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Abstract—In this paper, we present a probabilistic capacity
planning framework for electric vehicle (EV) fast charging
stations that operate under cold weather. Existing literature on
charging station modelling assumes that fast charging occurs at
the rated capacity. However, recent empirical studies reveal that
the actual charging rate depends on the battery and ambient
temperatures and substantially reduces under cold weather. The
proposed model is based on a multi-class queuing system where
EV classes are determined based on temperature-dependent
charger rates. The primary goal is to calculate minimum station
capacity that can provide a certain level of quality of service
(QoS) to each customer class. The performance metric describes
the percentage of EVs that need to wait for service or leave
the station. Case studies are provided to show the relationship
between customer arrival rates, charging power and customer
classes, and target QoS levels. The results further illustrate that
the proposed framework achieves nearly one-third of capacity
savings compared to baseline scenarios. The problems pertinent
to temperature effects on EV charging require greater attention
as EVs are becoming the main mode of transport in the next
decade.

Index Terms—Electric Vehicles; Power Grid Impact; Battery
Degradation; Cold weather;Queueing System

I. INTRODUCTION

Electric vehicles (EVs) are vital part of energy transforma-
tions towards net-zero future. Most developed countries have
introduced policies to incentivise customers (e.g. tax credits,
etc.) to purchase EVs [1], [2]. Such policies have been quite
successful in several countries. For instance, new EV sales in
Norway have outpaced petrol car sales in 2020, while more
than 10 million EVs are expected to be on the road by 2030 in
the UK as the government has introduced a ban on new petrol
car sales [3]. Moreover, the US administration has announced
to make trillion dollar investments to support EVs and electrify
governmental vehicles [4].

Electrification of transport is a multifaceted transforma-
tional change that impacts both drivers and power grid op-
erators. Drivers adopt new practices related to charging types
and durations that are different from petrol filling stations.
Power network operators, on the other hand, need to manage
new challenges characterised by EVs at various levels such as
accelerated transformer ageing [5] and power quality degra-
dation (voltage dips, harmonics etc.) [6]. To that end, it is
estimated by the National Grid in the UK that £30 billion of
investments are required to support EV integration [7].

Existing studies on EV-grid integration assume that EVs
operate under optimum driving temperatures (e.g. (21.5 °C))
and can be charged at rated charger capacity. On the other
hand, EV penetration is typically high in countries (e.g.
Norway, UK, Canada) with cold ambient temperatures. In such
countries, EV fast charging rate is restricted by the battery
management units to avoid adverse effects on the battery
cells [8]. According to a large-scale data driven analysis
conducted in Norway, the average charge power is 40% less
than the rated power of 50 kW and drivers charge considerably
less than their battery capacity [9]. As shown in Fig.1, the
charging power (kW) and energy (kWh) decrease in winter
months and increases in summer season in line with mild
temperatures. Similarly, the average charging sessions are
inversely correlated with the charging power and less time
is spent in warmer months.

Charging sessions under cold weather needs to be carefully
investigated. For instance, the schedule of fleets (e.g. taxis,
buses etc.) could be disturbed. Moreover, chargers that operate
below rated capacity will introduce additional harmonics to
the power network which will limit the maximum number of
EVs that can be charged at the same time [10]. Low charging
power will lead to over-provisioning of system resources at
one location and necessitates more chargers at different sites
to complement fast charger network. In addition, recent studies
show that queueing times and reduced charger rates discourage
EV drivers and nearly 20% of the EV owners in California
switch back to petrol powered vehicles [11]. Therefore design
of charging facilities is critical both for EV drivers and system
operators. To that end, the contributions of this paper are as
follows:

• We propose a stochastic charging station model which
serves multi-class EV drivers. Customers are classified
based on ambient temperature and associated charging
power.

• We develop a capacity planning framework that computes
minimum station capacity (in kW) to accommodate EV
customers of each type. Optimal station guarantees a
certain level quality of service that is defined by loss
of load probability (or probability of waiting for service
or leaving the facility).

• A number of case studies are designed to provide insights



Fig. 1. Average energy charged, time used and average power of fast charging in Counties in Norway in 2017. Rated capacity of chargers are 50 kW. Source:
[9] (used with Creative Commons Attribution (CC BY) license) .

on different station parameters and how network opera-
tors can use the model to estimate EV load at a specific
charging node. To the best of author’s knowledge, this is
the first study that considers ambient temperature impacts
on charging station model.

