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Abstract 

Failure envelope formulations are typically employed to assess the ultimate capacity of 

foundations under combined loading and for incorporation in macro-element models. However, 

the complex interaction between each load component, especially for six degree of freedom 

(6DoF) loading, means that determining satisfactory formulations is often a complex process. 

Previous researchers have identified this difficulty as an obstacle to the adoption of the failure 

envelope approach in foundation engineering applications. To address this issue, the paper 

describes a systematic procedure for deriving globally convex failure envelope formulations; the 

procedure is applied to a circular surface foundation, bearing on undrained clay, in 6DoF load 

space. The formulations are shown to closely represent the failure load combinations 

determined from finite element analyses for a variety of loading conditions, including non-planar 

horizontal-moment loading. An example macro-element model based on the proposed 

formulation is described; the macro-element model provides a close representation of the 

foundation behaviour determined from a separate finite element analysis. A key aspect of the 

paper is that it demonstrates an automated process to determine well-behaved failure envelope 

formulations. The automated nature of the process has considerable advantages over the 

manual procedures that have previously been employed to determine failure envelope 

formulations.   
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Bearing capacity, Failure, Foundations, Soil-structure interaction, Offshore engineering, 
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List of notation 

V vertical load 

𝐻𝑥 horizontal load along x-axis 

𝐻𝑦 horizontal load along y-axis 

𝑀𝑥 moment about x-axis 

𝑀𝑦 moment about y-axis 

Q torque about z-axis 

V0 vertical uniaxial capacity 

H0  horizontal uniaxial capacity 

M0 moment uniaxial capacity 

Q0 torsion uniaxial capacity 

𝑉̃ normalised vertical load  

𝐻𝑥 normalised horizontal load along x-axis 

𝐻𝑦 normalised horizontal load along y-axis 

𝑀̃𝑥 normalised moment about x-axis 

𝑀̃𝑦 normalised moment about y-axis 

𝑄̃ normalised torque about z-axis 

𝐻𝑖 horizontal load along a general axis 𝑖 in the x-y plane 

𝑀𝑖 moment about a general axis 𝑖 in x-y plane 

𝐻𝑖 normalised horizontal load along a general axis 𝑖 in x-y plane 

𝑀̃𝑖 normalised moment about a general axis 𝑖 in x-y plane 

𝑠u  undrained shear strength 
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Highlights 

• Previous failure envelope formulations were typically determined using a manual 

process that may be very time-consuming, especially for a high-dimensional load 

space. 

• The paper describes an automated procedure to determine failure envelope 

formulations for a circular surface foundation in the full six degrees of freedom load 

space. 

• Advantages of the derived failure envelope formulations, compared with previous 

formulations, include guaranteed global convexity (which allows the formulation to be 

used for both ultimate capacity evaluation and macro-element modelling), 

thermodynamic consistency (if used as a plastic potential) and accurate modelling of 

the failure envelope for non-planar horizontal-moment loading. 

• Advantages of the proposed procedure includes fast computational time, minimal 

manual interpretation of failure data, and generality of the procedure for other circular 

foundation configurations (e.g. suction caisson or bucket foundations). 
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1. Introduction 

1.1 Failure envelope approach in foundation design 
 
A failure envelope is a hypersurface that defines combinations of loads and moments that result 

in the ultimate limit state of a foundation. The failure envelope approach is widely used to 

assess the ultimate capacity of shallow foundations for combined loading, as recommended by 

several design guidelines (e.g. Paikowsky, 2010; API, 2011; ISO, 2016). Failure envelopes are 

typically represented by a closed-form mathematical formulation (referred to in this paper as a 

‘failure envelope formulation’). Several failure envelope formulations have been derived by 

previous researchers by fitting selected parametric functions to failure load data obtained from 

numerical analysis and/or experiments. Unlike traditional bearing capacity analysis, the failure 

envelope approach is able to explicitly model complex interactions for combined loading, rather 

than using simple linear superposition methods incorporating load inclination and eccentricity. 

 

However, deriving satisfactory failure envelope formulations for specific foundation engineering 

applications is typically a challenging task, especially for six degree of freedom (6DoF) loading 

conditions, due to the complex interactions between the load components. Thus, the process of 

deriving these formulations tends to be difficult and time-consuming, as even the first step of 

identifying a suitable functional form for the formulation may not be straightforward. For drained 

loading, effective – and relatively simple - 6DoF failure envelope formulations have been 

previously developed for foundations on sand (e.g. Bienen et al. 2006; Salciarini & Tamagnini 

2009); these formulations provide a good fit with experimental data. However, for undrained 

loading, the shapes of the failure envelope, e.g. derived from numerical analysis, are typically 

rather more complex and deriving a failure envelope formulation that fits the data well in these 

cases is challenging. Previous researchers (e.g. Gourvenec, 2007; Shen et al., 2017) have 

identified practical difficulties in deriving suitable formulations as a notable obstacle to increased 

adoption of the failure envelope approach in practical applications.  

 

In addition to the various practical difficulties in deriving satisfactory failure envelope 

formulations in 6DoF load space, many of the existing failure envelope formulations are not 
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numerically convenient for use as yield surfaces of macro-element models due to their 

functional forms. Furthermore, most previous failure envelope formulations adopt idealised 

ground conditions such as uniform or linearly increasing undrained shear strength 𝑠u with depth 

(for clay) or uniform friction angle (for sand); these conditions may not be realistic for sites with 

more complex (e.g. multi-layered) ground conditions. There is therefore a need for a systematic 

procedure to facilitate the formulation of numerically well-conditioned failure envelopes for site-

specific conditions; the current paper presents a process that is suitable for this purpose.  

 

1.2 Previous failure envelope formulations for surface footings on undrained 
clay 

The current paper is concerned with failure envelope formulations for a rigid circular surface 

foundation on undrained clay. Various failure envelope formulations for this foundation 

configuration are proposed in the literature (e.g. Taiebat & Carter, 2000; Gourvenec & 

Randolph, 2003; Gourvenec, 2007; Vulpe et al., 2014; Shen et al., 2017). These previous 

formulations typically represent undrained clay using the Tresca or von Mises yield criteria. In 

the following discussion, clay modelled using the Tresca and von Mises yield criteria are 

referred to as ‘Tresca soil’ and ‘von Mises soil’ respectively. 

 

In the following discussion, the nomenclature 𝑉̃, 𝐻, 𝑀̃ 𝑄̃ is used to indicate normalised values of 

vertical force, 𝑉, horizontal force, 𝐻, moment 𝑀 and torque 𝑄 applied to the foundation such 

that 𝑉̃ = 𝑉/𝑉0, 𝐻 = 𝐻/𝐻0 , 𝑀̃ = 𝑀/𝑀0   and 𝑄̃ = 𝑄/𝑄0  where 𝑉0, 𝐻0, 𝑀0, 𝑄0 are the respective 

uniaxial capacities (i.e. the ultimate capacities of the foundation due to each individual load or 

moment/torque component). For 6DoF loading, 𝐻𝑥, 𝑀̃𝑦 , 𝐻𝑦 , 𝑀̃𝑥 refers to the normalised values of 

the horizontal force (along x-axis), moment (about y-axis), horizontal force (along y-axis) and 

moment (about x-axis) respectively i.e. 𝐻̃𝑥 = 𝐻𝑥/𝐻0, 𝑀̃𝑦 = 𝑀𝑦/𝑀0, 𝐻̃𝑦 = 𝐻𝑦/𝐻0, 𝑀̃𝑥 = 𝑀𝑥/𝑀0. 

The conventions employed in this paper to define the 6DoF loads (consistent with Butterfield et 

al. 1997) applied to a circular surface foundation are depicted in Fig. 1.  

 



7 
 

 
Figure 1. 6DoF loading configuration for surface foundation, consistent with the conventions in 

Butterfield et al. (1997). The loading reference point (LRP) is at the centre of the foundation 

base. 

 

The difficulty in deriving failure envelope formulations increases with increased dimension of the 

load space; as a consequence there are few previous formulations that account for the 

complete 6DoF load space (i.e. comprising loads and moments in each of the three coordinate 

directions). Most previous failure envelope formulations are limited to three load components 

𝑉, 𝐻 and 𝑀 applied to the foundation, where 𝐻 is the resultant horizontal force considered to be 

planar with the resultant moment 𝑀, as defined in Butterfield et al. (1997). This limited 𝑉𝐻𝑀 

load space may not be adequate for modelling foundations that support offshore structures such 

as offshore wind turbines, where the wind and wave actions may result in 𝐻 that is non-planar 

with 𝑀. Nevertheless, such formulations are useful for design scenarios where the limited load 

space provides a realistic representation of the main load drivers on the foundation.  

