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Abstract—Person re-identification (Re-ID) is a challenging task
due to variations in pedestrian images, especially in cross-domain
scenarios. The existing cross-domain person Re-ID approaches
extract the feature from single pedestrian image, but they ignore
the correlations among pedestrian images. In this paper, we
propose Heterogeneous Convolutional Network (HCN) for cross-
domain person Re-ID, which learns the appearance information
of pedestrian images and the correlations among pedestrian
images simultaneously. To this end, we first utilize Convolutional
Neural Network (CNN) to extract the appearance features for
pedestrian images. Then we construct a graph in the target
dataset where the appearance features are treated as the nodes
and the similarity represents the linkage between the nodes.
Afterwards, we propose Dual Graph Convolution (DGConv) to
explicitly learn the correlation information from the similar and
dissimilar samples, which could avoid the over-smoothing caused
by the fully connected graph. Furthermore, we design HCN as
a multi-branch structure to mine the structural information of
pedestrians. We conduct extensive evaluations for HCN on three
datasets, i.e. Market-1501, DukeMTMC-reID and MSMT17, and
the results demonstrate that HCN is superior to the state-of-the-
art methods.

Index Terms—cross-domain person re-identification, graph
convolution network, dual graph convolution

I. INTRODUCTION

Person re-identification (Re-ID) [1]-[4] aims to determine
whether the same identity appears in different cameras, which
could cooperate with other recognition technologies [5]-[7]
to make up for the vision limitation of fixed cameras. Its
practical application fields include criminal investigation, ob-
ject localization, monitoring, security and so on [8]-[12].
Since the pedestrian appearance is easily affected by the
changes of posture, occlusion and illumination, person Re-ID
is significantly challenging.
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Fig. 1: (a) The linkages among samples for traditional graph
convolution operations. (b) The linkages among samples for
DGConv, where the solid line indicates that the connected
sample pair has the same pseudo label, and the dotted line
means the opposite.

Recently, person Re-ID has achieved promising perfor-
mance when training and testing on the same dataset, but
the performance is unsatisfactory when testing on a different
dataset. The unsupervised domain adaptation (UDA) [13]-[15]
trains a model with a labeled source dataset and an unlabeled
target dataset, and it could perform well on the target dataset.
Hence, researchers gradually resort to UDA to enhance the
generalization ability of Re-ID model, and this kind of setting
is known as cross-domain person Re-ID.

The UDA approaches are widely used for image classifi-
cation and the assumption is that the categories in source
and target datasets are same. But the categories (identities)
in person Re-ID datasets are totally different, and therefore
the UDA approaches can not be directly applied in the
field of cross-domain person Re-ID. In order to overcome
the above-mentioned limitation, some cross-domain person
Re-ID approaches employ Generative Adversarial Network
(GAN) [16] and its derivative version [17]-[21] to implement
style transformation and information delivery for cross-domain
scenarios. Specifically, some of them conduct the style trans-
formation from the source dataset to the target dataset, while
others focus on the camera style adaptation within the target
dataset. Some other cross-domain person Re-ID approaches
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are proposed to assign potential identity labels to the unlabeled
target dataset using clustering algorithms [22]-[24]. As a
result, the target dataset can be used to train the deep model
in a supervised manner and the training data is augmented.
However, the existing cross-domain person Re-ID approaches
ignore the correlation information among pedestrian images,
which could not learn useful information from other pedestrian
images.

In this paper, we propose a novel Re-ID model named Het-
erogeneous Convolutional Network (HCN) for cross-domain
person Re-ID, which applies Convolutional Neural Network
(CNN) and Graph Convolution Network (GCN) to simultane-
ously learn the appearance features and the correlation infor-
mation among pedestrian images. To this end, we first employ
CNN to extract appearance features (CNN-based features) for
the unlabeled target dataset. Then, we cluster the CNN-based
features to generate pseudo labels for the unlabeled target
dataset. In order to emphasize the correlations among the
target samples, we establish the linkages between pedestrian
images as shown in Fig. 1(a). Specifically, we treat the CNN-
based feature of each pedestrian image as a node of graph. We
further construct an adjacency matrix according to similarities
between pedestrian images, which could reflect the strength of
the linkage.

After obtaining the graph and the adjacency matrix, the
node information can be transmitted in the graph using the
graph convolution operation. Since the linkages are established
among all the nodes, the graph is fully connected. When
traditional graph convolution operations [25], [26] conduct on
the fully connected graph, the trivial and redundant linkages
could reduce the discrimination of samples and result in
the model over-smoothing, especially when using multiple
graph convolution layers. Hence, we propose the Dual Graph
Convolution (DGConv) to explicitly learn the correlations
from the similar and dissimilar samples by only selecting the
high confidence linkages according to the adjacency matrix,
where we regard that the samples with the same pseudo label
are similar and the samples with different pseudo labels are
dissimilar. As shown in Fig. 1(b), the high confidence linkages
for similar samples and dissimilar samples are selected re-
spectively, which could avoid the dissimilar linkages between
similar samples and the similar linkages between dissimilar
samples, so that the GCN-based features obtained by DGConv
possess more discriminative correlation information.

Furthermore, we divide the pedestrian image into the global,
upper and lower parts to capture the structural information
and mine complete identity information. Correspondingly, we
design a multi-branch structure for HCN where each branch
handles the different parts of pedestrian image by the above-
mentioned process. In a nutshell, our main contributions are
summarized as follows:

e We propose HCN to simultaneously consider the appear-
ance features and the correlation information for cross-domain
person Re-ID, which is the first one to consider the correlation
information among pedestrian images in the target domain.

e We propose DGConv to explicitly propagate the important
correlation information of similar and dissimilar samples,
which effectively avoids the trivial and redundant linkages

and improves the discrimination of pedestrian images, so that
the similar samples are closer and the dissimilar samples are
farther after the DGConv operation.

e We evaluate the performance of HCN on three person Re-
ID datasets, i.e., Market-1501 [27], DukeMTMC-relD [28] and
MSMT17 [29], and the results are significantly superior to the
state-of-the-art methods.

