Numerical Modeling and High Speed Parallel Computing: New Perspectives for Tomographic Microwave Imaging for Brain Stroke Detection and Monitoring

Pierre-Henri Tournier, Marcella Bonazzoli, Victorita Dolean, Francesca Rapetti, Frédéric Hecht, Frédéric Nataf, Iannis Aliferis, Ibtissam El Kanfoud, Claire Migliaccio, Maya de Buhan, Marion Darbas, Serguei Semenov, Christian Pichot Fellow, IEEE

Abstract—This paper deals with microwave tomography for brain stroke imaging using state-of-the-art numerical modeling and massively parallel computing. Iterative microwave tomographic imaging requires the solution of an inverse problem based on a minimization algorithm (e.g., gradient-based) with successive solutions of a direct problem such as the accurate modeling of a whole-microwave measurement system. Moreover, a sufficiently high number of unknowns is required to accurately represent the solution. As the system will be used for detecting the brain stroke (ischemic or hemorrhagic) as well as for monitoring during the treatment, running times for the reconstructions should be reasonable. The method used is based on high-order finite elements, parallel preconditioners from the Domain Decomposition method and Domain Specific Language with open source FreeFEM++ solver.

Index Terms— High Performance Computing, Parallel computers, Finite element analysis, Microwave antenna arrays, Electromagnetic Diffraction, Microwave Imaging, Biomedical Imaging, Inverse Problems

I. INTRODUCTION

Stroke, or cerebrovascular accident (CVA), is classically characterized as a neurological deficit attributed to an acute focal injury of the central nervous system (CNS) by a vascular cause, including cerebral infarction, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH), and is a major cause of disability and death worldwide [1]. About 85% of strokes are ischemic due to cerebral infarction, caused by an interruption of the blood supply to some part of the brain, 15% are hemorrhagic (10% primary and 5% subarachnoid hemorrhage) [2]. Differentiating between these different types of strokes is an essential part of the initial workup of the patients because the subsequent management and treatment of each patient is vastly different. Rapid and accurate diagnosis is crucial since the only drug currently approved by the FDA for treatment of acute ischemic stroke is intravenous tissue plasminogen activator (tPA) administered within 3 hours of stroke onset. Neuroimaging has to play a vital role in the workup of acute stroke by providing information essential to accurately triage patients, and expedite clinical decision-making with regards to treatment. CT and MRI [3] are actually the "gold" standards but they are bulky diagnostic instruments and cannot be used in continuous brain monitoring. A non-invasive and transportable/portable device would have clear clinical applications at the bedside in a Neurological Intensive Care Unit (NICU).

Microwave tomography is a novel, early development stage imaging modality with a large number of potential attractive medical applications. A difference between the dielectric properties (complex permittivity) of normal and diseased brain tissues is a great potential for this imaging modality. Detecting and identifying strokes is challenging as it corresponds to a small opposite variation of the permittivity values of brain tissues of about +/- 10% of the baseline tissue values for the two types of strokes (ischemic or hemorrhagic) [4]. The rapid data acquisition time is another attractive feature of microwave tomography but rapid tomographic reconstructions are mandatory for developing a novel imaging modality with a new paradigm: detecting, identifying and monitoring stroke continuously during treatments by exposing head tissues to low-level microwave incident field and capturing the scattered signal by an array of antennas. Iterative tomographic imaging requires the solution of an inverse problem based on a minimization algorithm. Reconstruction algorithms are computationally intensive with successive solutions of the forward problem needing efficient numerical modeling and high-performance parallel computing. A majority of works in the literature has made use of geometrically simple phantoms or with only a limited amount of tissue-mimicking materials. The modeling must have to accurately take account of the high heterogeneity and complexity of head tissues (skin, fat, skull,
bone marrow, brain/white matter, brain/grey matter, cerebrospinal fluid, arteries, etc.) for normal cases and for different possible brain pathology cases (ischemic and hemorrhagic strokes, brain injuries, etc.). Another major point refers to the accurate modeling of the incident field from transmitting and receiving antennas. This interaction is very complex, as it must be seen as a coupling problem between the antennas and the head rather than a simple scattering problem. In addition, the electric field is measured by means of receiving antennas (sensors). Therefore, we do not have access directly to the electric field but only via antenna S parameters. The purpose of this work is to solve the inverse problem associated to a prototype developed by EMTensor GmbH (Vienna, Austria) [5] using state-of-the-art modeling, high-performance and massively parallel computing.

