGS. The ability of APF-DQN to handle collision
avoidance path planning problems is verified in the visual
simulation environment. The simulation experiment results
show that the collision avoidance path planning problem can
be settled by the APF-DQN, and the collision avoidance ac-
tions conform to COLREGS.

Although the method proposed in this paper has many
advantages, it also has some limitations. The APF-DQN
algorithm appertain to model-free DRL. The output of the
algorithm model only represents an action strategy, which
will be affected by the physical factors of the ship in practi-
cal applications. The deep neural network is trained in the
simulated environment, so the trained APF-DQN will be af-

fected by the ship model and environmental uncertainty in
practical applications.

For future work, we will try to consider the role of uncer-
tain environmental factors in collision avoidance decision-
making to improve the reliability of the proposed method in
practical applications. Moreover, the impact of visibility at
sea on the accuracy of sensor data is also an issue that can-
not be ignored. Therefore, considering the environmental
impact and ship kinematics model to achieve precise motion
control with deep reinforcement learning is our future work.
We will also attempt to combine it with model-based DRL
algorithm to achieve better applicability and stability.
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