II. RELATED LITERATURE

Over the last years, there has been a growing body of
literature on the impacts of cold weather on EV charging
and driving ranges. In [12] and [8], the driving range of
EVs is studied and it was shown that significant percentage
of battery energy is used for battery/cabin heating and to
provide the extra traction needed to drive in winter. In [8],
measurements were taken from Nissan Leaf which was driven
in Winnipeg, Canada. The results show that the driving range
drops from 162 km in +28 °C to 44km in -26 °C. In [13],
researchers tested the fast charger efficiency under extreme
temperatures. It was shown that the efficiency of most fast
chargers reduces to 80-90% under -15 °C. In [14], authors
investigated the impacts of EV charging under cold weather
and present a probabilistic methodology to estimate the extra
demand needed in winter months in the UK. It was shown
that more than 500 MW of extra load may be needed due to
more often charging of vehicles. Authors further mentioned
that the study does not involve EV fleets, therefore, actual
extra demand could be significantly higher.

The literature on fast charging station modelling primarily
involves queueing-based analysis [15]–[17]. In [15], authors
proposed a performance evaluation framework for a fast
charging station that is modelled as an M/M/s queue and
customers are classified according to AC and DC charging
types. They further developed a pricing-based scheduling pol-
icy to minimise EV waiting times. In [16], authors proposed a
charging network operator who manages EV loads at spatially
distributed charging stations to minimise waiting times. In
the proposed model, each individual station is modelled as a
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Fig. 2. Schematic overview of the proposed system.

queueing network. In [17], authors developed an optimisation
model to calculate the capacity of a charging system equipped
with solar panels and energy storage units. Different from the
existing literature, the model presented in this paper employs a
multi-rate Erlang-b system which captures the aggregate load
profile of multi-class EVs based on their battery temperatures.

III. PROPOSED FRAMEWORK

We consider a DC fast charging station operating under
cold weather. Even though the chargers are assumed to be
identical, the rate of charging service is determined by the
ambient and battery temperatures. More specifically, EVs with
colder batteries are charged at lower rates (e.g. 20-30kW),
while warmer batteries which have been in use for driving can
be charged at faster rates (e.g. 45-50 kW). Hence, we consider
J distinct EV classes which are differentiated by the charging
rate bj and loss of load probability (LoLP) target denoted
by δj , j ∈ {1, .., J}. Note that the QoS metric LoLP for
any customer class represents the probability that an arriving



customer cannot receive service due to shortage of resources.
To that end, our main interest is to calculate the minimum
station capacity needed C to enforce QoS guarantees for each
customer type. Mathematically, the problem is formulated as

C∗ =

{
Minimise C
Subject to βj ≤ δj , for j ∈ {1, . . . , J} (1)

where βj is the LoLP probability for class j. Customer arrivals
for each class j are assumed to follow a Poisson process with
rate λj , while the charging service durations are assumed to
follow an exponential distribution with rate µj . Note that such
assumptions are very common in the literature as reported in
[18]. An overview of the proposed system model is presented
in Fig. 2. The charging station model described above falls
under multi-dimensional loss systems (or multi-rate Erlang
loss systems) where an arriving EV is either admitted to
system or blocked due to lack of resources.

A. Problem Formulation

To model the capacity optimisation problem, we model the
EV demand profile as a collection of J independent queueing
networks (see [19]). As a starting point, we assume that the
power network resources are infinite. Let Qj∞ represent the
number of EVs of type j with a charging rate of bj units of
power (e.g. 50kW under mild weather). Let S be the total
demand profile that is given by

S =

J∑
j=1

bjQ
j
∞ . (2)

Due to Poisson arrival rates, the mean and the variance of Qj∞
are given as E

[
Qj∞

]
= σ2

[
Qj∞

]
= qj =

λj

µj
. Therefore

E [S] =

J∑
j=1

bjqj , and σ2 [S] =

J∑
j=1

b2jqj . (3)

Now, by considering finite station capacity represented by
C, the carried load system defined by QjC is defined as the
number of simultaneous EVs at the charging station. Then, as
described previously, the loss of load even occurs when an
EV of type j finds available resources less than C − bj . For
a given set of EV charging rates b = [b1, . . . , bJ ] and mean
number of arrival rates q = [q1, . . . , qJ ] (used interchangeable
with λj for ease of presentation), LoLP for customer type j
is denoted by βj ∈ {0, 1} and mathematically written as

βj(q, b) = P

C − bj <
J∑
j=1

bjQ
j
∞ ≤ C

∣∣∣ J∑
j=1

bjQ
j
∞ ≤ C


(4)

=
P
{
C − bj <

∑J
j=1 bjQ

j
∞ ≤ C

}
P
{∑J

j=1 bjQ
j
∞ ≤ C

} . (5)

In order for station capacity to provide individual QoS
targets {δj}, optimal capacity C∗ needs to be as big as the

mean offered load given in (2). Due to probabilistic nature
of the EV arrivals, additional capacity is needed to provide
demand variations. To that end, C∗ is set equal to expected
load E [S] and adjusted by an extra term that is proportional
to its variance denoted by x · σ2 [S]. To find a closed form
expression, the system is scaled with ς > 0 to devise the
following expression for the system capacity