II. TOMOGRAPHIC SYSTEM

The model of microwave imaging is based on BRain IMaging Generation1 (BRIMG1), a tomographic microwave system developed by EMTensor GmbH [5]. The system consists of a cylindrical metallic chamber composed of 5 rings of 32 Transmitting/Receiving antennas (Fig. 1). The antennas are ceramic (εr = 59) loaded open-ended waveguides. The diameter of the chamber is 285 mm with a height of 280 mm. The rings are 30 mm equally spaced, the first one being located at 40 mm from the top of the chamber. The chamber is filled with a matching liquid medium during measurements. The operating frequency of the system is 0.9 GHz to 1.8 GHz. The data acquisition cycle of the system is fully electronically controlled, allowing for a total data acquisition of about 30 s. The imaging chamber is in horizontal position, allowing easy positioning a human head within an imaging domain (Fig. 2). The head of the patient is introduced in the chamber as shown in Fig. 2. A special thin membrane is used for isolating the human head from the matching liquid and keeping the liquid within the chamber. A carbon loaded silicon rubber (CLSR) is also used for reducing reflection from boundary conditions (Fig. 3).

![Fig. 1. Left: General view of BRIMG1 (courtesy of EMTensor GmbH). Right: Computational domain.](image)

A switching matrix connected to a network analyzer selects the transmitting and receiving antennas. The system is potentially delivering a 160 × 160 matrix of S parameters. The measured S parameters due to the scattered field of an object under investigation are obtained by complex subtraction between two measurements with empty chamber and with the head, respectively. The raw data can be wirelessly transferred to a remote computing center.

![Fig. 2. BRIMG1: Human head measurement (courtesy of EMTensor GmbH)](image)

The HPC machine will compute the tomographic images, which can be quickly transferred from the computing center to the hospital.

III. FORWARD MODELING

We consider the domain Ω ⊂ R3 for representing the whole-chamber (Fig. 1) as an inhomogeneous dissipative nonmagnetic medium of complex permittivity ε(x). For each transmitting antenna j = 1, . . . N at radial frequency ω, the wave equation for the electric field vector E_j(x) with an e^{iωt} time-dependence is

\[\nabla \times (\nabla \times E_j) - k^2 E_j = 0 \quad \text{in } \Omega \] (1)

with \(k^2 = k^2(x) = \omega^2 \varepsilon_0(x) \varepsilon_r \mu_0 \), where k(x) is the complex wavenumber of the inhomogeneous medium, \(\varepsilon_0 \) and \(\mu_0 \) the permittivity and permeability of free space, respectively.

The boundary conditions on the perfectly conducting parts \(\Gamma_c \) of the walls of the chamber are

\[E_j \times n = 0 \quad \text{on } \Gamma_c \]

where n is the unit outward normal to \(\partial \Omega \).

The impedance boundary conditions on the aperture of
transmitting open-ended waveguide \(j \) and receiving waveguide \(i = 1, \ldots, N, \, j \neq i \) are

\[
\begin{align*}
(\nabla \times E_j) \times n + i \beta n \times (E_j \times n) &= g_j & \text{on } \Gamma_j \\
(\nabla \times E_j) \times n + i \beta n \times (E_j \times n) &= 0 & \text{on } \Gamma_j, \, i \neq j
\end{align*}
\]

where \(\beta \) is the propagation constant of the TE\(_{10} \) fundamental mode of the waveguide. In equation (2) we impose an incident wave corresponding to the excitation of the fundamental mode \(E_0^j \) of the j-th waveguide with

\[
g_j = (\nabla \times E_0^j) \times n + i \beta n \times (E_0^j \times n)
\]

On the other hand, equation (3) corresponds to a first order Silver–Müller absorbing boundary condition, approximating a transparent boundary condition on the aperture of the receiving waveguide antenna \(i = 1, \ldots, N, \, i \neq j \). On the bottom of the chamber we impose a metallic boundary condition, whereas we impose an impedance boundary condition on the top of the chamber. As a result, the whole boundary value problem for each transmitting antenna \(t = 1, \ldots, N \) is to find \(E_j \) such that

\[
\begin{align*}
\nabla \times (\nabla \times E_j) - k^2 E_j &= 0 & \text{in } \Omega \\
E_j \times n &= 0 & \text{on } \Gamma_e \\
(\nabla \times E_j) \times n + i \beta n \times (E_j \times n) &= g_j & \text{on } \Gamma_j \\
(\nabla \times E_j) \times n + i \beta n \times (E_j \times n) &= 0 & \text{on } \Gamma_j, \, i \neq j
\end{align*}
\]