II. RELATED WORK

A. Unsupervised Domain Adaptation

Our work is related to the UDA methods [13]-[15] which
focus on reducing the domain discrepancy using a labeled
source dataset and an unlabeled target dataset. Some re-
searchers pay more attention to the alignment of different
domain distributions [30]-[33]. For example, Ganin et al. [30]
combine the optimized features and two discriminant classi-
fiers to align the distribution difference between the source
and target domains. Sun et al. [31] propose the CORrelation
ALignment (CORAL) to reduce the domain shift by aligning
the feature covariances of target domain and source domain.
To simulate the target images, Hsu et al. [33] obtain an
intermediate domain by translating the source images and
utilize adversarial learning to conduct two adaptation subtasks.

The others attempt to enhance the model robustness through
image or feature translation [13], [34], [35]. For example,
Bousmalis et al. [13] present an unsupervised pixel-level
domain adaptation method which maps the source images into
the target style at the pixel level while keeping their original
contents. Volpi et al. [34] perform data augmentation in the
feature space using the Conditional GAN (CGAN) which
learns the class distribution of training samples and generates
sample features of desired classes.

B. Unsupervised Person Re-Identification

Unsupervised person Re-ID is closer to the real scene
and it can be applied more flexibly. The predefined manual
features [36]-[38] can be directly used for unsupervised person
Re-ID, but they are ineffective for large-scale datasets. To
solve this issue, some person Re-ID methods apply GAN
to generate samples for data augmentation [39]-[42]. For
instance, Deng et al. [39] utilize cycleGAN [18] to transform
the style of pedestrian images from the source dataset to
the target dataset, and apply SiaNet network to maintain
more identity information for the generated images. In [40],
starGAN [20] is employed to implement the camera-style
translation in the unlabeled target dataset, and all generated
samples are added into the training set in order to learn the
camera and domain invariant model. Zhong et al. [41] propose
the exemplar memory to learn three kinds of invariant issues
from both intra-domain and inter-domain for cross-domain
person Re-ID. Furthermore, they [42] present the Graph-
based Positive Prediction (GPP) to promote the invariance
learning. They optimize GCN in the source domain to infer the
positive and negative neighbors in the target domain, while our
work optimizes GCN using pedestrian images from the target
domain in order to model the sample correlations in the target
domain.
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Some recent works realize unsupervised person Re-ID via
clustering the unlabeled dataset [43]-[46]. Fan et al. [43]
propose the Progressive Unsupervised Learning (PUL) which
applies the K-means clustering to assign pseudo labels for the
unlabeled samples. Fu et al. [44] propose the Self-similarity
Grouping (SSG) to assign new labels to unlabeled target
dataset after the self-similarity grouping. Wang et al. [45]
present smoothing adversarial domain attack (SADA) to align
the source and target images at the image level, and then the
source-aligned images and the target images after clustering
are utilized to optimize the Re-ID network where p-Memory
Reconsolidation (pMR) is proposed to retain the source knowl-
edge by a small probability p.

C. Graph Convolutional Networks

GCN [47] is proposed to handle the graph structure data,
and it has shown special advantages in many fields, such
as image generation, person search and multi-label image
recognition [25], [26], [48]-[50]. There are two main ways
to implement GCN where one is based on spectral domain
and the other is based on spatial domain. The spectral based
GCN [51]-[53] realizes the convolution operation of graph
according to the graph Fourier transformation [54]. The spatial
based GCN [55]-[58] relies on the neighborhood of nodes in
the graph. Specifically, after determining node neighbors and
the receptive field, the graph convolution layer is applied to
propagate the information between nodes and their neighbors.
Inspired by the spatial based GCN, we try to apply GCN to the
field of cross-domain person Re-ID to fully learn the complex
interaction of pedestrian images.

III. APPROACH
A. Overview

The training samples of HCN include the labeled source
and unlabeled target datasets, and the proposed HCN is mainly
composed of the CNN and GCN models. We first utilize the
source dataset to pre-train the CNN model, so that the pre-
trained CNN model can be employed to extract the appearance
features of the samples in the unlabeled target dataset. Then the
unsupervised clustering algorithm is applied to cluster these
appearance features and assign pseudo labels for the target
dataset. Afterwards, we apply GCN to explore the correlations
among samples of the target dataset. Specifically, we exploit
the similarity between the target samples to construct the
graph, and then DGConv is conducted on the graph. Hence,
the appearance features and the correlations among the target
samples can be fully considered in the feature learning process.
Furthermore, we extend the proposed HCN to the multi-
branch version to capture the structural information and mine
complete identity information. Next, we will introduce the
above-mentioned process in detail.

B. Pre-training

Although the model trained on the specific domain performs
poorly in another domain, the model pre-trained with the
source dataset is helpful for the subsequent training in the
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Fig. 2: The framework of pre-training stage, where the ID loss
represents the cross-entropy loss.

target dataset. Hence, we pre-train the CNN model using the
labeled source dataset in a supervised manner, as shown in
Fig. 2. Specifically, we treat ResNet-50 [59] as CNN, and we
replace the layers after the average pooling of ResNet-50 with
two fully connected (FC) layers. One FC layer is FC-1024
with 1024 neurons, and the other is FC-ID where ID denotes
the identity number of the source dataset. With the CNN
model, the appearance features of samples can be extracted
appropriately, and we name these appearance features as the
CNN-based features. Furthermore, we apply the triplet loss
and the cross-entropy loss to optimize the CNN model, where
the triplet loss could learn the similarity measurement of
positive and negative sample pairs and the cross-entropy loss
is applied to train the classification ability of CNN. Finally,
we utilize the pre-trained model to initialize the CNN model
of HCN.