C̄(ς, x) = ς

J∑
j=1

bjqj + x

√√√√ς

J∑
j=1

b2jqj . (6)

Using the limiting relations described [20], we have

lim
ς→∞

√
ςβj(q, b) =

bj√∑J
j=1 b

2
jqj

· φ(x)

ϕ(x)
(7)

where φ(x) = 1√
2π
e−x

2/2 and ϕ(x) = 1√
2π

∫ x
−∞ e−t

2/2 dt.
We further define function ψ as the inverse of φ

ϕ for ∀x, that
is:

φ(ψ(x))

ϕ(ψ(x))
= x . (8)

Notice that ψ(·) is a strictly decreasing function with ψ(y)+
y > 0, ∀y ( [20]). Therefore, the asymptotic behavior of the
QoS constraint βj(q, b) ≤ δj can be written as:

x ≥ ψ

δj
bj

√√√√ J∑
j=1

b2jqj

 . (9)

The station capacity should further provide QoS targets.
Hence, the inequality in (9) yields

x ≥ ψ

 min
1≤j≤J

{
δj
bj

√√√√ J∑
j=1

b2jqj

} . (10)

The minimum station capacity can be found by solving the
provisioning problem in (1) is

C∗ =

J∑
j=1

bj
λj
µj

+ ψ

 min
1≤j≤J

δj
bj

√√√√ J∑
j=1

b2jλj

√√√√ J∑
j=1

b2jλj ,

(11)
where ψ(·) can be numerically computed by solving [21]:

x−1e−0.5ψ(x)2 −
√

2π erf

(
1√
2
ψ(x)

)
−x
√

0.5π = 0 . (12)

Note that equations (11) and (12) are the main results to
compute optimal station capacity. The only missing terms are
LoLP probabilities represented by δj and associated compu-
tational methods are presented in the next section.

B. Loss-of-Load-Probability Computation Methods

To compute the LLoP functions, we need to analyse J inde-
pendent Markov chains in which system state is defined as the
number of EVs of the same time, i.e. Q , [Q1

C , . . . , Q
J
C ] and

the state space is denoted by Ω , {Q :
∑J
j=1 bjQ

j
∞ ≤ C}.

Let Q̃jC represent the maximum number of EVs of type j



Algorithm 1 Kaufman-Roberts Algorithm
Set κ(0) = 0 and κ(i) = 0 for i ∈ IR−

for i=1 to C do
κ(i) = 1

i

∑J
j=1 bjqj(j − bj)

end for
Compute H =

∑C
i=1 κ(i)

for i=0 to J do
α(i) = κ(i)

H
end for
for j=1 to J do
βj(q, b) =

∑C
i=C−bj+1 α(i)

end for

that can be charged simultaneously. Assuming that the charger
rates are ordered b1 ≥ · · · ≥ bJ ≥ 0, the following can be
written 0 ≤ Q̃1

C ≤ · · · ≤ Q̃JC . Then the probability of being at

state Q is [19] π(Q) =
J∏
j=1

q
Q

j
∞

j

Qj
∞!
e−qj . By conditioning on the

finite capacity, and a generic state Q probability distribution
is computed as:

π(Q) =
π(Q)∑
Q̃∈Ω π(Q̃)

· (13)

The blocking states for customer type j is written as

Ψj = {Q : C − bj <

J∑
k=1

bkQ
k
C ≤ C} .

Moreover, the LoLP function can be written as

βj(q, b) =
∑
s∈Ψj

π(s) = 1−
∑
s/∈Ψj

π(s) , (14)

Moreover, the function H(C, J) is defined as

H(C, J) ,
∑

{Q: bQ ≤ C}

∏J

j=1

qQ
j

j

Qj !
, (15)

which is used to compute the LoLP for class j explicitly as:

βj(q, b) = 1− H(C − bj , J)

H(C, J)
· (16)

Using the defined functions, we use recursive methods de-
scribed by Kaufman-Roberts algorithms (shown in Algorithm
1) [19]. Let c denote the real-time load profile of the station,
then we have

α(c) =
∑

{Q: bQ ≤ c}

qQ
j

j

Qj
· 1

H(C, J)
, (17)

and the LoLP for type j can be calculated by using solving
the following equation:

βj(q, b) =

bj−1∑
i=0

α(C − i) . (18)
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Fig. 3. Loss of load probability for four classes and fixed arrival rate of
λ = 50.