Now, let \(V = \{ v \in H(\text{curl}, \Omega), v \times n = 0 \text{ on } \Gamma_e \} \), where

\[
H(\text{curl}, \Omega) = \{ v \in L_2(\Omega)^3, \nabla \times v \in L_2(\Omega)^3 \}
\]

is the space of square integrable functions whose curl is also square integrable. For each transmitting antenna \(j = 1, \ldots, N \), the variational form of problem (5) is: find \(E_j \in V \) such that

\[
\begin{align*}
\int_{\Omega} \left[(\nabla \times E_j)(\nabla \times v) - k^2 E_j v \right] &\, \text{d}x + \int_{\Gamma_e} i \beta (E_j \times n)(v \times n) = \int_{\Gamma_j} g_j v, \quad \forall v \in V
\end{align*}
\]

IV. HIGH-ORDER EDGE FINITE ELEMENTS

For using a finite element discretization of the variational problem, we introduce a tetrahedral mesh \(\mathcal{T}_h \) of the domain \(\Omega \) and a finite dimensional subspace \(V_h \subset H(\text{curl}, \Omega) \). A simple conformal discretization for space \(H(\text{curl}, \Omega) \) is given by low order \(\text{Nédélec edge finite elements} \) of polynomial degree \(t = 1 \) [7]. In order to have a higher numerical accuracy with the same total number of unknowns, we consider a high order edge element discretization, choosing the high order extension of \(\text{Nédélec elements} \) presented in [8] and [9]. We implemented edge elements of degrees 2 and 3 in

FreeFem++, an open source domain specific language (DSL) specialized for solving boundary value problems by using variational discretizations (finite elements, discontinuous Galerkin, hybrid methods, ...) [6]. High order elements can be used by loading the plugin Element Mixte3d and declaring the finite element space \(\text{fespace} \) using the keywords \(\text{Edge13d}, \text{Edge23d} \), respectively (standard edge elements of degree 1 are already present in FreeFem++ and called \(\text{Edge03d} \)).

V. DOMAIN DECOMPOSITION PRECONDITIONING

The discretization of the problem presented in Section III using the high order edge finite elements described in Section IV produces a linear system

\[
Au = b_j
\]

for each transmitting antenna \(j \). Direct solvers are not suited for such large linear systems arising from complex three dimensional models because of their high memory cost. On the other hand, matrices resulting from high order discretizations are ill conditioned as shown numerically in [8] for similar problems, and preconditioning becomes necessary when using iterative solvers. Parallel solvers for EM problems can be based, for example, on parallel FFTs [20] or non-overlapping ([21] and references therein) or overlapping domain decomposition, which are considered in this paper. Domain decomposition preconditioners are naturally suited to parallel computing and make it possible to deal with smaller subproblems [13]. The domain decomposition preconditioner we employ is called \(\text{Optimized Restricted Additive Schwarz} \) (ORAS)

\[
M^{-1}_{\text{ORAS}} = \sum_{s=1}^{N} R^{-1}_s A_s^{-1} R_s
\]

where \(N_{\text{sub}} \) is the number of overlapping subdomains \(\Omega_s \) into which the domain \(\Omega \) is decomposed (Fig. 4). Here, the matrices \(A_s \) are the local matrices of the subproblems with impedance boundary conditions \((\nabla \times E) \times n + i \beta n \times (E \times n) \) as transmission conditions at the interfaces between subdomains. Please note OAS is still an overlapping Schwarz preconditioner, and only differs from ORAS by the absence of local partition of unity term \(D_s \). This preconditioner is an extension of the restricted additive Schwarz method proposed by Cai and Sarkis [15], but with more efficient transmission conditions between subdomains than Dirichlet conditions [16]. In order to describe the matrices \(R_s, \, D_s \), let \(N \) be an ordered set of the unknowns of the whole domain and let \(N = \bigcup_{s=1}^{N_{\text{sub}}} N_s \) be its decomposition into the (non disjoint) ordered subsets corresponding to the different (overlapping) subdomains \(\Omega_s \). The matrix \(R_s \) is the restriction matrix from \(\Omega \) to the subdomain \(\Omega_s \): it is a \(\#N_s \times \#N \) Boolean matrix and its \((i, j)\) entry is equal to 1 if the i-th unknown in \(N_s \) is the j-th one in \(N \). Notice that \(R_s^T \) is then the extension matrix from the subdomain \(\Omega_s \) to \(\Omega \). The matrix \(D_s \) is a \(\#N_s \times \#N_s \) diagonal
matrix that gives a discrete partition of unity, i.e. \(\sum_{s=1}^{N_{s}} R_{s}^{T} D_{s} R_{s} = I \); in particular the matrices \(D_{s} \) deal with the unknowns that belong to the overlap between subdomains. The preconditioner without the partition of unity matrices \(D_{s} \),
\[
M_{ORAS}^{-1} = \sum_{s=1}^{N_{s}} R_{s}^{T} D_{s}^{-1} R_{s}
\]
which is called Optimized Additive Schwarz (OAS), would be symmetric for symmetric problems, but in practice it gives a slower convergence with respect to \(M_{ORAS}^{-1} \) [10]. These domain decomposition preconditioners are implemented in the HPDDM library [12], an open source high-performance unified framework for domain decomposition methods. HPDDM can be interfaced with various programming languages and open source finite element libraries such as FreeFem++, which we use in the simulations.