 

For circular surface foundations on Tresca soil (for uniform undrained shear strength and no 

contact breaking between soil and foundation), Taiebat & Carter (2000) and Vulpe et al. (2014)   

proposed two different 𝑉𝐻𝑀 failure envelope formulations. Taiebat & Carter (2000) proposed 

the formulation, 

𝑓(𝐻̃, 𝑀̃, 𝑉̃) = |𝐻3| + (𝑀̃ (1 − 0.3𝐻
𝑀̃

|𝑀̃|
))

2

− 𝑉̃2 − 1 = 0 

(1) 

Vulpe et al. (2014) proposed the alternative formulation, 
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𝑓(𝐻, 𝑀̃, 𝑉̃) = |
𝐻

𝜉H

|

𝑎

+ (
𝑀̃

𝜉M

)

𝑎

+ 2𝑏 (
𝐻𝑀̃

𝜉H𝜉M

) − 1 = 0 
(2) 

where  

𝜉H = 1 − 𝑉̃4.69 

𝜉M = 1 − 𝑉̃2.12 

𝑎 =  2.13 if 𝑉̃ ≤ 0.5 else 𝑎 = 1.63 

𝑏 =  −0.26 if 𝑉̃ ≤ 0.5 else 𝑏 = −0.05 

Alternative values of 𝑎 and 𝑏 for Tresca soil with linearly increasing undrained shear strength 

with depth are provided in Vulpe et al. (2014). 

 

One of the few previous failure envelope formulations for circular surface foundations for the 

complete 6DoF load space is described in Shen et al. (2017). This failure envelope formulation, 

which relates to foundations on Tresca soil (for both uniform and linearly increasing strength 

with depth and no contact breaking between soil and foundation) is defined by, 

𝑓(𝐻, 𝑀̃, 𝑉̃, 𝑄̃) = (
𝐻

𝜉H

)

2

+ (
𝑀̃

𝜉M

)

𝑎

(1 − 𝑏
𝐻

𝜉H

) − 1 = 0 
(3) 

where the normalised resultant horizontal force  𝐻̃ and normalised resultant moment 𝑀̃ are not 

necessarily planar. The coefficients in Eq. 3 are given by,  

𝑎 =  2.1 +  0.2 (1 +  
𝐻̃

|𝐻̃|
)  − (1.1 −  0.1 (1 +  

𝐻̃

|𝐻̃|
)) 𝑉̃  + (2.4 −  1.8 (1 +

𝐻̃

|𝐻̃|
)) 𝑉̃2 

𝑏 =  0.5 +  0.1 (1 +  
𝐻̃

|𝐻̃|
)  −  0.1𝑉̃ − 0.6𝑉̃2 

𝜉H = 𝜉H0 (1 − (
𝑄̃

𝜉Q

)

1.75

)

0.571

 

𝜉M = (1 − 𝑉̃
1

0.28+0.035𝜅−0.002𝜅2) (1 − (
𝑄̃

𝜉Q

)

1.5+0.1𝑉+1.4𝑉2

)

1
(5.3+𝑉−6𝑉2)(1+(0.09−0.02𝑉−0.15𝑉2)𝜅)

 

𝜉H0  =  1 if 𝑉̃ ≤ 0.5 else (1 − (2𝑉̃ − 1)
2

)
0.667

 

𝜉Q  =  1 if 𝑉̃ ≤ 0.5 else (1 − (2𝑉̃ − 1)
4

)
0.4

 

where 𝜅 is the gradient of the linearly increasing soil strength profile. 
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Shen et al. (2017) found that the influence of the resultant horizontal force 𝐻 and moment 𝑀 on 

the failure envelope depends on the relative directions in which 𝐻 and 𝑀 are applied. In 

particular, the failure characteristics change when  𝐻 and 𝑀 depart from being planar. Note that 

Eq. 3 does not attempt to accurately represent the failure envelope under non-planar 𝐻𝑀 

loading. Instead, it represents a conservative, lower bound failure envelope for all possible 𝐻 

and 𝑀 directions. Eqs. 2 and 3 have similar functional forms; both are derived using a 

procedure referred to in this paper as the ‘𝐻𝑀-based’ procedure. In this approach, the 

formulation is initially defined in the 𝐻𝑀 load space. The influence of additional load 

components (e.g. 𝑉 or 𝑄) are then incorporated within the formulation by reducing the uniaxial 

capacities (i.e. 𝐻0 or 𝑀0) using ‘knock-down’ factors (𝜉H or 𝜉M) that represent the reduction of 

capacities due to interactions with vertical force and/or torsion. 

 

Looking beyond circular surface foundations (the particular focus of the current paper), 6DoF 

failure envelope formulations have been previously developed for other foundation types. For 

example, Martin (1994) proposed the following formulation for spudcan foundations, 

𝑓(𝐻𝑥, 𝑀̃𝑦 , 𝐻𝑦, 𝑀̃𝑥 , 𝑉̃, 𝑄̃) = (𝐻𝑥
2

+ 𝐻𝑦
2

) + (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

) − 2𝑎(𝐻𝑦𝑀̃𝑥 − 𝐻̃𝑥𝑀̃𝑦) 

+𝑄̃2 −  𝑏𝑉̃2𝛽1(1 − 𝑉̃)2𝛽2 = 0 

(4) 

where 𝑎, 𝑏, 𝛽1, 𝛽2 are fitting parameters. Eq. 4 was later adopted by Bienen et al. (2006) and 

Salciarini & Tamagnini (2009) for the yield surfaces of their macro-element models for circular 

surface foundations on sand. One of the main limitations of Eq. 4 is that it is only able to 

represent a limited range of failure envelope shapes, for example it does not provide a good fit 

with failure data of surface foundations on undrained clay, especially in the 𝐻𝑀 load space 

(where Eq. 4 models an elliptical-shaped failure envelope contour). It also suffers from 

numerical issues such as singularities at some load values such as 𝑉̃ = 1, where difficulties 

arise in calculating the gradient. For mudmat foundations, Feng et al. (2014a, 2014b, 2015a, 

2015b) proposed 6DoF failure envelope formulations, similar in form to Eq. 3. 

 

There are various limitations in previous failure envelope formulations for circular surface 

foundations on undrained clay. First, there are no validated failure envelope formulations that 

accurately represent the failure envelope for cases where 𝐻 and 𝑀 are non-planar. Second, 
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most of the existing failure envelope formulations are unsatisfactory for use as a yield surface or 

plastic potential in macro-element models, as they may not be real-valued for parts of the load 

space and numerical issues exist (e.g. singularities at some load values); this makes numerical 

implementation inconvenient. It is noted that singularities, e.g. at 𝑉̃ = 1, may be genuine 

features of the failure behaviour, but it is typically desirable - for numerical robustness – to 

approximate these singularities by employing smooth functions. Third, previous formulations are 

not always guaranteed to be thermodynamically consistent, if used as plastic potentials in 

macro-element models. Previous formulations are also typically not globally convex, therefore 

they may cause numerical issues when using implicit elasto-plastic integration algorithms 

(Panteghini & Lagioia, 2014, 2018a, 2018b). Finally, the 𝐻𝑀-based procedure is currently the 

most common framework for deriving failure envelope formulations for 6DoF loading and this 

has been successfully applied to mudmat foundations (e.g. Feng et al., 2014a, 2014b, 2015a, 

2015b) and surface foundations (Shen et al., 2017). This procedure, however, may not produce 

failure envelope formulations that are suitable for macro-element modelling and significant 

manual interpretation is required to formulate the knockdown factors (𝜉H or 𝜉M) for each 

additional load component (𝑉 or 𝑄). Therefore, an automated procedure that can derive the 

complete failure envelope formulation with minimal manual interpretation would be 

advantageous. 

 

1.3 Objectives of the current paper 

The current paper aims to address the practical difficulties – referred to in the previous section - 

in deriving failure envelope formulations for 6DoF loading; an automated process is proposed, 

based on sum of squares convex (SOS-convex) polynomials, employing the framework 

described in Suryasentana et al. (2020a). This framework guarantees a failure envelope 

formulation that is globally convex (which facilitates the use of efficient implicit elastic-plastic 

integration algorithms in macro-element models) and thermodynamically consistent (if used as a 

plastic potential in a macro-element model). Moreover, the formulation is numerically ‘well-

behaved’ (i.e. no singularities in the load space and gradients can be easily calculated), which 

further enhances its suitability for use in macro-element modelling. 
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The paper extends the work of Suryasentana et al. (2020a) by demonstrating how a priori 

knowledge of the invariance of the failure envelope with respect to horizontal and moment 

loading (due to the circular geometry of the foundation) can be incorporated within the 

framework to guarantee that the derived formulation satisfies this invariant property. The 

proposed automated process is, in principle, applicable to any foundation with circular symmetry 

(e.g. suction caisson or bucket foundations) and in any laterally homogeneous ground 

conditions (i.e. no spatial variations in the horizontal plane) – including nonhomogeneous depth-

wise soil strength variation. The current paper, however, considers the 6DoF failure envelope 

formulation for a circular surface foundation on undrained homogeneous clay as an example 

application. The failure envelope formulation is calibrated using failure load data generated by 

3D finite element calibration analyses. 