C. Unsupervised Clustering for Training HCN

As shown in Fig. 3, we first apply the pre-trained CNN
model to extract the CNN-based features for the unlabeled
target dataset. Then we utilize the unsupervised clustering
algorithm [60] to cluster these CNN-based features, in which
the unlabeled target samples are divided into different regions
in the feature space. For each region, the samples are assigned
to the same identity label, so that a pseudo-labeled target
dataset is obtained.

D. Correlation Modeling in the Target Dataset

Graph Construction. Considering the correlations among
pedestrian images is beneficial for each sample to learn
useful information from other samples. However, the existing
cross-domain person Re-ID methods [40], [42], [61] tend
to learn the appearance information from individual sample,
thereby ignoring the correlations among pedestrian images.
To overcome the limitation, we establish a graph based on the
pseudo-labeled target dataset, and employ GCN to learn the
correlations among the target samples.

As shown in Fig. 3, after clustering, we construct a graph
where the CNN-based features of target samples are treated as
the nodes and the linkages between the nodes are measured by
the similarities. The feature matrix of the graph is composed
by the nodes:

F:[fla---afn»“'afN] (1)
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Fig. 3: The framework of HCN. We first utilize the pre-trained CNN model to extract the CNN-based features for the unlabeled
target samples. Then we exploit the unsupervised clustering algorithm to cluster these CNN-based features and assign pseudo
labels for the unlabeled target samples. Afterwards, the graph in the GCN model is constructed based on pseudo-labeled target
dataset, where the different colors represent the samples with different pseudo labels, the solid line indicates the sample pair
with the same pseudo label, the dotted line indicates the sample pair with different pseudo labels, and the length of each line
represents the similarity between samples. The output of the GCN model is the GCN-based features. Finally, the model is
optimized by the triplet loss with the pseudo labels of the target dataset.
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Fig. 4: The performance of HCN (for D-M) with the tradi-
tional GCN layers (red line) and the DGConv layers (blue
line). “K=0" means that the GCN model is removed, “Trad”
represents the traditional GCN operation and “Dual” is the
DGConv operation.

where F € RV*4 N is the number of nodes, d is equal to
2048, and f, represents the n-th node (i.e., the CNN-based
feature of the n-th target sample) in the graph. To reflect the
linkage strength among the target samples, we calculate the
similarities between all node pair to obtain a fully connected
graph. The adjacency matrix of the fully connected graph is
based on the similarities:

where A € RV*N and a;; represents the linkage strength
between the i-th node and the j-th node. It is formulated as:
_ .f Q" f jT 3
Zu:l Ev:l(fu : fv )
Dual Graph Convolution Operation. When utilizing the
traditional graph convolution operations [25], [26], the feature
matrix of the fully connected graph is updated by:

EFY — h(AE*WH*), 1 <k < K 4)

where W* is the trainable parameters of the k-th graph
convolution layer, E* represents the input feature matrix of
the k-th graph convolution layer, K is the total number
of graph convolution layers, and A indicates the nonlinear
transformation which is usually implemented by ReL.U.

However, propagating information from all the nodes in
the fully connected graph is prone to involving trivial and
redundant linkages. When the node aggregates and absorbs
the information from its connected nodes, excessive linkages
may confuse the identity information of nodes. The nodes
from different identities become similar especially when the
number of graph convolution layers increases, which leads to
the decline of the node discrimination and the model over-
smoothing. As a result, the performance of the model becomes
smooth or even worse as shown in the red curves of Fig. 4.
To avoid this phenomenon, we propose DGConv to explicitly
learn the important correlation information from the similar
and dissimilar samples.

Since the target dataset is pseudo-labeled, we regard that
the sample pair with the same pseudo label is similar and the
sample pair with different pseudo labels is dissimilar. Then we
only select the high confidence elements from the adjacency
matrix, that is, we retain the linkages between high similar
samples and the linkages between high dissimilar samples.
The selection criterions are expressed as:

1 1 [aiy, ifaig > 0(n) and l; =1
A1 = [ag;] where aj; = {07 otherwise ©
aij, if aij < 0(r2) and li # 1;
Ay =[a})] where af =407 " L6
2 = [ai;] where aj {07 otherwise ©

where A; € RV*N | Ay € RV*N [, and [; are the pseudo
labels of the i-th and j-th nodes, and 6(r;) and 6(72) are
the thresholds which represent the element values at 71 % and
9% of the adjacency matrix elements in the descending order.
Hence, A; retains the linkages between the high similar nodes
and As keeps the linkages between the high dissimilar nodes.

Compared to the adjacency matrix A in Eq. (4), A; and
Ay not only reduce the trivial and redundant linkages among
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samples but also avoid the dissimilar linkages between similar
samples and the similar linkages between dissimilar samples,
so that the similar samples are closer and the dissimilar
samples are farther after the DGConv operation. The proposed
DGConv is formulated as:

EML = h(WFra (A EX || AsE*), 1<k <K ()

where W*, E¥ and h are consistent with Eq. (4), | is the
concatenation operation, and o is the non-linear transformation
to aggregate features for the similar and dissimilar samples.
Here, o is implemented by a FC layer which follows BN and
ReLU, and the input feature matrix of the first DGConv layer
E' is initialized by F.