![Fig. 4. Computational domain divided into 128 subdomains.](image)

VI. NUMERICAL RESULTS

A. Comparison with Experimental Measurements

The measured physical quantities are the \(S \) parameters of the scattering matrix, which are the complex reflection and transmission coefficients measured by the 160 receiving antennas when a signal is transmitted by one of the 160 transmitting antennas. A set of measurements then consists in the complex scattering matrix, which are the complex counterparts of these reflection and transmission coefficients, we use the following formula, which is appropriate in the case of open-ended waveguides
\[
S_{ij} = \frac{\int_{\Gamma} E_{j} E_{i}^{0}}{\int_{\Gamma} |E_{i}^{0}|^2}, \quad i \neq j
\]
(9)

where \(E_{j} \) is the solution of the problem (5) when the \(j \)-th waveguide antenna transmits the signal, and \(E_{i}^{0} \) is the \(\text{TE}_{10} \) fundamental mode of the \(i \)-th receiving waveguide (denotes the complex conjugate of \(E_{j} \)). The \(S_{ij} \) with \(i \neq j \) denote the transmission coefficients, and \(S_{ii} \) the reflection coefficients.

For a comparison of the computed coefficients \(S_{ij} \) with the measured ones, the imaging chamber is filled with a homogenous matching solution in order to reduce the return loss of the ceramic-loaded waveguide antennas and to match with the average brain tissues. The relative complex permittivity of the matching solution chosen for the experiments and numerical solution at frequency \(f = 1 \) GHz is \(\varepsilon_{\text{matching}} = 44 - i20 \). The relative permittivity inside the ceramic-loaded waveguides is \(\varepsilon_{\text{ceramics}} = 59 \), assuming a lossless ceramic material.

![Fig. 5. Normalized amplitude (top) and phase (bottom) between the computed and measured S-parameters.](image)
transmission coefficients computed from the simulation are in very good agreement with the measurements.

B. High-Order Element Efficiency

The goal of the following numerical experiments is to assess the efficiency of the high order finite elements described in Section IV compared to the classical lowest order edge elements in terms of accuracy and computing time, which are of great importance for such an application for brain imaging. For this test case, a non dissipative plastic-filled cylinder of diameter 6 cm and relative permittivity $\varepsilon_{r}^\text{cy} = 3$ is inserted in the imaging chamber with same background matching medium as defined in Section A. We consider the 32 antennas of the second ring as transmitting antennas at frequency $f = 1$ GHz, and all the 160 antennas are receiving.

![Fig. 6. Cross-Section of the chamber showing the magnitude of the real part of the total field E in the chamber with the plastic tube.](image)

We evaluate the error on the reflection and transmission coefficients S_{ij} with respect to the coefficients S_{ij}^ref computed from a reference solution. The error is calculated with the following formula

$$err = \sqrt{\frac{\sum_{ij} |S_{ij} - S_{ij}^\text{ref}|^2}{\sum_{ij} |S_{ij}^\text{ref}|^2}} \quad (10)$$

The reference solution is computed on a fine mesh of approximately 18 million tetrahedra using edge finite elements of degree $r = 2$, resulting in 114 million unknowns. The section in Fig. 6 shows the computational domain and the magnitude of the real part of the total field E over the cross-section when one antenna of the second ring from the top is transmitting. We compare the computing time and the relative error (10) for different numbers of unknowns corresponding to several mesh sizes, for approximation degrees $r = 1$ (15 pts/λ) and 2 (10 pts/λ) (Table I). We report the results on Fig. 7 and 8. All these simulations are carried out using 512 subdomains with one MPI process and two OpenMP threads per subdomain, for a total of 1024 cores on the Curie supercomputer (http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm).

![Fig. 7. Comparison between degrees $r=1$ and $r=2$ on empty, total and scattered fields (amplitude and phase).](image)

![Fig. 8. Computation time (seconds) and relative error on computed S_{ij} using elements of degree $r=1$ and $r=2$ for different mesh sizes and number of unknowns in millions.](image)