2. Method 

2.1 Load conventions 

Planar 𝐻𝑀 loading corresponds to the case where 𝐻 = 𝐻𝑦 and 𝑀 = 𝑀𝑥. A failure envelope 

formulation 𝑓 for the 6DoF load space is defined as, 

𝑓(𝐻𝑥 , 𝑀𝑦, 𝐻𝑦 , 𝑀𝑥 , 𝑉, 𝑄) = 0 (5) 

 

Furthermore, 𝐻𝑖 is defined as the resultant horizontal load along axis 𝑖 and 𝑀𝑗 is the resultant 

moment about axis 𝑗; these axes can be aligned in arbitrary directions in the 𝑥-𝑦 plane. Due to 

the circular geometry of the problem, the failure envelope is governed by the relative directions 

of 𝐻𝑖 and 𝑀𝑗, and not their absolute directions. In other words, the failure envelope is invariant to 

changes in the absolute directions of 𝐻𝑖 and 𝑀𝑗, provided that their relative directions remain the 

same. This invariant property can be represented by a failure envelope formulation for a 

reduced five degrees of freedom (5DoF) load space of the form: 

𝑓(𝛼, 𝐻𝑖 , 𝑀𝑗 , 𝑉, 𝑄) = 0 (6) 

where 𝛼 is a parameter that represents the relative direction of 𝐻𝑖 with respect to 𝑀𝑗. 

The parameter 𝛼 is represented by 𝛼𝐻𝑀′, which is the absolute (unsigned) angle between 𝐻𝑖 

and 𝑀𝑗
′, where the 𝑀𝑗

′ direction is clockwise orthogonal to the 𝑀𝑗 direction (see Fig. 2). It is 
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emphasised that 𝛼𝐻𝑀′ is not defined as the angle between 𝐻𝑖 and 𝑀𝑗, as this definition cannot 

differentiate between ±𝐻𝑖 or ±𝑀𝑗 for planar 𝐻𝑀 loading. For planar 𝐻𝑀 loading, the absolute 

angle between 𝐻𝑖 and 𝑀𝑗 is always 𝜋/2 radians, regardless of whether 𝐻𝑖 and 𝑀𝑗 are positive or 

negative valued; this would imply that the 𝐻𝑀 failure envelope should be identical in all 

quadrants of the 𝐻𝑀 load space, which would contradict previous research. On the other hand, 

for planar 𝐻𝑀 loading, the absolute angle between 𝐻𝑖 and 𝑀𝑗
′ (or −𝐻𝑖 and −𝑀𝑗

′) is zero, while 

the absolute angle between −𝐻𝑖 and 𝑀𝑗
′ (or 𝐻𝑖 and −𝑀𝑗

′)  is 𝜋 radians. The definition adopted 

for 𝛼𝐻𝑀′ can distinguish the correct symmetry of these various loading scenarios. Conveniently, 

in the current convention 𝛼𝐻𝑀′ = 0 represents the planar 𝐻𝑀 loading case. 

 

 
 
Figure 2. Conventions adopted for general 𝑯-𝑴 loading, where the loading reference point 

(LRP) is at the centre of the foundation base. 

 

2.2 Finite element model 

To calibrate the failure envelope formulation, failure load calibration data were generated for 

multiple combinations of 𝛼𝐻𝑀′ , 𝐻𝑖 , 𝑀𝑗, 𝑉, 𝑄. Data were generated until it was concluded that a 

sufficient number had been obtained to define a smooth failure surface, e.g. by visual inspection 

of HM contours of the failure envelope for different combinations of 𝛼𝐻𝑀′ , 𝐻𝑖 , 𝑀𝑗 , 𝑉, 𝑄 throughout 

their valid ranges. The calibration data were generated by conducting three-dimensional (3D) 
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finite element analyses of a rigid circular surface foundation of diameter 𝐷 on homogeneous 

undrained clay using the finite element software Abaqus v6.13 (Dassault Systèmes 2014). The 

diameter and depth of the finite element mesh domain were set to 6𝐷 and 2.5𝐷 respectively. 

This domain size was found to be sufficiently large to avoid significant boundary effects on the 

computed failure loads, as the maximum change in the uniaxial capacities of the foundation was 

0.3% when the domain was doubled (i.e. diameter of 12𝐷 and depth of 5𝐷). Furthermore, Shen 

et al. (2017) used a similar-sized mesh domain (diameter of 6D and depth of 3D), which they 

found to be sufficiently large for the failure mechanisms to be unaffected by the mesh 

boundaries. Displacements were fixed in all directions at the bottom of the mesh and in the 

radial directions on its periphery. A representative mesh is shown in Fig. 3. 

 

 The soil was defined as a homogeneous, isotropic linear elastic, perfectly plastic material, 

with undrained shear strength 𝑠u, adopting a fully-associated von Mises yield criterion. This von 

Mises model was selected for the current study, rather than a Tresca model, as the built-in 

Tresca model implemented in Abaqus does not employ a fully-associated flow rule (instead, the 

von Mises function is adopted as the plastic potential). Since the macro-element model example 

described later in this paper adopts an associated flow rule, it is considered important that the 

Abaqus analyses also adopt a fully-associated soil constitutive model. This facilitates a fair 

comparison of the load-displacement calculations conducted with the macro-element model and 

the Abaqus finite element analysis. 

 

The Poisson’s ratio 𝜈 of the soil was set to 0.49, while its Young’s modulus 𝐸 was set to 

1000√3𝑠u. (The Young’s modulus may be set arbitrarily since the elastic behaviour does not 

affect the final failure states, Chen & Liu 1990). First-order, fully-integrated, linear, brick 

elements C3D8H were adopted for the soil. The surface foundation was modelled as a 

weightless, rigid body, and the loading reference point was set at the centre of its base, as 

shown in Fig. 1. Separation and slip at the soil-foundation interface was prevented using tie 

constraints.  
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(a) 

 
(b) 

 
Figure 3. (a) Oblique view of the 3D finite element model. The diameter and depth of the mesh 

domain are 𝟔𝑫 and 𝟐. 𝟓𝑫 respectively. (b) Plan view of the 3D finite element model. 

 

2.3 Numerical procedures to determine failure load data 

First, the uniaxial load capacities (𝑄0, 𝑉0, 𝐻0, 𝑀0) of the foundation were computed by 

independently prescribing displacements of 0.1𝐷 and rotations of 0.1 radians in the respective 

axes; these displacement/rotation magnitudes were sufficiently large to reach failure (i.e. the 

load had reached steady state). 
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Next, failure load data were determined to map the reduced load space (𝛼𝐻𝑀′ , 𝐻𝑖, 𝑀𝑗, 𝑉, 𝑄) using 

combined displacement and load controls. The 𝑄𝑉𝐻𝑀 failure envelope was explored by finding 

𝐻𝑀 contours of the failure envelope using displacement control, after applying fixed levels of 𝑄 

and 𝑉 using load control. Specifically, 𝑄 and/or 𝑉 loads were first applied on the foundation, 

before horizontal displacements and rotations were applied onto the foundation using the 

‘sequential swipe’ test described in Suryasentana et al. 2020c; this analysis procedure facilitates 

an efficient and robust process for mapping the failure envelope. The sequential swipe test is a 

modification of the single swipe test introduced by Tan (1990), which is a displacement-

controlled procedure that has been widely employed to obtain failure load data to construct 

failure envelopes for shallow foundations. A single swipe test consists of two sequential steps in 

which a displacement is applied on the foundation in one degree of freedom (DoF) until the 

failure load is reached, followed by the application of a displacement on the foundation in 

another DoF while the displacement in the first DoF is held constant. The sequential swipe test 

essentially breaks down the second step into multiple steps, to smoothen the transition between 

one DoF to another. In the current paper, the 16-swipe sequential swipe test was implemented 

in the 𝐻𝑀 load space; ‘16-swipe’ here means that the second step of the single swipe test is 

subdivided into 16 smaller steps (further details are provided in Suryasentana et al. 2020c). 

 

To conduct the sequential swipe test for non-planar 𝐻𝑀 loading, a specified torque and vertical 

load is first applied to the foundation; values of normalised torque and vertical load adopted in 

the current work were 𝑄̃  =  0, 0.25, 0.5, 0.75 and 𝑉̃  =  0, 0.25, 0.5, 0.75. Thereafter, a rotation Θ𝑥 

is applied about the x-axis, as shown in Fig. 4, until failure is reached. Increasing increments of 

horizontal displacement 𝑆𝐻 is then applied together with decreasing increments of Θ𝑥 (in 16 

steps) at specified values of 𝛼𝑆Θ, where 𝛼𝑆Θ is the angle between the direction of 𝑆𝐻 and the 

normal to Θ𝑥, as indicated in Fig. 4. The loci of points on the failure surface are computed during 

this 16-steps phase. Three values of 𝛼𝑆Θ =  0, 𝜋/4, 𝜋/2 were adopted to map the failure surface. 