The DGConv operation in Eq. (7) can be regarded as the
graph convolution based on A; to make the similar samples
close, and the graph convolution based on A5 to push the
dissimilar samples away, in order to improve the discrimi-
nation of sample features. In Fig. 4, as for the traditional
graph convolution, the model achieves the best performance
when the number of graph convolution layers is equal to 1,
while as for the proposed DGConv, the best performance
is obtained when the number of graph convolution layers
is 3. Meanwhile, the proposed DGConv achieves better per-
formance than the traditional graph convolution. Hence, the
reduction of the number of linkages in the graph avoids the
decline of the discrimination of nodes, so that the DGConv
operation could relieve the model over-smoothing in a certain
extent. Afterwards, we can obtain the GCN-based feature of
each target sample which contains the appearance feature and
the important correlation information from its similar and
dissimilar samples.

E. Extension to Multi-branch HCN

To mine the structural information of pedestrians, we extend
HCN to a four-branch structure where three branches are
utilized to optimize the GCN-based features of global, upper
and lower parts and one branch is applied to optimize the
CNN-based features of global parts, and the framework of
multi-branch HCN is shown in Fig. 5. Specifically, we first
horizontally divide the pedestrian images into two uniform
parts, and then extract and cluster the global, upper and lower
CNN-based features. Thus, we can obtain three groups of
pseudo labels corresponding to the global, upper and lower
parts of pedestrian images for the target dataset. Assuming that
the unlabeled target dataset is Z;, we denote the ¢-th pedestrian
image of the target dataset as z{. Hence, the updated target
dataset is represented as:

Zy =z gyl )1 <0 < N, ®)

where y!, yi and y; denote the generated pseudo labels
corresponding to the global, upper and lower parts of the i-th
image 2!, and N; is the total number of the target samples.
Since the clustering process is carried out within each group
of features, the three groups of labels are independent, i.e., yé
7 Yu 7 Y-

After labeling the global, upper and lower parts of pedes-
trian images, we further utilize DGConv to extract the GCN-
based features for them. As a result, we employ the triplet

CNN-based
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Features
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Pre-trained
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Fig. 5: Framework of multi-branch HCN, where the blocks in
red, green and blue represent the operations on the global,
upper and lower parts of samples, respectively. The black
dashed line indicates that we add a FC (i.e., FC-1024) branch
to optimize the global CNN-based features for pedestrian
images, and T,, T, T; and T}, represent the triplet losses
of the four branches, respectively.

loss to optimize the four-branch structure for HCN, in which
the first three branches are based on the global, upper and
lower GCN-based features, and the fourth branch learns the
global CNN-based features with an additional FC layer, i.e.,
FC-1024.

FE. Optimization

In the unsupervised training stage, we conduct multiple
iterations to update the pseudo labels and the network cir-
cularly. With the pseudo-labeled target dataset, the triplet
loss is utilized as the optimization function for the multi-
branch framework of HCN. Hence, the total loss of HCN is
formulated as:

Lycn = wr, Ty + wr, Ty + wr, 1) + wry Te )

where T}, Ty, T; and T, denote the triplet losses of the four
branches, and wr,, W, » WT, and wry, are weights of the four
losses. Take the global part as an example, the loss of the first
branch is expressed as:

Ny

Ty=> [m+] £ =12l — |l f8 -

=1

i ll2J+  (10)

where m denotes the margin and [z]} = maz(x,0). Here, ff,
is the global GCN-based feature of the i-th anchor image,
5; is the global GCN-based feature of the positive sample
farthest to the ¢-th anchor image, and f;; is the global GCN-
based feature of the negative sample nearest to the i-th anchor
image. T, T} and T'. can be defined analogously to Tj,.

In a word, HCN can not only considers the appearance
features and the correlation information among pedestrian
images, but also realizes the joint optimization of the global
and partial features of pedestrian images.

IV. EXPERIMENTS
A. Datasets

We evaluate the proposed HCN on three person Re-
ID datasets: Market-1501 (Market) [27], DukeMTMC-relD
(Duke) [28] and MSMT17 [29]. The Market dataset is captured
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TABLE I: The time cost of HCN in pre-training, unsupervised
training and test stages. M: Market, D: Duke and M17:
MSMT17.

stage M D M17
pre-training 45m 52m 110m
unsupervised training 14.4h 15.5h 27.8h
test 0.043s 0.059s 0.133s

by 6 cameras, in which the training set has 12936 images
of 751 identities, the gallery set contains 19732 images of
750 identities, and the query set has 3368 images. The Duke
dataset is captured by 8 cameras, and it possesses 36411
images of 1404 identities including 16522 training images,
17661 gallery images, and 2228 query images. The MSMT17
dataset is closer to the real scene and it is taken by 15
cameras. Specifically, the training set of MSMT17 contains
32621 images of 1041 identities. The test set of MSMT17
includes 93820 images of 3060 identities, where 11659 images
are randomly selected from the test set as the query set, and the
remaining 82161 images are regard as the gallery set. When
employing the above datasets as the source dataset or the target
dataset, only the training sets of them are used in the training
stage, while the gallery and query sets of the target dataset are
utilized to evaluate the performance of the model.

B. Implementation Details

1) Pre-training. We utilize the labeled source dataset to
pre-train the CNN model using the framework in Fig. 2.
Specifically, we resize the pedestrian images of the source
dataset to 256 x 128 and then utilize the random cropping,
flipping and erasing to conduct the data augmentation. We
set the batch size to 128 which contains 16 identities and 8
pedestrian images for each identity. The margin of the triplet
loss is set to 0.5 and the number of epochs is 70. The weight
decay and momentum of the Adam optimizer [62] are set to
5 x 10~* and 0.9 respectively, and the initial learning rate is
3 x 1073 which is multiplied by 0.1 after 40 epochs.