As we can see, the higher order approximation ($r = 2$) allows a given accuracy with much fewer unknowns and much less computation time than the lowest order approximation ($r=1$). For example, at a given accuracy err of $E \approx 0.1$, the finite element discretization of degree $r=1$ requires 21 million unknowns and a computing time of 130 seconds, while the high order finite element discretization ($r=2$) only needs 5 million unknowns, with a corresponding computing time of 62
It turns out we obtain the same accuracy with 10 points per wavelength with degree \(r=2 \) than with 20 points per wavelength with degree \(r=1 \). Moreover, note that greater accuracy could be achieved by using high-order geometric tetrahedral elements to reduce the geometric approximation error of the circular boundary of the chamber. However, we can deduce from Table I that the geometric approximation error is largely dominated by the finite element approximation error, as the error on the computed \(S_0 \) is significantly smaller using degree 2 edge elements compared to degree 1 edge elements, for a fixed number of degrees of freedom, even though meshes for degree 2 are coarser (leading to larger geometric approximation errors). We also report here additional information for a representative run, as it can be useful to the community. For the test case corresponding to 27 million unknowns using degree 2 edge elements, the average and maximum subdomain size is 124 300 and 162 410 degrees of freedom respectively. The total memory consumption for this run is approximately 2 Tbytes. In order to give an idea of the parallel performance of the algorithm, the problem was solved using 512 cores. The computing time using 512 cores (256 subdomains, 2 threads per subdomain) was 366 seconds compared to 236 seconds using 1024 cores (512 subdomains, 2 threads per subdomain), yielding a speedup of 1.55.

VII. INVERSE PROBLEM

A. Mathematical Formulation

The inverse problem that we consider consists in finding the unknown complex dielectric permittivity \(\varepsilon(x) \) in \(\Omega \), such that the solutions \(E_j(x) \), \(j = 1, \ldots, N \) of problem (4) lead to corresponding scattering parameters \(S \) (14) that coincide with the measured scattering parameters \(S_{\text{meas}} \) for \(i, j = 1, \ldots, N \).

Let \(\kappa = k^2 \) be the unknown complex parameter of the inverse problem, and let us denote by \(E_j(\kappa) \) the solution of the direct problem (5) with the complex dielectric permittivity \(\varepsilon \). The corresponding scattering parameters will be denoted by \(S_{ij}(\kappa) \) for \(i, j = 1, \ldots, N \).

The misfit of the parameter \(\kappa \) to the data can be defined with the following cost functional

\[
J(\kappa) = \frac{1}{2} \sum_{j=1}^{N} \sum_{i=1}^{N} \left[\left(S_{ij}(\kappa) - S_{ij}^{\text{meas}} \right) \right]^2 \]

\[
= \frac{1}{2} \sum_{j=1}^{N} \sum_{i=1}^{N} \left[\int_{\Gamma} E_j(\kappa) E_i^0 - S_{ij}^{\text{meas}} \right]^2 \]

(11)

In a classical way, solving the inverse problem consists in minimizing the functional \(J \) with respect to the parameter \(\kappa \). Computing the differential of \(J \) in a given arbitrary direction \(\delta \kappa \) yields

\[
DJ(\kappa, \delta \kappa) = \sum_{j=1}^{N} \sum_{i=1}^{N} \text{Re} \left[\left(S_{ij}(\kappa) - S_{ij}^{\text{meas}} \right) \int_{\Gamma} \frac{\delta E_j(\kappa) E_i^0}{E_j^0} \right] \]

(12)

for \(\delta \kappa \in \mathbb{C} \) and where \(\delta E_j(\kappa) \) is the solution of the following linearized problem

\[
\nabla \times \left(\nabla \times \delta E_j \right) - \kappa \delta E_j = \delta \kappa E_j \quad \text{in} \; \Omega \\
\delta E_j \times n = 0 \quad \text{on} \; \Gamma_e \\
\left(\nabla \times \delta E_j \right) \times n + i \beta n \times \left(\delta E_j \times n \right) = 0 \quad \text{on} \; \Gamma_i, i = 1, \ldots, N
\]

(13)

We now use the adjoint approach in order to simplify the expression of DJ. This will allow us to compute the gradient efficiently after discretization, with a number of computations independent of the size of the parameter space.

Introducing the solution \(F_j(\kappa) \) of the following adjoint problem

\[
\nabla \times \left(\nabla \times F_j \right) - \kappa F_j = 0 \quad \text{in} \; \Omega \\
F_j \times n = 0 \quad \text{on} \; \Gamma_e \\
\left(\nabla \times F_j \right) \times n + i \beta n \times F_j \times n = \left(\frac{S_{ij}(\kappa) - S_{ij}^{\text{meas}}}{\int_{\Gamma} E_j^0} \right) E_i^0 \quad \text{on} \; \Gamma_i, i = 1, \ldots, N
\]

(14)

we get after some integration by parts (not detailed here)

\[
\int_{\Omega} \delta \kappa E_j, F_j = \sum_{j=1}^{N} \left[\left(S_{ij}(\kappa) - S_{ij}^{\text{meas}} \right) \int_{\Gamma} \frac{\delta E_j}{E_j^0} \right] \int_{\Gamma} E_i^0 \]

(15)

Finally, the differential of \(J \) can be computed as

\[
DJ(\kappa, \delta \kappa) = \sum_{j=1}^{N} \text{Re} \left[\int_{\Omega} \frac{\delta \kappa E_j}{E_j^0} F_j \right]
\]

(16)

We can then compute the gradient to use in a gradient-based local optimization algorithm. The numerical results presented in Section B are obtained using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Note that every evaluation of \(J \) requires the solution of the state problem (5) while the computation of the gradient requires the solution of (5) as well as the solution of the adjoint problem (14).