 

The computed horizontal force 𝐻 is not necessarily co-directional with 𝑆𝐻 (except for the special 

cases of 𝛼𝑆Θ =  0, 𝜋/2). In general, the angle 𝛼𝐻𝑀′ (which defines the angular separation 

between the horizontal force and moment directions) takes different values from 𝛼𝑆Θ (which 
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defines the angular separation between the displacement and rotation directions. This feature of 

the analysis has certain implications for mapping the failure surface since (except for 𝛼𝑆Θ =

𝛼𝐻𝑀′ =  0, 𝜋/2) it is not possible to specify, precisely, the values of 𝛼𝐻𝑀′ at which the failure 

envelope is sampled. Instead, values of 𝛼𝑆Θ are selected that are judged to provide appropriate 

coverage of the failure surface; the current choice of 𝛼𝑆Θ =  0, 𝜋/4, 𝜋/2  was found to work well. 

For 𝛼𝑆Θ = 𝜋/4, the value of 𝛼𝐻𝑀′ was found to diverge from 𝛼𝑆Θ by an amount that depended on 

the current values of 𝐻 and 𝑀, although the angle remained in the range 0 ≤ 𝛼𝐻𝑀′  ≤ 𝜋/2. 

 

 
 
Figure 4. Displacement boundary conditions applied for non-planar 𝐻𝑀 loading. 
 

 

Table 1 provides comparisons between the 3D finite element uniaxial load capacity results from 

this study, the analytical solution from Finnie & Morgan (2004) and 3D finite element limit 

analysis (FELA) results from Suryasentana et al. (2020c). The 3D finite element results 

generally agree well with these previous solutions; this comparison provides evidence of the 

reliability of the current numerical procedures.  

 

Table 1. Uniaxial capacities of the surface foundation, where 𝐴 =  𝜋𝐷2/4 refers to the 

foundation base area. 

 𝑄0

𝐴𝐷𝑠u

 
𝑉0

𝐴𝑠u

 
𝐻0

𝐴𝑠u

 
𝑀0

𝐴𝐷𝑠u

 

3D finite element 0.344 5.63 1.02 0.714 
3D FELA (LB) - 5.45 1.00 0.667 
3D FELA (UB) - 5.77 1.00 0.715 
3D FELA (Average) - 5.61 1.00 0.691 
Analytical 0.333 - - - 
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2.4 SOS-convex polynomial failure envelope framework 

A failure envelope formulation – employing SOS-convex polynomials as the basis functions – is 

employed to provide a fit with the failure load data computed by 3D finite element analysis.  This 

SOS-convex polynomial framework – which is described in detail in Suryasentana et al. (2020a) 

- has the advantageous characteristic that failure envelope formulations are generated that are 

guaranteed to be globally convex and numerically well-behaved. Moreover, the framework has 

been previously shown to be able to fit failure load data for a range of cases, albeit in the planar 

𝑉𝐻𝑀 load space.  

 

The formulation in Suryasentana et al. (2020a) is concerned only with 3DoF loading (in planar 

𝑉𝐻𝑀 load space). The current paper extends this previous work by deriving failure envelope 

formulations in the full 6DoF load space. The SOS-convex polynomial failure envelope 

framework employed in the current work is reviewed briefly below. Further details are provided 

in Suryasentana et al. (2020a).  

 

2.4.1. SOS-convex polynomials 

A sum of squares (SOS) polynomial 𝑠(𝒙) of degree 2d (d is a positive integer) is defined as, 

𝑠(𝒙) = ∑ 𝑔j(𝒙)2

𝑛𝑝𝑜𝑙𝑦

𝑗=1

 

(7) 

where 𝑔𝑗(𝒙) are polynomials of degree ≤ d, npoly is the number of individual polynomials and 𝒙 

is a vector containing individual coordinates.  

 

A convex polynomial ℎ(𝒙) is a polynomial with a Hessian ∇2ℎ(𝒙) that satisfies the condition, 

𝒚T∇2ℎ(𝒙)𝒚 ≥ 0 for all 𝒙, 𝒚 ∈ domain of ℎ (8) 

where 𝒚 is a vector. An SOS-convex polynomial 𝑝(𝒙) is a polynomial with a Hessian ∇2𝑝(𝒙)  

that satisfies the condition, 

𝒚T∇2𝑝(𝒙)𝒚 is SOS for all 𝒙, 𝒚 ∈ domain of 𝑝 (9) 

Since a sum of squares is always non-negative, an SOS-convex polynomial also satisfies Eq. 8 

and is thus a convex polynomial too. SOS-convex polynomials are adopted as the basis 
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functions for the failure envelope formulations, as the requirement in Eq. 9 is computationally 

more tractable than Eq. 8 and can readily be incorporated within the search process for failure 

envelope formulations using semidefinite programming (Parrilo 2003).  

 

2.4.2 Procedure for formulating the failure envelope  

A failure envelope formulation is sought, of the form in Eq. 6, that provides a good fit with the 3D 

finite element calibration data. On the basis of the procedures outlined in Suryasentana et al. 

(2020a), a homogeneous SOS-convex polynomial 𝑝(𝛼𝐻𝑀′ , 𝐻𝑖, 𝑀𝑗, 𝑉, 𝑄) is sought to represent 

the failure envelope formulation 𝑓 in the form, 

𝑓(𝛼𝐻𝑀′ , 𝐻𝑖 , 𝑀𝑗, 𝑉, 𝑄) = 𝑝(𝛼𝐻𝑀′ , 𝐻𝑖 , 𝑀𝑗 , 𝑉, 𝑄) − 1 (10) 

The current work necessitates the development of new procedures - not considered in 

Suryasentana et al. (2020a) - to include the effect of 𝛼𝐻𝑀′ (which needs to be treated differently 

from 𝐻𝑖, 𝑀𝑗, 𝑉, 𝑄 to ensure that the derived failure envelope formulation is physically sensible). 

 

The first step is to choose the degree of the homogeneous polynomial basis functions, where a 

homogeneous polynomial is defined as a polynomial whose non-zero terms all have the same 

degree. The framework requires the selection of ‘even degree’ polynomials. It is desirable to 

select the lowest polynomial degree that achieves an acceptable fit with failure envelope data, 

since lower degree polynomials are more compact, containing fewer terms. A 2nd degree 

homogeneous polynomial is the most compact form, but its data-fitting capabilities are limited as 

it can only model ellipsoidal surfaces. The 4th degree homogeneous polynomial is typically the 

most compact polynomial form that allows a reasonable fit to be achieved with typical failure 

envelope shapes. Higher degree polynomials may provide a better fit with data, as they have 

more parameters, but this is at the expense of increased complexity in the formulation. For the 

current study, 4th and 6th degree homogeneous polynomial basis functions were chosen. These 

choices facilitate an investigation on whether 4th degree polynomial basis functions provide an 

acceptable level of fidelity and whether significant improvements can be achieved by employing 

higher degree (6th degree) polynomials.  
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As an illustrative example, let 𝑝0(𝐻𝑖, 𝑀𝑗) be a 4th degree homogeneous polynomial in just the 

𝐻𝑖 and 𝑀𝑗 components, 

𝑝0(𝐻𝑖 , 𝑀𝑗) = 𝐻𝑖
4𝑎1 + 𝐻𝑖

3𝑀𝑗𝑎2 + 𝐻𝑖
2𝑀𝑗

2𝑎3 +  𝐻𝑖𝑀𝑗
3𝑎4 + 𝑀𝑗

4𝑎5 (11) 

where 𝑎𝑖 are coefficients that will be determined to best fit the failure load data (under the 

constraint that the polynomial is SOS-convex). Next, special treatment is required to include the 

effect of 𝛼𝐻𝑀′ within 𝑝0(𝐻𝑖, 𝑀𝑗). It is known from physical intuition that if the horizontal loading 

is applied along the moment axis (i.e. 𝛼𝐻𝑀′ = 𝜋/2), the failure envelope response should be 

symmetric in all quadrants of the 𝐻𝑀 load space. Effectively, this means that all the 𝐻𝑀 

coupling terms in the failure envelope should reduce to zero when 𝛼𝐻𝑀′ = 𝜋/2, as these terms 

govern the asymmetry in the 𝐻𝑀 load space. This can be achieved by replacing all 𝐻𝑀 coupling 

terms with 𝐻𝑀 cos 𝛼
𝐻𝑀′ coupling terms. For example, Eq. 11 can be replaced by, 

𝑝1(𝛼𝐻𝑀′ , 𝐻𝑖 , 𝑀𝑗) = 𝐻𝑖
4𝑎1 + 𝐻𝑖

2(𝐻𝑖𝑀𝑗 cos 𝛼𝐻𝑀′)𝑎2 + (𝐻𝑖𝑀𝑗 cos 𝛼𝐻𝑀′)
2

𝑎3

+ 𝑀𝑗
2(𝐻𝑖𝑀𝑗 cos 𝛼𝐻𝑀′)𝑎4 + 𝑀𝑗

4𝑎5 

(12) 