2) Unsupervised Training. In the unsupervised training
stage, the unlabeled target dataset is applied to train the multi-
branch framework of HCN in Fig. 5, where the CNN model
is initialized in the pre-training stage. Specifically, we resize
the pedestrian images of the target dataset to 256 x 128 and
conduct the same data augmentation with the pre-training
stage. The margin of the triplet loss is set to 0.6 and the
batch size is set to 128. The number of iterations is 20 and
each iteration contains 60 epoches. After each iteration, the
unsupervised clustering algorithm [60] is applied to cluster the
CNN-based features of the target dataset, so that the pseudo
labels of the target dataset can be updated in the optimization
process. The initial learning rate is set to 8 x 10~4 and it is
reduced to 0.1 times after 40 epochs. After training, we test the
performance of HCN by the query and gallery sets of the target
dataset, where the Cumulative Matching Characteristic (CMC)
curve and the mean Average Precision (mAP) are employed
as the evaluation criteria.

Our work is conducted on the Pytorch platform using two
RTX 2080TI GPUs. The time cost of HCN in pre-training,

TABLE 1II: The performance of the pre-trained CNN model,
where A/B means the model is pre-trained on A and directly
tested on B.

mAP [ Rank-1 [ mAP [ Rank-1 [ mA [ Rank-1
MM [ M/D [ M/M17
8.0 [ 927 [ 178 [ 329 | 28 [ 86
D/D [ D[M [ D/M17
724 [ 840 | 266 [ 546 [ 61 | 183
MI7TMI7T ] M17/M [ M17/D
438 [ 710 | 293 | 556 [ 358 | 549

unsupervised training and test stages is listed in Table I,
where “pre-training” indicates the total pre-training time on
the corresponding source dataset, “unsupervised training” is
the total training time on the corresponding target dataset, and
“test” represents the test time of each query pedestrian image.

C. Ablation Study

1) The performance of the pre-trained CNN model. In
Table II, we record the performance of the CNN model when
training on the source domain and directly testing on the
target domain. Obviously, when we train and test the CNN
model on the same dataset in a supervised manner, the model
obtains higher accuracies. But when the CNN model trained
on the source dataset is directly tested on the target dataset,
the performance degenerates greatly. For example, mAP and
Rank-1 accuracy are 81.0% and 92.7% for M /M, but drop to
17.8% and 32.9% when directly tested on Duke. Similarly, the
comparison of M /M and M /M17 shows that mAP and Rank-
1 accuracy are dropped by 78.2% and 84.1%, respectively.
There are similar performance degradations when we test
the CNN model of D/D and M17/M17 on different target
datasets. Therefore, the model trained on a single domain
can not perform the task of person Re-ID well in different
scenarios.

2) The effectiveness of the GCN model and DGConv. As we
discuss above, we employ the GCN model to learn the corre-
lation information among samples, and the GCN model can be
implemented by the traditional graph convolution operation or
the proposed DGConv operation. To verify the effectiveness of
the GCN model and DGConv, we do experiments about “w/o
GCN”, “w/o DGConv” and “HCN”, and list corresponding
evaluation results in Table III. Here, “w/o GCN” indicates the
GCN model is removed (i.e., only using the CNN model), “w/o
DGConv” represents that we replace the DGConv operation
in Eq. (7) with the traditional graph convolution operation in
Eq. (4), and “HCN” utilizes the proposed DGConv operation.

Compared to “w/o GCN”, “w/o DGConv” and “HCN”
obtain the performance improvement, which fully proves the
effectiveness of the GCN model. Specifically, for D-M, mAP
of “w/o DGConv” is 68.0% which is 10.3% higher than
“w/o GCN” and Rank-1 accuracy is 88.4% which is 9.4%
higher than “w/o GCN”. Similarly, mAP and Rank-1 accuracy
of “HCN” are promoted by 12.5% and 11.2%, respectively.
As for other cross-domain scenarios, the evaluation results
with the GCN model are also superior to “w/o GCN”. The
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TABLE III: Ablation studies on the three datasets, where “w/0” means that we remove the component behind it.

D-M M17-M M-D M17-D M-M17 D-M17
Methods mAP [Rank-1] mAP [Rank-1|[ mAP [Rank-1] mAP [Rank-1]| mAP [Rank-1[ mAP |Rank-1
w/o GCN 57.7 79.0 55.0 77.8 50.2 70.8 57.1 73.9 12.0 30.9 12.3 31.5
w/o global 60.0 81.9 55.7 79.1 51.9 71.6 57.8 74.4 14.9 354 16.1 38.3
w/o multi 61.3 83.2 56.4 80.1 52.7 72.5 58.2 75.4 19.7 43.8 23.8 50.7
w/o FC 66.3 86.5 68.6 87.4 54.0 74.0 62.7 80.6 21.7 47.8 24.4 52.0
w/o DGConv 68.0 88.4 69.3 88.5 55.5 76.7 63.1 81.3 25.5 53.5 28.3 56.6
HCN 70.2 90.2 70.5 90.7 57.3 78.9 65.7 83.5 27.0 55.1 29.9 58.7

TABLE IV: The statistical analysis for the traditional graph
convolution operation and the DGConv operation (D-M).

w/o DGConv w/o DGConv
K=1 K=2
mean value | 4.6 x 107° 9.0 x 107°
p-value 6.9 x 10720
w/o DGConv w/o DGConv
K=2 K=3
mean value 9.0 x 1079 1.3 x 10—10
p-value 9.6 x 10~°
w/o DGConv HCN
K=1 K=3
mean value | 4.6 x 1072 9.1 x 10~4
p-value 1.0 x 10—25

significant improvement demonstrates that the correlation in-
formation provided by the GCN model is vital for cross-
domain person Re-ID. When removing the GCN model, the
features of the target samples are independent and have no
correlations. When using the GCN model, each target sample
feature could aggregate and absorb the correlation information
from its connected samples, so that the discrimination of target
sample features can be improved.