Moreover, the state and adjoint problems use the same operator. Therefore, the computation of the gradient only needs the assembly of one matrix and its associated domain decomposition preconditioner.

Numerical results for the reconstruction of a hemorrhagic stroke from synthetic data are presented in the next section. The cost functional \(J \) considered in the numerical results is slightly different from (11), as we add a normalization term for each pair \((i,j) \) as well as a Tikhonov regularization term

\[
J(\kappa) = \frac{1}{2} \sum_{j=1}^{N} \sum_{i=1}^{N} \left[\frac{S_{ij}(\kappa)}{S_{ij}^{\text{empty}}} - \frac{S_{ij}^{\text{meas,empty}}}{S_{ij}^{\text{meas,empty}}} \right] + \frac{\alpha}{2} \int_{\Omega} \left| \nabla \kappa \right|^2
\]

(17)
where S_{ij}^{empty} (resp. $S_{ij}^{\text{meas,empty}}$) refers to the computed coefficients (resp. measured) with empty chamber, only filled with the homogeneous matching solution as described in the previous section, with no object. In this way, the contribution of each (i,j) pair in the cost functional is normalized and does not depend on the amplitude of the coefficient, which can vary greatly between (i,j) pairs as shown in Fig. 5. Moreover, normalizing both sides by the incident field S-parameters helps eliminate multiplicative systematic errors, such as phase shifts [22]. The Tikhonov regularization term aims at reducing the effects of noise in the data. For now, the regularization parameter α is chosen empirically so as to obtain a visually good compromise between reducing the effects of noise and keeping the reconstructed image pertinent. All calculations carried out in this section can be accommodated in a straightforward manner to the definition (17) of the cost functional. Finally, we can exhibit an additional level of parallelism by performing the reconstruction cross-section by cross-section. For the actual imaging system, one cross-section corresponds to one of the five rings of 32 antennas, and we can define and solve an inverse problem independently for each of the five rings in parallel. We impose absorbing boundary conditions on the artificial boundaries of the truncated computational domain. Thus, we are able to define five independent smaller inverse problems by reducing the computational complexity in terms of degrees of freedom and the number of relevant transmitters that must be simulated for each problem. Each of the five inverse problems takes into account 32 transmitters and (at most) 96 receivers. The reconstructed images obtained in this way are essentially identical to the images obtained by solving the full inverse problem, but performed faster.

VIII. NUMERICAL RESULTS

Results in this paper were obtained on Curie supercomputer (http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm), a system composed of 5,040 nodes composed of two eight-core Intel Sandy Bridge processors clocked at 2.7 GHz. The interconnect is an InfiniBand QDR full fat tree and the MPI implementation used was BullXMPI version 1.2.8.4. Intel compilers and Math Kernel Library in their version 16.0.2.181 were used for all binaries and shared libraries, and as the linear algebra backend for dense computations. One-level preconditioners such as (8) assembled by HPDDM require the use of a sparse direct solver. HPDDM is interfaced with various direct solvers, such as PARDISO [18] from Intel MKL or MUMPS [19]. All numerical experiments reported in this paper were performed with MUMPS. The GMRES algorithm is stopped once the unpreconditioned relative residual is lower than 10^{-8}. The linear systems with multiple right-hand sides (one per transmitter) are solved using a pseudo-block method, where multiple operations are fused in order to achieve higher arithmetic intensity. In the inverse problem, during successive iterations of the minimization algorithm, the GMRES solution for each transmitter is initialized with the solution for this transmitter at the previous iteration. Moreover, block methods and Krylov subspace recycling techniques have been recently implemented in HPDDM. They are not used in the results presented in this paper, but incorporating these techniques in the inversion algorithm in order to speed up computations is an ongoing work. In this section, we first develop a very accurate virtual model of a human head. Second, we solve the inverse problem with corrupted synthetic data generated using the virtual brain model simulating a hemorrhagic stroke.