Using Eq. 12, 𝑝1(𝛼𝐻𝑀′ = 𝜋/2, 𝐻𝑖, 𝑀𝑗) = 𝐻𝑖
4𝑎1 + 𝑀𝑗

4𝑎5, which is symmetric in all quadrants of 

the 𝐻𝑀 load space. Therefore, the complete 4th degree or 6th degree homogeneous polynomials 

for the full load space (i.e. 𝑝(𝛼𝐻𝑀′ , 𝐻𝑖 , 𝑀𝑗, 𝑉, 𝑄) in Eq. 10) can be obtained by first generating the 

homogeneous polynomial in a reduced {𝐻𝑖, 𝑀𝑗, 𝑉, 𝑄} load space and then replacing all 𝐻𝑀 

coupling terms with 𝐻𝑀 cos 𝛼
𝐻𝑀′ coupling terms. 

 

After the functional form of 𝑝(𝛼𝐻𝑀′ , 𝐻𝑖 , 𝑀𝑗 , 𝑉, 𝑄) has been finalised, the coefficients are 

determined using the failure load data from the 3D finite element calibration analyses. A single 

finite element analysis provides a single set of failure load data in the 6DoF load space i.e. 

{𝐻𝑥 , 𝑀𝑦, 𝐻𝑦 , 𝑀𝑥, 𝑉, 𝑄}. These data need to be transformed to the reduced load space of 

{𝛼𝐻𝑀′ , 𝐻𝑖, 𝑀𝑗, 𝑉, 𝑄}. This is achieved by letting the axis 𝑖 point along the resultant horizontal 

load vector 𝑯𝑖 and the axis 𝑗 point along the resultant moment vector 𝑴𝑗. Moreover, let 𝑴𝑗
′
 be 

the moment vector that is clockwise orthogonal to 𝑴𝑗 i.e., 
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𝑯𝑖 = [
𝐻𝑥

𝐻𝑦
] 

𝑴𝑗 = [
𝑀𝑥

𝑀𝑦
] 

𝑴𝑗
′  = [

−𝑀𝑦

𝑀𝑥
] 

(13) 

𝐻𝑖 and 𝑀𝑗 are then defined as the magnitude of 𝑯𝑖 and 𝑴𝑗 respectively i.e., 

𝐻𝑖 = |𝑯𝑖| = √𝐻𝑥
2 + 𝐻𝑦

2 
(14) 

𝑀𝑗 = |𝑴𝑗| = √𝑀𝑥
2 + 𝑀𝑦

2. (15) 

and 𝛼𝐻𝑀′ can be calculated using the dot product rule as, 

𝛼𝐻𝑀′ = cos−1 (
𝑯𝑖∙𝑴𝑗

′

𝐻𝑖𝑀𝑗
). 

(16) 

Thereafter, the transformed failure load data are standardised by normalising each load 

component by its respective uniaxial capacity. For example, the transformed failure loads from a 

single finite element analysis {𝛼𝐻𝑀′ , 𝐻𝑖 , 𝑀𝑗, 𝑉, 𝑄} is standardised to {𝛼𝐻𝑀′ , 𝐻𝑖/𝐻0, 𝑀𝑗/𝑀0, 𝑉/𝑉0, 𝑄/

𝑄0} or equivalently {𝛼𝐻𝑀′ , 𝐻i, 𝑀̃j, 𝑉̃, 𝑄̃}.  

 

The final step is to use the standardised failure load data to determine the SOS-convex 

polynomial coefficients in 𝑝(𝛼𝐻𝑀′ , 𝐻𝑖 , 𝑀𝑗 , 𝑉, 𝑄). Some of the coefficients can be identified 

straightforwardly using the uniaxial loading conditions and other symmetry principles (see 

Suryasentana et al. 2020a). The remaining coefficients are determined by convex optimisation. 

This is achieved by solving the following convex optimisation problem, which is based on the 

conditions: (i) 𝑝 is SOS-convex and (ii) 𝑝 provides a best fit with the failure load calibration data 

in a ‘least-squares’ sense: 

minimize 
∑ (𝑝(𝒙𝒊

𝒅𝒂𝒕𝒂) − 1)
2

𝑛𝑑𝑎𝑡𝑎

𝑖=1

 
(17) 

subject to 𝑝 is SOS-convex (i.e. 𝑝 satisfies Eq. 9)  

where 𝒙𝒊
𝒅𝒂𝒕𝒂 = {𝛼𝐻𝑀′ , 𝐻̃i, 𝑀̃j, 𝑉̃, 𝑄̃} is a set of failure load data determined from the finite element 

analyses and ndata is the total number of failure load data sets. The MATLAB toolbox ‘YALMIP’ 

(Löfberg, 2004, 2009), which is a free-to-use and specialised toolbox for solving SOS problems, 

was employed to set up the functional forms of the homogeneous polynomials 𝑝 and 

automatically solve Eq. 17 to determine the coefficients in 𝑝.   
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3. Results 

3.1 Failure envelope formulations 

3.1.1 Formulations in reduced space 
 
Table 2 lists the objective values (and their corresponding root-mean values) for both failure 

envelope formulations (based on 4th and 6th degree polynomials) at the end of the optimisation 

defined in Eq. 17.  It can be observed that 𝑝6 (6th degree polynomial) has a slightly better fit to 

the calibration data than 𝑝4 (4th degree polynomial), as it has a lower objective value. 

 

Table 2. Minimised objective values 𝐶 =  ∑ (𝑝 (𝒙̅𝒊
𝒅𝒂𝒕𝒂) − 1)

2
𝑛𝑑𝑎𝑡𝑎
𝑖=1  in Eq. 17 for 𝑝4 and 𝑝6 at the 

end of the optimisation process using the 3D finite element failure load data. 𝑛𝑑𝑎𝑡𝑎 = 1950 is 

the total number of failure load data sets. The last two columns in the table provide the root-

mean-square (RMS) errors for the failure envelope formulations. 

 

 𝐶 for 𝑝4 𝐶 for 𝑝6 
√

𝐶

𝑛𝑑𝑎𝑡𝑎
 for 𝑝4 √

𝐶

𝑛𝑑𝑎𝑡𝑎
 for 𝑝6 

Minimised values 114.46 86.26 0.242 0.21 

 

 

On the basis of Eq. 10, the 4th degree failure envelope formulation is 𝑓4 = 𝑝4 − 1; this may be 

expressed as, 

𝑓4(𝛼𝐻𝑀′ , 𝐻𝑖 , 𝑀̃𝑗, 𝑉̃, 𝑄̃) = 𝐻𝑖
4

+ 𝑀̃𝑗
4

+ 𝑉̃4 + 𝑄̃4 − 1 

+𝐼𝐻𝑀 + 𝐼𝑉𝐻 + 𝐼𝑉𝑀 + 𝐼𝑄𝐻 + 𝐼𝑄𝑀  

+𝐼𝑉𝐻𝑀 + 𝐼𝑄𝐻𝑀  

(18) 

where the 𝐼 terms represent interactions between different load components, as indicated in the 

subscripts. For example, 𝐼𝐻𝑀 represents the interaction between horizontal and moment 

loading, while 𝐼𝑉𝐻𝑀 represents the interaction between vertical, horizontal and moment loading. 

These interaction terms incorporate the values of the coefficients determined from the 

optimisation in Eq. 17 and they are defined in Table 3.  
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Similarly, the 6th degree failure envelope formulation, 𝑓6 = 𝑝6 − 1, is expressed as, 

𝑓6(𝛼𝐻𝑀′ , 𝐻𝑖 , 𝑀̃𝑗, 𝑉̃, 𝑄̃) = 𝐻𝑖
6

+ 𝑀̃𝑗
6

+ 𝑉̃6 + 𝑄̃6 − 1 

+𝐼𝐻𝑀 + 𝐼𝑉𝐻 + 𝐼𝑉𝑀 + 𝐼𝑄𝐻 + 𝐼𝑄𝑀  

+𝐼𝑉𝐻𝑀 + 𝐼𝑄𝐻𝑀  

+𝐼𝑄𝑉 + 𝐼𝑄𝑉𝐻 + 𝐼𝑄𝑉𝑀 + 𝐼𝑄𝑉𝐻𝑀 

(19) 

where the interaction terms are also defined in Table 3. 