Furthermore, the comparison results between “w/o DGCon-
v’ and “HCN” show that the proposed DGConv improves the
performance, which could verify the effectiveness of DGConv.
For example, for M17-D, mAP of “HCN” is increased from
63.1% to 65.7% and Rank-1 accuracy is improved from
81.3% to 83.5% compared to “w/o DGConv”. It is because
DGConv considers the linkages between high similar samples
and the linkages between high dissimilar samples, which can
effectively avoid the negative effects caused by the trivial and
redundant linkages in traditional graph convolution operation.
The similar samples are closer and the dissimilar samples are
farther after the DGConv operation.

To further verify the contribution of DGConv, we conduct
some statistical analysis to show that more traditional graph
convolution layers lead to similar nodes for different identities
and the proposed DGConv can improve this situation in a cer-
tain extent. Specifically, we randomly select 128 target samples
and then extract the GCN-based features of them based on
“w/o DGConv” and “HCN”, respectively, so as to obtain two
groups of GCN-based features. Note that “w/o DGConv” indi-
cates the traditional graph convolution is employed. For each
group of GCN-based features, we calculate the similarities
between negative sample pairs to obtain a similarity vector and
then calculate the mean value of similarity vector. Afterwards,

we use t-test to obtain the significant difference between the
two similarity vectors. The results of the statistical analysis
for D-M are shown in Table IV, where K is the number of
graph convolution layers. Here, a small mean value indicates
the similar features (nodes) and “p-value<0.05” means the
obvious difference between the two similarity vectors. As for
“w/o DGConv”, we can see that the mean value decreases with
the increase of the number of traditional graph convolution
layers and the p-value is much less than 0.05, so more
traditional graph convolution layers lead to the similar nodes
and the decline of the sample discrimination. Meanwhile, the
mean value of “HCN” (K=3) is higher than “w/o DGConv”
(K=1), and the p-value between them is much less than 0.05.
Hence, the proposed DGConv could overcome the drawback of
similar nodes from different identities in a certain extent, and
learn more discriminative features than the traditional graph
convolution. Note that the traditional graph convolution and
the proposed DGConv achieve the best performance with the
number of graph convolution layers 1 and 3, respectively, and
therefore the comparison between them is convictive.

3) The effectiveness of the multi-branch structure. In our
work, we design the proposed HCN as a multi-branch struc-
ture to capture the structural information of pedestrians. For
comparison, we only utilize the global features to optimize
the deep model and denote it as “w/o multi”. From Table III,
we can see that compared to “w/o multi”’, mAP of “HCN” is
increased 8.9% and Rank-1 accuracy is improved 7.0% for D-
M. Meanwhile, the comparison results on other cross-domain
scenarios indicate that learning the structural information is
beneficial to improve the performance of the Re-ID model.

4) The effectiveness of the FC branch. In Fig. 5, we add
a FC branch to learn the global CNN-based features for the
target samples. In this subsection, we remove the FC branch to
verify its effectiveness, which can be denoted as “w/o FC” in
Table III. The comparison of “w/o FC” and “HCN” confirms
that the FC branch contributes a lot to the performance. For
example, with the FC branch, mAP is promoted from 66.3% to
70.2% and Rank-1 accuracy is increased from 86.5% to 90.2%
for D-M. Similar performance improvements are observed
in other cross-domain scenarios. Thus, the FC branch is an
indispensable component of HCN.

5) The effectiveness of global correlation information. If
only learning correlation information from the upper and
lower parts of pedestrian images, it may cause false positives
because of similar clothes. As shown in Table III, “w/o global”
indicates only considering correlation information from upper
and lower parts of pedestrian images. Compared to “w/o
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TABLE V: Comparison with state-of-the-art unsupervised person Re-ID methods, where “—” denotes the corresponding test

results cannot be obtained.

D-M M17-M M-D M17-D M-M17 D-M17
Methods mAP | Rank-1| mAP |Rank-1| mAP |Rank-1| mAP |Rank-1| mAP |Rank-1| mAP |Rank-1

LOMO [37] 8.0 27.2 - - 4.8 12.3 - - - - - -
BOW [27] 14.8 35.8 - - 8.3 17.1 - - - - - -
UMDL [38] 12.4 34.5 - - 7.3 18.5 - - - - - -
PTGAN [29] - 38.6 - - - 274 - - - 10.2 - 11.8
PUL [43] 20.5 45.5 - - 16.4 30.0 - - - - - -
SPGAN [39] 22.8 51.5 - - 22.3 41.1 - - - - - -
CAMEL [22] 26.3 54.5 - - - - - - - - - -
SPGAN+LMP [39] 26.9 58.1 - - 26.4 46.9 - - - - - -
HHL [40] 314 62.2 30.9 62.8 27.2 46.9 28.1 47.7 53 17.2 6.1 19.4
CASCL [63] 35.6 64.7 35.5 65.4 30.5 51.5 37.8 59.3 - -

ECN [41] 43.0 75.1 43.8 77.1 40.4 63.3 42.0 65.8 8.5 25.3 10.2 30.2
CR-GAN [61] 54.0 77.7 - - 48.6 68.9 - - - - - -
PAUL [64] 40.1 68.5 - - 53.2 72.0 - - - - - -
SSG [44] 58.3 80.0 59.6 82.3 534 73.0 56.0 74.7 13.2 31.6 13.3 32.2
ACT [46] 60.6 80.5 - - 54.5 72.4 - - - - - -
pMR-SADA [45] 59.8 83.0 - - 55.8 74.5 - - - - - -
GPP [42] 63.8 84.1 - - 54.4 74.1 - - 15.2 40.4 16.0 42.5
HCN [702 902 [ 705 907 [ 573 789 | 657 835 [ 27.0 551 | 299 587