IV. NUMERICAL EVALUATIONS

To provide more insights on the proposed framework, the
following case studies are performed. It is assumed that the
charging station serves four different (J = 4) EV classes that
are classified based on the battery temperature and charging
power. By assuming the fast charging occurs at b1 = 50
kW, the other charging rates are determined as b2 = 40 kW,
b3 = 30kW, and b4 = 20 kW. The charger rates are estimated
based on the measurements provided in [22] (see Fig. 2 of
the reference). For instance, under zero celsius it takes about
60 minutes to reach 80% SoC level of a Nissan Leaf (24
kWh). On the other hand, it only takes 20-25 minutes to
reach the same SoC level under 25-30 Celsius. Moreover,
by considering most popular EV battery sizes and 20% to
80% SoC charging habits, it is assumed that on average each
vehicle wants to transfer 30 kWh of energy. The overview of
the customer classes are given in Table I.

In Fig. 3, the LoLP for each charger class is evaluated for
the aforementioned four charger classes and each arrival rate
is assumed to be λj∈1,2,3,4 = 12.5. It can be observed that
as the station capacity increases the LoLP approaches to zero.
Moreover, the LoLP for class 4 (20 kW) is strickly less than
the others as the charger rate b4 is less than the others b4 <
b1,2,3. Therefore, the most dominant factor in determining the
station capacity respect to QoS targets is the customer class
with the highest charging rate.

Second evaluation case study is evaluated for a wide range
system parameters. Class-specific arrival rates are assumed to
be equal to each other (λ1 = λ2 = λ3 = λ4) and total arrival
rate is varied from 10 to 20 (EVs per hour). The target QoS
levels for each customer class is presented in Table II. Four
different case studies are presented in Fig. 4. Case (a) has the
most stringent LoLP targets as each EV class is expected to
receive service under 0.01 QoS levels. Therefore, the station
capacity takes the highest value for case (a). In a similar
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Fig. 4. Numerical evaluations for station capacity. Target LoLP values are presented in Table II. Right y-axis shows sum of actual LoLP levels.

TABLE I
CUSTOMER CLASSES FOR THE CASE STUDIES.

Class Charge
Rate (kW)

Average
Duration (min)

Service Rate
(no of EVs per hour)

1 50 36 1.67
2 40 45 1.33
3 30 60 1
4 20 90 0.66

TABLE II
TARGET LOLP FOR CASES (A)-(D) IN FIG. 4

Target LoLP (δj )
Case δ1 δ2 δ3 δ4

a 0.01 0.01 0.01 0.01
b 0.05 0.05 0.05 0.05
c 0.01 0.01 0.05 0.05
d 0.05 0.05 0.01 0.01

manner, the lowest station capacity is required for case (b)
as each target LoLP is set to δ1,2,3,4 = 0.05. When cases (c)
and (d) are compared, higher capacity is required at case (c) as
EV classes 1 (50 kW) and 2 (40 kW) requires more resources
than classes 3 (30 kW) and 4 (20kW).

To capture the weight of different customer classes, another
case study is presented. In this case, the station is assumed
to operate in a colder climate and the most EVs are with a
colder battery. More specifically, customers demanding 50 kW
and 40 kW chargers represent 1/8 of the customers, while
remaining customers demand 30 kW and 20 kW chargers.
Similar to the case in Fig. 4 (c), the LoLP probabilities are
set as δ1 = 0.01, δ2 = 0.01, δ3 = 0.05, and δ4 = 0.05.
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Fig. 5. Numerical evaluation for different customer portfolio (1/8 of EVs
request 50kW and 40 kW, while the rest of the customer are class 3 and 4.
Y-axis depicts total LoLP for all classes.).

When compared to case (c), the system capacity significantly
reduces because the share of customers in the first two classes
reduce. This case study confirms the main finding presented
in (11) that the capacity is related to the multiplication of
arrival and charger rates. As a final evaluation, the capacity
savings are calculated with respect to a baseline scenario
where each customer class requires a LoLP guarantees close
to zero (δ1,2,3,4 = 0.0001). As shown in Fig. 6, as the arrival
rate increases, the savings decrease due to increased system
utilisation. Moreover, for high LoLP targets (δj = 005, ∀j),
the savings are higher as more EVs are allowed to wait for
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service.

V. CONCLUSIONS

This paper presented a stochastic capacity planning frame-
work for fast EV charging stations operating under cold
weather. Through existing empirical studies, it was shown
that low ambient temperatures limit the battery charging
rates, hence, EVs arriving to a charging station are naturally
segmented into multiple classes. In public facilities due to
limited space, the charging station capacity was determined
to minimise the probability of waiting for each customer
type. Therefore, loss of load probability (LoLP) was used to
evaluate the system performance. LoLP is the probability that
the aggregate system demand exceeds station capacity, hence,
the new EV arrivals are either need to wait or leave the system.
The capacity planning model is further linked to guarantee
QoS levels defined as the maximum LoLP level for each
customer type. A number of case studies were performance
to investigate the interplay between customer statistics, LoLP
levels and station capacity. The results show that the stations
will be less loaded in winter months due to limited charger
rates.
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