 

Table 3. Definitions of the interaction terms for the 4th degree failure envelope formulation 𝑓4 

and 6th degree failure envelope formulation 𝑓6, as determined by the optimisation process in Eq 

17. The load components involved in each interaction term are shown in the subscript e.g. 𝐼𝐻𝑀 

represents the interaction between 𝐻 and 𝑀. 

 

Interaction term 𝑓4 𝑓6 

𝐼𝐻𝑀 −0.36𝐻𝑖
2

(𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′) 

+0.9(𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′)
2

 

−1.43𝑀̃𝑗
2

(𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′) 

−0.33𝐻𝑖
4

(𝐻̃𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′) 

+1.22𝐻𝑖
2

(𝐻̃𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′)
2

 

−2.17(𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′)
3

 

+2.34𝑀̃𝑗
2

(𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′)
2

 

 

𝐼𝑉𝐻 0.4𝐻̃𝑖
2

𝑉̃2 1.97𝐻𝑖
2

𝑉̃4 + 0.03𝐻𝑖
4

𝑉̃2 

𝐼𝑉𝑀 1.64𝑀̃𝑗
2

𝑉̃2 0.84𝑀̃𝑗
4

𝑉̃2 + 4.72𝑀̃𝑗
2

𝑉̃4 

𝐼𝑄𝐻 2.61𝐻̃𝑖
2

𝑄̃2 4.56𝐻𝑖
4

𝑄̃2 + 3.47𝐻𝑖
2

𝑄̃4 

𝐼𝑄𝑀  0.34𝑀̃𝑗
2

𝑄̃2 1.65𝑀̃𝑗
4

𝑄̃2 + 0.16𝑀̃𝑗
2

𝑄̃4 

𝐼𝑉𝐻𝑀 0.84𝑉̃2(𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′) 0.34𝐻𝑖
2

𝑉̃2(𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′) 

+0.29𝑀̃𝑗
2

𝑉̃2(𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′) 

+1.52𝑉̃4(𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′) 

+1.1𝐻𝑖
2

𝑀̃𝑗
2

𝑉̃2 

𝐼𝑄𝐻𝑀 −0.84𝑄̃2(𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′) −1.92𝐻𝑖
2

𝑄̃2(𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′) 

−4.53𝑀̃𝑗
2

𝑄̃2(𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′) 

−0.58𝑄̃4(𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′) 

+4.62𝐻𝑖
2

𝑀̃𝑗
2

𝑄̃2 

𝐼𝑄𝑉  - 0.55𝑉̃4𝑄̃2 + 0.12𝑉̃2𝑄̃4 

𝐼𝑄𝑉𝐻 - 0.46𝐻𝑖
2

𝑉̃2𝑄̃2 

𝐼𝑄𝑉𝑀  - 0.67𝑀̃𝑗
2

𝑉̃2𝑄̃2 

𝐼𝑄𝑉𝐻𝑀 - 1.75𝑉̃2𝑄̃2(𝐻̃𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′) 
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3.1.2 Transformation to 6DoF load space 

For implementation purposes (e.g. for the macro-element example described in Section 5), it is 

convenient to redefine Eqs. 18 and 19 in terms of 𝐻̃𝑥, 𝑀̃𝑦, 𝐻̃𝑦, 𝑀̃𝑥, as that would avoid the need 

to calculate 𝛼𝐻𝑀′ , 𝐻̃𝑖, 𝑀̃𝑗. This is achieved by noting that the dot product of 𝑯𝑖 and 𝑴𝑗
′
 is 

equivalent to, 

𝑯𝑖 ∙ 𝑴𝑗
′ = [

𝐻𝑥

𝐻𝑦
] ∙ [

−𝑀𝑦

𝑀𝑥
] 

= 𝐻𝑦𝑀𝑥 − 𝐻𝑥𝑀𝑦 

(20) 

The dot product of 𝑯𝑖 and 𝑴𝑗
′
 can also be represented in terms of 𝛼𝐻𝑀′ as, 

𝑯𝑖 ∙ 𝑴𝑗
′ = 𝐻𝑖𝑀𝑗 cos 𝛼𝐻𝑀′ (21) 

Using Eqs. 20 and 21, the term 𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′ in Eqs. 18 and 19 can be expanded to, 

𝐻𝑖𝑀̃𝑗 cos 𝛼𝐻𝑀′ =
𝐻𝑖𝑀𝑗 cos 𝛼𝐻𝑀′

𝐻0𝑀0

 

=
𝐻𝑦𝑀𝑥 − 𝐻𝑥𝑀𝑦

𝐻0𝑀0

 

= 𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦 

 

(22) 

Using Eqs. 14, 15 and 22, Eq. 17 is redefined as, 

𝑓4(𝐻𝑥 , 𝑀̃𝑦 , 𝐻̃𝑦, 𝑀̃𝑥 , 𝑉̃, 𝑄̃) = (𝐻𝑥
2

+ 𝐻𝑦
2

)
2

+ (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

)
2

+ 𝑉̃4 + 𝑄̃4 − 1 

+𝐼𝐻𝑀 + 𝐼𝑉𝐻 + 𝐼𝑉𝑀 + 𝐼𝑄𝐻 + 𝐼𝑄𝑀  

+𝐼𝑉𝐻𝑀 + 𝐼𝑄𝐻𝑀  

(23) 

where the interaction terms are defined in Table 4. Similarly, Eq. 18 is redefined as, 

𝑓6(𝐻𝑥 , 𝑀̃𝑦 , 𝐻̃𝑦, 𝑀̃𝑥 , 𝑉̃, 𝑄̃) = (𝐻𝑥
2

+ 𝐻𝑦
2

)
3

+ (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

)
3

+ 𝑉̃6 + 𝑄̃6 − 1 

+𝐼𝐻𝑀 + 𝐼𝑉𝐻 + 𝐼𝑉𝑀 + 𝐼𝑄𝐻 + 𝐼𝑄𝑀  

+𝐼𝑉𝐻𝑀 + 𝐼𝑄𝐻𝑀  

+𝐼𝑄𝑉 + 𝐼𝑄𝑉𝐻 + 𝐼𝑄𝑉𝑀 + 𝐼𝑄𝑉𝐻𝑀 

(24) 

where the interaction terms are also defined in Table 4. 
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Table 4. Redefinitions of the interaction terms shown in Table 3, in terms of 𝐻̃𝑥, 𝑀̃𝑦, 𝐻̃𝑦 , 𝑀̃𝑥. 

 

Interaction 
term 

𝑓4 𝑓6 

𝐼𝐻𝑀 −0.36 (𝐻𝑥
2

+ 𝐻𝑦
2

) (𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦) 

+0.9(𝐻̃𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦)
2

 

−1.43 (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

) (𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦) 

−0.33 (𝐻𝑥
2

+ 𝐻𝑦
2

)
2

(𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦) 

+1.22 (𝐻𝑥
2

+ 𝐻𝑦
2

) (𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦)
2

 

−2.17 (𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦)
3

 

+ 2.34 (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

) (𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦)
2

 

 

𝐼𝑉𝐻 0.4 (𝐻̃𝑥
2

+ 𝐻𝑦
2

) 𝑉̃2 1.97 (𝐻̃𝑥
2

+ 𝐻𝑦
2

) 𝑉̃4

+ 0.03 (𝐻𝑥
2

+ 𝐻𝑦
2

)
2

𝑉̃2 

𝐼𝑉𝑀 1.64 (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

) 𝑉̃2 0.84 (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

)
2

𝑉̃2

+ 4.72 (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

) 𝑉̃4 

𝐼𝑄𝐻 2.61 (𝐻̃𝑥
2

+ 𝐻𝑦
2

) 𝑄̃2 4.56 (𝐻𝑥
2

+ 𝐻𝑦
2

)
2

𝑄̃2

+ 3.47 (𝐻𝑥
2

+ 𝐻̃𝑦
2

) 𝑄̃4 

𝐼𝑄𝑀  0.34 (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

) 𝑄̃2 1.65 (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

)
2

𝑄̃2

+ 0.16 (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

) 𝑄̃4 

𝐼𝑉𝐻𝑀 0.84𝑉̃2(𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦) 0.34 (𝐻𝑥
2

+ 𝐻̃𝑦
2

) 𝑉̃2(𝐻̃𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦) 

+0.29 (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

) 𝑉̃2(𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦) 

+1.52𝑉̃4(𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦) 

+1.1 (𝐻𝑥
2

+ 𝐻𝑦
2

) 𝑀̃𝑗
2

𝑉̃2 

𝐼𝑄𝐻𝑀 −0.84𝑄̃2(𝐻𝑦𝑀̃𝑥 − 𝐻̃𝑥𝑀̃𝑦) −1.92 (𝐻𝑥
2

+ 𝐻𝑦
2

) 𝑄̃2(𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦) 

−4.53 (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

) 𝑄̃2(𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦) 

−0.58𝑄̃4(𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦) 

+4.62 (𝐻𝑥
2

+ 𝐻𝑦
2

) (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

) 𝑄̃2 

𝐼𝑄𝑉 - 0.55𝑉̃4𝑄̃2 + 0.12𝑉̃2𝑄̃4 

𝐼𝑄𝑉𝐻 - 0.46 (𝐻̃𝑥
2

+ 𝐻𝑦
2

) 𝑉̃2𝑄̃2 

𝐼𝑄𝑉𝑀  - 0.67 (𝑀̃𝑥
2

+ 𝑀̃𝑦
2

) 𝑉̃2𝑄̃2 

𝐼𝑄𝑉𝐻𝑀 - 1.75𝑉̃2𝑄̃2(𝐻𝑦𝑀̃𝑥 − 𝐻𝑥𝑀̃𝑦) 
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3.2 Coupling between failure load components 

Certain aspects of the coupling between individual failure load components are discussed below 

in connection with projections of the failure envelope onto the 𝐻𝑀 plane (i.e. 𝐻𝑀 contours). 