TABLE VI: The performance of HCN with different number
of graph convolution layers.

mAP | Rank-1 | mAP | Rank-1
K D-M MI17-M
1 63.4 848 | 638 [ 847
2 68.1 880 | 69.7 | 888
3 70.2 902 | 705 | 907
4 67.0 86.9 | 688 | 870
K M-D M17-D
1 533 725 | 578 [ 756
2 56.0 769 | 622 | 808
3 57.3 789 | 657 | 835
4 54.5 751 | 608 | 789
K M-M17 D-M17
1 193 442 [ 238 [ 511
2 24.9 520 | 255 | 557
3 27.0 551 | 299 | 587
4 252 528 | 264 | 558

global”, “HCN” obviously obtains better performance. It is
because HCN simultaneously learns correlation information
from the global, upper and lower parts of pedestrian images,
so that the global, upper and lower parts of pedestrian images
can complement each other in the optimization process.

D. Comparison with State-of-the-arts

In this subsection, we compare the proposed HCN with the
state-of-the-art methods. As shown in Table V, most state-of-
the-art methods are evaluated in two cross-domain scenarios,
i.e., M-D and D-M, while we evaluate HCN in six cross-
domain scenarios including M-D, M-M17, M17-M, M17-D,
D-M and D-M17. From Table V, we can see that the proposed
HCN outperforms the state-of-the-art methods in all cross-
domain scenarios.

Firstly, the methods based on the hand-crafted features, such
as BOW [27], LOMO [37] and UMDL [38] evidently show
low accuracy and poor generalization ability. It is because

they are predefined and can not adapt different datasets.
Secondly, some methods apply GAN for the style translation
of pedestrian images to reduce the domain gap, including
PTGAN [29], SPGAN [39], HHL [40], CR-GAN [61] and
GPP [42]. Comparing with the hand-crafted methods, the
GAN-based methods perform better. Finally, the clustering-
based methods, such as PUL [43], CAMEL [22], SSG [44],
ACT [46] and pMR-SADA [45] have shown advantages in the
field of unsupervised person Re-ID. The proposed HCN is the
clustering-based method and its performance outperforms the
above-mentioned methods by a large margin. It is because the
proposed HCN learns the appearance, structural and correla-
tion information of pedestrian images in a unified framework.
For example, as for D-M, mAP of “HCN” is 10.4% higher
than pMR-SADA, and its Rank-1 accuracy is 7.2% higher
than pMR-SADA.

At present, only a few Re-ID methods, i.e., PTGAN [29],
ECN [41], SSG [44] and GPP [42] conduct experiments on
MSMT17. From Table V, we can see that the evaluation results
of HCN still surpass these methods, which demonstrates the
strong generalization ability of HCN. Specifically, for M-M17,
Rank-1 accuracy of “HCN” is 23.5% higher than SSG and
14.7% higher than GPP. For D-M17, Rank-1 accuracy of
“HCN” is promoted by 26.5% comparing with SSG and 16.2%
comparing with GPP.

E. Parameter Analysis

1) The influences of the number of graph convolution layers.
We set the number of graph convolution layers K from 1
to 4, and the evaluation results of HCN are presented in
Table VI. From this table, we can see that when the number of
graph convolution layers increases the performance of HCN is
improved, and HCN obtains the best results when K reaches
to 3. On the contrary, with the traditional graph convolution,
the performance of the model decreases as the number of
layers, as shown in the red curves of Fig. 4. The comparison
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TABLE VII: The performance of HCN with different dimen-
sions of GCN-based features.

mAP [ Rank-1 mAP [ Rank-1
dimension D-M MI17-M
256 67.7 87.6 68.5 88.1
512 70.2 90.2 70.5 90.7
1024 68.4 88.5 67.7 88.9
dimension M-D MI17-D
256 54.5 75.7 60.4 79.8
512 57.3 78.9 65.7 83.5
1024 56.1 76.6 63.2 81.7
dimension M-M17 D-M17
256 23.9 49.0 25.2 54.9
512 27.0 55.1 29.9 58.7
1024 25.0 52.1 27.2 55.6
2l s | n| 1| AR AR ARART]
7l 7l
3/4 | 63.1 |63.0 | 628 |61.7 |59.6 3/4 | 848 | 839 | 822 |81.0 | 802
2/3 | 660 | 653 | 635 |63.8 | 619 2/3 873 | 862 | 852 | 855 | 82.1
12 | 68.1 | 688 | 665 | 639 |625 12 | 87.6 | 87.9 | 86.1 | 85.1 |81.8
13 1690 [70.2 | 677 | 652 | 629 1/3 893 |90.2 | 87.8 | 854 | 827
1/4 | 671 | 680 | 660 | 644 |63.4 1/4 | 87.8 | 87.9 | 86.1 | 839 |833

() (b)

Fig. 6: (a) mAP and (b) Rank-1 accuracy of HCN with
different combinations of 7, and 75 for D-M.

results prove that the proposed DGConv could relieve the over-
smoothing in a certain extent.

2) The influences of GCN-based feature dimension. We list
the results of different dimensions of GCN-based features in
Table VII. From the table, we can see that when the dimension
is set to 512, we obtain the best results in all cross-domain
scenarios.

3) The influences of 11 and T5. The thresholds 7; and
7o in Eq. (5) and Eq. (6) are utilized to select the high
confidence elements from the adjacency matrix for the similar
and dissimilar images. We conduct experiments with different
combinations of 74 and 75 for D-M and the results are listed in
Fig. 6, where we can see that the results achieve the best when
71=1/3 and 7,=2/3. Note that our experiments have shown
that the conclusions can be generalized to other cross-domain
scenarios as well.