1) Virtual Head Model

We want to assess the feasibility of the microwave imaging technique presented in this paper for stroke detection and monitoring through a numerical example in a realistic configuration. We use synthetic data corresponding to an accurate numerical model of a human head with a simulated hemorrhagic stroke as input for the inverse problem. The numerical model of the virtual head comes from CT and MRI scans and consists of a complex permittivity map of $362 \times 434 \times 362$ data points with a spatial resolution of 500 μm. In the simulation, the head is immersed in the imaging chamber as shown in Fig. 9.

![Fig. 9. Imaginary part of the relative complex permittivity of the virtual head model immersed in the imaging chamber with a simulated ellipsoid-shaped hemorrhagic stroke.](image)

2) Reconstructions of a Hemorrhagic Stroke

In order to simulate the evolution of a hemorrhagic stroke, we use a synthetic ellipsoid-shaped stroke whose size (principal axes) increases over time, from $3.9 \, \text{cm} \times 2.3 \, \text{cm} \times 2.3 \, \text{cm}$ (small stroke) to $7.7 \, \text{cm} \times 4.6 \, \text{cm} \times 4.6 \, \text{cm}$ (large stroke). For this test case, the relative complex permittivity of the ellipsoid is assumed to be inhomogeneous where the relative complex permittivity at each quadrature point of the mesh is taken as the mean value between the original healthy brain permittivity values (baseline values) and the permittivity of blood ($\varepsilon_r^{\text{blood}} = 68 - i44$) at $f = 1 \, \text{GHz}$. The imaging chamber is filled with the matching solution $\varepsilon_r^{\text{matching}} = 44 - i20$. In a real experiment, a special membrane fitting the shape of the head is used in order to isolate the head from the matching medium (Fig. 3). We do not take this membrane into account in this synthetic test case. The synthetic data are obtained by solving the direct problem using a mesh composed of 17.6 million tetrahedra (corresponding to approximately 20 points per wavelength).
and consist in the computed transmission and reflection coefficients S_y^i. We subsequently add noise to the real and imaginary parts of the coefficients S_y^i using a kind of multiplicative White Gaussian Noise. We apply independently Gaussian noise to the real and imaginary parts of each S_y^i coefficient as

$$S_y^{corrupted} = S_y^i (1 + p (G_y^{Re} + jG_y^{Im}))$$ \ (18)$$

where G_y^{Re} and G_y^{Im} are independent and identically distributed random variables drawn from the standard normal distribution $\mathcal{N}(0,1)$. In this experiment, we corrupt the data with 10% noise, i.e. $p=0.1$.

The corrupted data $S_y^{corrupted}$ are then used as input for the inverse problem. Furthermore, we do not assume any priori knowledge on the input data, and we set the initial guess for the inverse problem as the homogeneous matching solution everywhere inside the chamber. We use a piecewise linear approximation of the unknown parameter κ, defined on the same mesh used to solve the state and adjoint problems. For the purpose of parallel computations, the partitioning introduced by the domain decomposition method is also used to compute and store locally in each subdomain every entity involved in the inverse problem, such as the parameter κ and the gradient.

In the following, we only show reconstructed images corresponding to a cross-section where the stroke is located due to space limitations, although we are able to reconstruct the permittivity of the head in the whole chamber.

Fig. 10. Transverse cross-section of the virtual brain during the evolution of a simulated hemorrhagic stroke: real part of the relative complex permittivity. Left: virtual brain model. Right: reconstructed permittivity. From top to bottom: healthy brain, brain with small stroke, brain with large stroke.

The evolution of the stroke can be visually monitored from the real and imaginary parts of the reconstructed complex permittivity. Nevertheless, the threshold to firmly conclude must only be determined from clinical studies on a large number of patients. One important point is to discriminate a hemorrhagic from an ischemic stroke. For this study case, the reconstructed values show an increase of the complex permittivity allowing the assumption of a hemorrhagic stroke versus an ischemic one.

Fig. 11. Transverse cross-section of the virtual brain during the evolution of a simulated hemorrhagic stroke: imaginary part of the relative permittivity. Left: virtual brain model. Right: reconstructed permittivity. From top to bottom: healthy brain, brain with small stroke, brain with large stroke.

Figs. 10 and 11 show the real and imaginary parts of the reconstructed relative permittivity, respectively, for the three evolution steps of the hemorrhagic stroke, from a healthy brain, a brain with a small and large stroke. Increasing the size of the ellipsoid simulates the evolution of the stroke. Each reconstruction corresponds to the solution of an inverse problem in the truncated domain containing only the first two rings of antennas from the top. The transmitting antennas are on the first ring and receiving antennas on first and second rings. Therefore the scattering matrix contains only $64 \times 32 \ S_y^i$.

8
coefficients. Each reconstruction starts from an initial guess consisting of the homogeneous matching solution. The solution is obtained at about 30 iteration steps when reaching the convergence criterion of 10^{-2} for the value of the cost functional using the L-BFGS algorithm. Subsequent iterations do not decrease the cost functional nor improve the reconstructed image, due to the level of noise and Tikhonov regularization.