 

3.2.1 Influence of 𝑽̃ on the failure envelope 

Fig. 5 shows the 𝐻𝑀 failure envelope contours for different values of 𝑉̃, for 

𝛼𝐻𝑀′ = 0 (i.e. planar 𝐻𝑀 loading) and 𝑄̃  =  0. It is evident that for increased 𝑉̃, the available 𝐻𝑀 

capacity decreases. The reduction in 𝐻𝑀 capacity is relatively small for 𝑉̃  ≤ 0.5, but it increases 

in significance for 𝑉̃ > 0.5. Furthermore, the asymmetry in the 𝐻𝑀 load space becomes 

negligible at high 𝑉̃ loading (e.g. 𝑉̃ = 0.75); this indicates that the vertical load has a significant 

influence on the interaction between 𝐻 and 𝑀̃. 

 

 
 

Figure 5. 𝑯𝑴 failure envelope contours for 𝜶𝑯𝑴′ = 𝟎, 𝑽̃ = 𝟎, 𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟎. 𝟕𝟓 and 𝑸̃ = 𝟎. The 

black dashed and solid lines are the contours represented by 𝒇𝟒 and 𝒇𝟔 respectively. The grey 

dotted lines are the contours represented by the Shen et al. (2017) formulation (Eq. 3). 
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3.2.2 Influence of 𝑸̃ on the failure envelope 

Fig. 6 shows the effect of normalised torque 𝑄̃ on the 𝐻𝑀 failure envelope contours for different 

values of 𝑄̃, for 𝛼𝐻𝑀′ = 0. As 𝑄̃ loading increases, the available 𝐻𝑀 capacity is seen to 

decrease. However, unlike the influence of the vertical loading, the application of a torque 

appears to have minimal influence on the general shape of the 𝐻𝑀 contours. 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
 
Figure 6. 𝑯𝑴 failure envelope contours for 𝜶𝑯𝑴′ = 𝟎, 𝑽̃ = 𝟎, 𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟎. 𝟕𝟓 and (a) 𝑸̃ = 𝟎; (b) 

𝑸̃ = 𝟎. 𝟐𝟓; (c) 𝑸̃ = 𝟎. 𝟓; (d) 𝑸̃ = 𝟎. 𝟕𝟓. The black dashed and solid lines are the contours 
represented by 𝒇𝟒 and 𝒇𝟔 respectively. The grey dotted lines are the contours represented by 
the Shen et al. (2017) formulation (Eq. 3). 
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3.2.3 Effect of 𝜶𝑯𝑴′ on the failure envelope 

Fig. 7 shows the effect of non-planar 𝐻𝑀 loading (through 𝛼𝐻𝑀′) on the 𝐻𝑀 contours of the 

failure envelope for different values of  𝑉̃, for 𝑄 =  0. Only the results for 0 ≤ 𝛼𝐻𝑀′ ≤ 𝜋/2 are 

shown in the figure, as the results for 𝜋/2 < 𝛼𝐻𝑀′ ≤ 𝜋 are the mirror image about the 𝑀𝑗 axis 

(i.e. reflection about the 𝐻𝑖 = 0 line) of the results for 𝜋 − 𝛼𝐻𝑀′. For example, the results for 

𝛼𝐻𝑀′ = 𝜋 is the mirror image of the results for 𝛼𝐻𝑀′ = 0. There are fewer failure load data points 

in Fig. 7b,c as the resultant 𝐻 from 𝛼𝑆Θ = 𝜋/4 corresponds to a range of 𝛼𝐻𝑀′ (recall that 

𝛼𝐻𝑀′  ≠  𝛼𝑆Θ). The asymmetry in the 𝐻𝑀 load space decreases as 𝛼𝐻𝑀′ increases from 0, until 

there is no asymmetry at 𝛼𝐻𝑀′ = 𝜋/2. Fig. 8 shows the effects of 𝛼𝐻𝑀′ and combined 𝑉 and 𝑄 

loading on the 𝐻𝑀 contours; these effects are consistent with the observed trends in Figs. 5-7. 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 7. 𝑯𝑴 failure envelope contours for 𝑸̃ = 𝟎, 𝑽̃ = 𝟎, 𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟎. 𝟕𝟓, and (a) 𝜶𝑯𝑴′ = 𝟎; (b) 

𝜶𝑯𝑴′ =
𝝅

𝟖
; (c) 𝜶𝑯𝑴′ =

𝝅

𝟒
; (d) 𝜶𝑯𝑴′ =

𝝅

𝟐
. The black dashed and solid lines are the contours 

represented by 𝒇𝟒 and 𝒇𝟔 respectively. The grey dotted lines are the contours represented by 

the Shen et al. (2017) formulation (Eq. 3). 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 8. 𝑯𝑴 failure envelope contours for 𝜶𝑯𝑴′ =
𝝅

𝟒
, 𝑽̃ = 𝟎, 𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟎. 𝟕𝟓 and (a) 𝑸̃ = 𝟎; (b) 

𝑸̃ = 𝟎. 𝟐𝟓; (c) 𝑸̃ = 𝟎. 𝟓; (d) 𝑸̃ = 𝟎. 𝟕𝟓. The black dashed and solid lines are the contours 

represented by 𝒇𝟒 and 𝒇𝟔 respectively. The grey dotted lines are the contours represented by 

the Shen et al. (2017) formulation (i.e. Eq. 3). 

 

4. Comparisons with previous failure envelope formulations 

In this section, comparisons are made with 𝐻𝑀 contours determined from previous failure 

envelope formulations, which are typically calibrated using failure envelope data computed with 

a Tresca soil model. Such a comparison (noting that the current paper adopts a von Mises soil 

model) is considered valid for the following reasons: (i) although previous studies (e.g. 

Gourvenec et al. 2006) have indicated that the uniaxial capacities of the foundation are slightly 
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different for Tresca and von Mises soil, other studies (e.g. Gourvenec & Randolph 2003; 

Gourvenec 2007) have shown that the 𝐻𝑀 contours of the failure envelopes for surface 

foundations on Tresca and von Mises soil are similar in shape; (ii) in the following analysis, the 

failure envelope data are normalised by their respective uniaxial capacities; the normalised 𝐻𝑀 

contours presented below (for von Mises soil) are therefore expected to be similar to 

comparable studies employing Tresca soil. 

 

Figs. 5 to 8 provide a comparison between 𝐻𝑀 contours determined from the previous 6DoF 

failure envelope formulation by Shen et al. (2017) and the current approach. It can be observed 

from these figures that a key advantage of 𝑓4 and 𝑓6 is that they are well-defined in all quadrants 

of the 𝐻𝑀 load space, whereas the Shen et al. (2017) formulation (i.e. Eq. 3) is not real-valued 

for negative 𝑀 values due to the fractional exponent 𝑎 in its formulation. Being well-defined in 

the entire load space makes 𝑓4 and 𝑓6 highly suitable for macro-element modelling, as these 

models accept both negative and positive load values as inputs. Furthermore, Fig. 7 shows that 

only 𝑓4 and 𝑓6 are able to accurately capture the change in the 𝐻𝑀 contours of the failure 

envelope as 𝛼𝐻𝑀′ varies, including symmetric 𝐻𝑀 contours when 𝛼𝐻𝑀′ =  𝜋/2.  