4) The influences of the batch size. The batch size of the
triplet loss is P x (), where P is the number of pedestrian
identities and () is the number of pedestrians for each identity.
The results are listed in Table VIII where we can see that the
performance varies with different batch sizes. It is because
the batch size determines the size of the graph, and further
determines the number of linkages in the graph. When the
batch size is less than 128, the performance of HCN is
relatively poor, because the linkages between samples are not
enough to learn discriminative features. When the batch size is
greater than 128, HCN shows slight performance degradation.
Hence, proper batch size is key for the performance of our
method. When the batch size is set to 128 (P=16, ()=8), mAP
and Rank-1 accuracy of HCN achieve the best performance in

TABLE VIII: The performance of HCN with different batch
sizes.

mAP [ Rank-1 mAP [ Rank-1

PxQ D-M M17-M

16 x 4 27.0 53.9 30.1 54.3
8x 8 29.8 55.1 31.2 56.0
32 x4 67.8 88.3 68.3 89.0
16 x 8 70.2 90.2 70.5 90.7
32 x 8 64.0 84.0 64.8 85.1
16 x 16 66.6 85.2 65.2 86.6
PxQ M-D MI17-D

16 x 4 18.1 33.7 20.7 36.1
8 x8 19.9 34.4 22.7 37.6
32 x4 55.8 76.7 62.2 80.9
16 x 8 57.3 78.9 65.7 83.5
32 x 8 53.7 74.0 58.0 78.1
16 x 16 54.6 75.5 60.6 80.5
PxQ M-M17 D-M17

16 x 4 8.9 14.7 9.4 15.5
8x 8 9.1 15.0 10.7 17.0
32 x4 24.9 52.1 27.2 56.4
16 x 8 27.0 55.1 29.9 58.7
32x8 24.2 51.8 25.1 54.0
16 x 16 25.3 53.7 26.7 55.4

TABLE IX: The performance of HCN (for D-M) with different
loss weights.

wr, WT, wr, wr, mAP Rank-1
0.6 0.6 1 1 66.8 87.1
0.8 0.8 1 1 67.5 88.3
1 1 0.6 0.6 67.8 87.5
1 1 0.8 0.8 68.9 89.3
1 1 1 1 70.2 90.2
1.2 1.2 1 1 68.6 89.1
14 1.4 1 1 67.1 88.5
1 1 1.2 1.2 68.2 88.0
1 1 1.4 1.4 66.4 86.5

all cross-domain scenarios.

5) The influences of the loss weight. We do experiments
for HCN with different weights of the four losses in Eq. (9).
As an example, we present the experimental results for D-M
in Table IX, where HCN achieves the best performance with
the same loss weight and shows a slight performance degra-
dation with different loss weights. Note that our experiments
have shown that the conclusions can be generalized to other
scenarios as well.

F. Visualization Results

1) Visualization of clustering results. In Fig. 7, we show the
clustering results of different features including CNN-based
features, GCN-based features of traditional graph convolution,
and GCN-based features of DGConv. As shown in Fig. 7(a),
when clustering with the CNN-based features, there are obvi-
ous crossings among different identities, and the distribution
of the CNN-based features is relatively scattered. Fig. 7(b)
and Fig. 7(c) are the clustering results of GCN-based features
of traditional graph convolution and DGConv, in which the
crossings between different identities are greatly reduced. It is
because GCN-based features contain the correlations among
pedestrian images. The clustering result based on DGConv is
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Fig. 7: Visualization of clustering results for different features: (a) CNN-based features, (b) GCN-based features of traditional

graph convolution, and (c) GCN-based features of DGConv.
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(d
Fig. 8: Visualization of the adjacency matrices for (a) tradition-
al graph convolution and (b) DGConv. (c) Pedestrian image
pair with the same identity corresponding to the green box; (d)
Pedestrian image pair with different identities corresponding
to the red box. The deeper color indicates the larger similarity
between pedestrian images.

- —

() (b)

better than that of the traditional graph convolution, because
DGConv can explicitly learn the correlation information from
the similar and dissimilar pedestrian images. Thus, the pro-
posed DGConv can help the clustering algorithm to obtain
more accurate identity labels for unlabeled target dataset.

2) Visualization of the adjacency matrices. We visualize the
adjacency matrices of the traditional graph convolution and
DGConv in Fig. 8. The green box indicates the similarity
between pedestrian images with the same identity, and the
corresponding image pair is shown in Fig. 8(c). From the
figure, we can see that the proposed DGConv gives a large
similarity value than the traditional graph convolution, which
is closer to the ground truth. As for the red box, it represents
the similarity between the pedestrian images with different
identities, and the corresponding image pair is presented in
Fig. 8(d). From the figure, we can see that the proposed
DGConv gives more reasonable similarity value than the
traditional graph convolution. It is because DGConv selects the
high confidence elements of the adjacency matrix for similar
and dissimilar pedestrian images to optimize the model.

V. CONCLUSION

In this paper, we have proposed HCN for cross-domain
person Re-ID, which applies CNN and GCN to learn the
appearance and correlation information for pedestrian images.

As for the graph, we exploit the similarity between pedestrian
images to establish the linkage. Then we propose DGConv
to explicitly learn the correlation information from the sim-
ilar and dissimilar pedestrian images, which could avoid to
propagate the trivial information in the fully connected graph.
Moreover, we design HCN as a multi-branch structure to
discover the structural information of pedestrian images. The
evaluation results on Market, Duke and MSMT17 indicate that
HCN is superior to the start-of-the-art methods and it possesses
the remarkable adaptability for the cross-domain scenarios.
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