The distribution of the relative error on the real and imaginary parts of the reconstructed complex permittivity for the small stroke case is shown in Fig. 12. We compute the relative error using (19) for each pixel (n,m) of the reconstructed relative complex permittivity. This error can be positive or negative.

$$err_{relative}(m,n) = \frac{\varepsilon_r^{reconstructed}(m,n) - \varepsilon_r^{exact}(m,n)}{\varepsilon_r^{exact}(m,n)}$$ \hspace{1cm} (19)

We note that lowest errors are located outside the brain and in the stroke. This can be expected as the inversion algorithm performs better for homogeneous media such as the matching liquid but also for the stroke, as the complex permittivity value of the stroke is calculated as the mean value between the healthy tissues and the blood. This process tends to average the values, which is more favorable for the inversion algorithm. But, even if the brain is highly heterogeneous, the stroke can be detected and monitored with the proposed algorithm.

![Fig. 12: Small stroke: Distribution of the relative error on the real (left) and imaginary (right) parts of the reconstructed complex permittivity. From top to bottom: healthy brain, brain with small stroke, brain with large stroke.](image)

<table>
<thead>
<tr>
<th>Relative Error</th>
<th>Real part</th>
<th>Imaginary Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy Brain</td>
<td>8.95%</td>
<td>20.74%</td>
</tr>
<tr>
<td>With Small Stroke</td>
<td>8.92%</td>
<td>20.72%</td>
</tr>
<tr>
<td>With Large Stroke</td>
<td>8.53%</td>
<td>18.92%</td>
</tr>
</tbody>
</table>

Table III. Average error on the reconstructed values (real and imaginary parts of the complex permittivity).

We now calculate the L^2 norm of the error of the reconstructed images in such manner as (10). Results are shown in Table III. The L^2 norm is interesting as it gives a global quantitative criterion for estimating the performance of the reconstructed values. The L^2 norm confirms the results shown in Fig.12 for the small stroke. The error on the real part of the complex relative permittivity is lower than on the imaginary part. It is of the order of 10% for the real part whereas it is about 20% for the imaginary part.

It turns out that reconstructed images differ very slightly when using different discretization orders and mesh sizes in the inverse problem. In our case, elements of degree $r=1$ with 10 pts/λ are sufficient for detecting the stroke. It is generally assumed that the most accurate forward model provides the best result combined with a given inverse algorithm. In this paper, we have shown it is not straightforward in this particular case, with such a regularization technique. Reconstructed images for each test case shown in Figs. 10 and 11 are obtained with a total computing time of less than 2 minutes (94 seconds for the large stroke case) using 4096 cores of Curie.

![Fig.13: Strong scaling experiment: total time for the large stroke case for solving the inverse problem versus number of MPI processes.](image)

Fig.13 shows the results of a strong scaling experiment for the large stroke case, consisting in solving the inverse problem corresponding to the top ring with an increasing number of MPI processes. We report the total computing time needed to obtain the reconstructed image. These preliminary results are very encouraging as we are already able to achieve a satisfactory reconstruction time in the perspective of using such an imaging technique for monitoring. This allows clinicians to obtain almost instantaneous images 24/7 or on demand. Although the reconstructed images do not feature the
complex heterogeneities of the brain, which is in accordance with what we expect from microwave imaging methods, they allow the characterization of the stroke and its monitoring.

IX. CONCLUSION

The idea behind this work comes from the paradigm to develop a (portable/transportable) microwave imaging system whose raw data are wirelessly transferred to a HPC. The HPC machine will then compute the 3D image of the patient’s brain. Once reconstructed, the image is quickly transmitted from the computing center to the hospital for stroke detection (including ischemic/hemorrhagic discrimination) and monitoring during treatment. We have developed a tool that reconstructs a tomographic microwave image of the brain in 94 seconds on 4096 computing cores. This computational time corresponds to clinician acceptance for rapid diagnosis or medical monitoring at the hospital. These images were obtained from corrupted synthetic data from a very accurate model of the complex permittivity of the brain. To our knowledge, this is the first time that such a realistic study (operational acquisition device, highly accurate three-dimensional synthetic data, 10% noise) shows the feasibility of microwave imaging. This study has been possible by the use of massively parallel computers and facilitated by HPDDM and FreeFem++ tools that we developed. The next step will be the validation of these results on clinical data.

ACKNOWLEDGMENT

This work was granted access to the HPC resources of TGCC@CEA under the allocations 2016-067519 and 2016-067730 made by GENCI. Authors would like to thank the French National Research Agency (ANR) for their support.

REFERENCES