 

For planar 𝑉𝐻𝑀 loading, Fig. 9 compares the 𝐻𝑀 contours represented by 𝑓4, 𝑓6 and the 

previous formulations (as described in Section 1.2) with the 3D finite element data. The Vulpe et 

al. (2014) and Shen et al. (2017) formulations are not real-valued for negative 𝑀 values due to 

the fractional exponents in their formulations. The formulation of Taiebat & Carter (2000) has 

the advantage of being well defined in all quadrants of the load space, while the formulation of 

Shen et al. (2017) has the closest match to the 3D finite element results out of the previous 

formulations.  

 

Fig. 10 compares the 𝑉𝐻, 𝑉𝑀, 𝑄𝐻 and 𝑄𝑀 contours represented by 𝑓4, 𝑓6 and the previous 

formulations with the 3D finite element data. It is evident that the formulations of Taiebat & 

Carter (2000) and Shen et al. (2017) offer similar levels of agreement with the 3D finite element 

data. However, Taiebat & Carter (2000) has the advantage of being well-defined in all quadrants 
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of the load space, while the formulation of Shen et al. (2017) is not real-valued for negative 

values of 𝑀, 𝑉 and 𝑄 due to the fractional exponents in the formulation. 

 

In general, it is evident from Figs. 5 to 10 that both 𝑓4 and 𝑓6 provide a close approximation to 

the 3D finite element failure loads.  

 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 9. 𝑯𝑴 failure envelope contours for 𝜶𝑯𝑴′ = 𝟎,  𝑸̃ = 𝟎 and (a) 𝑽̃ = 𝟎; (b) 𝑽̃ = 𝟎. 𝟐𝟓; (c) 

𝑽̃ = 𝟎. 𝟓; (d) 𝑽̃ = 𝟎. 𝟕𝟓. 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
Figure 10. (a) 𝑽𝑯 (b) 𝑽𝑴 (c) 𝑸𝑯 and (d) 𝑸𝑴 failure envelope contours. 
 

5. Macro-element model example 

To demonstrate the application of the proposed convex failure envelope formulations in a 

macro-element model, 𝑓4 was implemented as the yield surface and the plastic potential for an 

elastic perfectly-plastic macro-element model for a rigid, circular surface foundation on von 

Mises soil, with the elasto-plastic integration performed using the implicit closest point projection 

method (Simo & Hughes, 2006). The 4th degree formulation 𝑓4 was selected for this 

demonstration, rather than 𝑓6 , as it offers good accuracy while being relatively concise. The 

uniaxial capacities were obtained from the 3D finite elements results (as listed in Table 1) and 
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the elastic stiffness matrix for the macro element was determined from the elastic stiffness 

formulations for a suction caisson foundation with zero skirt length (i.e. equivalent to a circular 

surface foundation), as detailed in Suryasentana et al. (2020b).  

 

Fig. 11 compares the macro-element calculations of the load-displacement behaviour with 

corresponding 3D finite element results, for a sequential swipe test in the 𝐻𝑀 load space (see 

Fig. 4) under non-planar 𝐻𝑀 loading (𝛼𝑆Θ =  𝜋/4) with 𝑉̃  =  0.5 and 𝑄̃  =  0.25. The macro-

element calculations agree well with the 3D finite element results, especially the variation of 𝐻̃𝑥 

and 𝐻𝑦 during the sequential swipe test.  

 

Fig. 12 shows the normalised 𝐻𝑥-𝑀𝑥 and 𝐻𝑦-𝑀𝑥 failure envelopes resulting from sequential 

swipe test depicted in Fig. 11. It is clear that the macro-element model is able to reproduce the 

3D finite element results very well, especially the changes in the 𝐻𝑥-𝑀̃𝑥 and 𝐻𝑦-𝑀̃𝑥 contours of 

the failure envelope under non-planar 𝐻𝑀 loading. A key advantage of the macro-element 

model is its efficiency relative to the 3D finite element model; it took 14 seconds to generate the 

data points in Fig. 12, while the 3D finite element model took 1.7 hours. 
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(a) 

 
(b) 

 

 

 (c) 

Figure 11. Comparison of the load-displacement behaviour – computed with the macro-element 

model and 3D finite element analysis -  for a sequential swipe test in the 𝐻𝑀 load space for 

𝛼𝑆Θ =
𝜋

4
, 𝑉̃ = 0.5, 𝑄̃ = 0.25. 
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(a) 

 

 

(b) 

Figure 12. Normalised 𝐻𝑦-𝑀𝑥 and 𝐻𝑥-𝑀𝑥 failure envelopes computed in the sequential swipe 

test depicted in Fig. 11. 
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6. Discussion  

Two failure envelope formulations, 𝑓4 and 𝑓6, have been derived for a rigid, circular surface 

foundation on undrained clay for 6DoF loading; they have been shown to provide a close match 

with 3D finite element calibration data. The optimisation process to determine the coefficients in 

𝑓4 and 𝑓6 is reasonably fast, taking about 5 and 9 minutes respectively, using a computer with 

an Intel Core i7 1.90 GHz processor with 32 GB RAM (random access memory). 

 

Although 𝑓4 and 𝑓6 may seem rather intimidating due to their relatively large number of terms, 

they are simple expressions that are easily differentiable, making them suitable for use as yield 

functions and plastic potentials in macro-element models. Other advantages include guarantees 

of global convexity and thermodynamics consistency (as explained in Suryasentana et al. 

2020a).  

 

Although the proposed procedure involves deriving the formulation in the reduced 5DoF load 

space before redefining it in 6DoF space, this is not a requirement of the method; the SOS-

convex polynomial framework can derive a formulation in the full 6DoF load space directly, on 

the basis of the finite element failure load calibration data. The procedure outlined in the paper 

is, however, advantageous for the following principal reasons: (i) the reduced dimensionality of 

the 5DoF load space makes it easier and faster for the YALMIP toolbox to evaluate the 

polynomial coefficients, since the search space is reduced; (ii) a larger number of failure load 

calibration data would be needed to train the YALMIP toolbox to recognise the invariant property 

of the failure envelope with respect to horizontal and moment loading.  

 

For cases where the ground model has spatial variations in the horizontal plane, the proposed 

‘define in the reduced 5DoF load space before redefining it in 6DoF space’ approach is not 

applicable (since the failure envelope is no longer invariant to changes in the absolute directions 

of the resultant horizontal and moment loads). For these cases, the failure envelope formulation 

would need to be derived in the full 6DoF load space directly. 
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The proposed failure envelope formulations (Eqs. 23 and 24) are only applicable to undrained 

clay with uniform shear strength. However, the proposed procedure can be readily employed to 

determine failure envelope formulations for soils with non-uniform shear strength. The failure 

envelope analyses presented in the paper employ the assumption of no contact breaking at the 

soil-foundation interface. This approach is adopted to demonstrate the proposed convex failure 

envelope formulation procedure and to compare with previous independent work (Shen et al. 

2017) in which this same interface condition was employed.  

 

The no contact breaking assumption is applicable to offshore foundation cases where significant 

pore pressure suctions can develop beneath the footing. Alternatively, a zero-tension condition 

could be enforced at the soil-footing interface; in this case the failure envelope will differ from 

those presented in the current paper in several respects.  The moment capacity, for example, 

will be reduced at low values of vertical loads compared to the no contact breaking case (e.g. 

Shen et al. 2016). Also, the current work assumes that the soil-footing interface is fully adhesive 

whereas a frictional soil-foundation interface might be more representative of real conditions. A 

frictional interface, for example, will tend to reduce the capacity in torsion, especially for low 

values of vertical load. The development of convex failure envelopes incorporating contact 

breaking and frictional interfaces is a topic for future work. 

 

7. Conclusion 

The paper describes an automated procedure for deriving failure envelope formulations for a 

circular surface foundation on undrained clay for 6DoF loading, a process that previously 

required significant manual interpretation. Besides the efficiency of the procedure, the derived 

failure envelope formulations offers advantages over existing formulations, such as (i) 

guaranteed global convexity; (ii) being well-defined in the entire load space (which allows the 

formulation to be used for both ultimate capacity evaluations and macro-element modelling), 

and (iii) accurate modelling of the failure envelope for non-planar horizontal and moment 

loading. 
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An example macro-element model is demonstrated, with one of the derived failure envelope 

formulations acting as the yield function and plastic potential of the model. The macro-element 

model is able to accurately reproduce the 3D finite element results with high efficiency.  

 

Although this study has applied the procedure to derive a 6DoF failure envelope formulation for 

a circular surface foundation, the procedure is applicable for other circular foundation types. 

Thus, this main significance of this work is that it addresses one of the key barriers to the 

adoption of the failure envelope approach, as identified by previous researchers, which is the 

difficulty in deriving failure envelope formulations (especially in higher dimensional load space 

beyond 𝑉𝐻𝑀). This study should be regarded as the first step towards more site-specific failure 

envelope formulations and reducing the barriers to more widespread adoption of the failure 

envelope approach for ultimate capacity assessments or macro-element modelling in the 6DoF 

load space. 
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