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Abstract—Deeper decarbonization of the transport sector re-
quires building a wide coverage electric vehicle charging network
that can meet driver’s mobility patterns and refueling habits in a
seamless manner. Currently, major market players mainly deploy
chargers at existing public parking spaces at hotels, shopping
centers, etc. On the other hand, gas/petroleum retail business is
a century-old industry and “optimized” to serve the refueling
needs of the drivers and they come to the forefront as “good”
locations to site chargers. To that end, this paper addresses the
fast charging station location problem in an urban environment.
The optimization problem is formulated as a maximum coverage
location problem (MCLP) and existing locations of petrol/fuel
stations are considered as candidate locations. Using QGIS
software, a geographic information system (GIS) based platform
is developed and integrated with a linear-programming relaxation
based MCLP algorithm developed in Python. The city of Raleigh,
North Carolina with actual geo-spatial data is chosen as a case
study. Both census population and highway traffic data are
considered as demand metrics to mimic drivers without dedicated
chargers and vehicles on highways who need a recharge. A
number of evaluations are performed to explore the trade-off
between the number of locations and the physical coverage
space. Furthermore, comparative analysis show that locating fast
chargers in existing petrol stations improve demand coverage by
more than 50% when compared to existing fast charging station
locations.

Index Terms—electric vehicles, petrol stations, facility location,
fast chargers, maximum coverage problem

I. INTRODUCTION

Over the next decade, the number of new electric vehi-
cle sales is expected to grow exponentially and substantial
investments are needed to build charging infrastructures to
enable longer driving distances and provide fast charging
service that is comparable with internal combustion engine
counterparts [1], [2]. In parallel, the competing downstream
oil sector has been in a gradual downsizing and the number
of gas/petroleum stations has reduced due to improved fuel
efficiencies of combustion engine vehicles and interest for
alternative fuel vehicles such as EVs [3]. For instance, the
US had 114 thousand petrol stations in 2012, down from 121
thousand in 2002 and, similarly, the number of petrol stations
in the UK has declined by one third during the same period [4].
Moreover, petrol station business has been shaped by long-held
norms and practices of drivers. Therefore, a natural question

arises whether existing petrol stations can be transformed into
fast EV charging locations. In this paper, we propose a GIS-
based facility location problem for EV fast charging stations,
examine the existing locations for petrol stations in terms
of demand coverage, and compare the coverage with that of
already deployed fast charging networks.

Facility location models are optimisation problems that are
used to decide on the set of locations to serve customer
demand in a network [5]. The overall aim is to optimise
one or more quantifiable objectives related to serving cus-
tomer demand, infrastructure cost, or achieving environmen-
tal targets [6]. Charging station infrastructure planning is
capital-intensive process that involves one-time decisions and
have long-lasting ramifications. In literature, charging station
problems are divided into two groups. The first group of
studies investigate the optimal locations in a highway network
[7]–[9] [10]–[12], while the second group aims to locate
stations in an urban environment. For the case of highways,
chargers can be located anywhere in the network, hence, these
approaches are referred as continuous network models [5]. The
facility location problem is solved by solving a flow-capturing
refueling problem and the locations of the stations depend on
the traffic volume of each origin-destination pair and the all
electric range of vehicles.

To locate stations in an urban environment, discrete network
models are adopted as the stations can only be located at dis-
crete locations such as existing parking lots or service stations.
There are two types of approaches to find the optimal locations
of charging facilities. The first one is using classical facility
location techniques such as set-covering problems in which the
overall aim is to minimise the number of chargers needed in
a way that all customers can reach a station within a certain
driving distance or time. Set covering problems are further
divided into three groups as maximum coverage, p-center and
p-median problems. In maximum coverage problem, the goal
is to maximise the demand coverage for a given number of
charging stations. Whereas in p-center problem, the goal is
to minimise the maximum driving distance with P stations.
Similarly, in p-median problem median driving range is used
as the statistical measure [6], [13]. The second approach
is geo-spatial analysis-based multi-criteria decision making
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(MCDM) methods and two recent studies are presented in
[14] and [15]. In MCDM approach, each candidate location is
evaluated based on different criterion such as cost of the land,
availability of parking lots, proximity to green areas, slope of
the location. Then a score is assigned to each subcategory and
location decisions are made based on ranking the cumulative
score of each candidate location.

According to a recent study [16], charging station avail-
ability , range anxiety, and refueling duration are three of the
major roadblocks for faster EV adoption. Moreover, conve-
nient access to charging facilities has a direct impact on the
EV penetration levels. This is particularly because gasoline is
considered as a convenience purchase and drivers do not prefer
to plan ahead for to find recharging services [13]. Therefore,
fast charging stations act as “emergency service” facilities
and it is critical to consider behavioral aspects of consumers
when locating charging stations. Since the fuel/petroleum retail
business is mature and optimised to serve light-duty vehicles,
they naturally become good candidates for locating fast EV
chargers. In order to address aforementioned issues, we have
carried out the following contributions:
• We formulate fast-charging station problem as a maxi-

mum coverage facility location problem and identify ex-
isting fuel/petroleum stations as the candidate locations.
We consider both housing and actual highway traffic data
as demand inputs to mimic EV charging demand that
could stem from drivers living at multi-dwelling units
and without access to night-time charging and pass-by
drivers who need to extend their driving range.

• Using QGIS software [17], we develop a GIS-based
platform and work with actual maps, candidate station
locations, and demand points. We develop maximal cov-
erage algorithm in Python and integrate it with QGIS
platform.

• We consider Raleigh, North Carolina as a case study to
mimic a mid-side town with nearly half a million pop-
ulation. Station location problem is solved for gradually
increasing coverage ranges and compared with existing
fast charger locations. Our results indicate that existing
petrol stations improve demand coverage by 50% when
compared to already deployed fast chargers.

II. PROBLEM FORMULATION

A. Overview

In this paper, we formulate the facility location problem
as a maximal covering location problem (MCLP) [18] which
computes the minimal number and locations of charging
stations and ensures that no demand point will be farther
than the maximal service distance (e.g. S km) from a station.
The rationale behind choosing MCLP over other methods
discussed in the previous section is that such facilities will
act as an “emergency” service location to beat range anxiety.
It is noteworthy that a given geographical region is divided
into sub-regions (e.g., zones determined by city councils etc.)
and the demand is assumed to occur in centroid of the demand

zone. Therefore, if the centroid of a zone is within S km away
from a charging station that zone is assumed to be covered.
Moreover, this approach only considers “coverage” problem
and only one charger is sited in a chosen location. “Capacity”
problem which addresses the number of physical chargers to
be deployed in one station.

B. Problem Formulation

The MCLP problem is composed of linear and integer
values and formulated as follows:

maximise z =
∑
i∈I

aiyi (1)

s.t.
∑
j∈Ni

xi ≥ yi ∀i ∈ I (2)∑
j∈J

xj = P (3)

xj = (0, 1); ∀j ∈ J (4)
yi = (0, 1);∀i ∈ I (5)

where I is the set of demand nodes; J is the set of facility
sites; S denotes the coverage distance measured in km and
demand points are considered to be uncovered if the distance
beyond S; dij is the shortest distance from node i to node j; ai
is the population to be served at demand node i and assumed
to be at the centre of the node; and P denotes the number
of charging stations to be located. Moreover, xj is a binary
variable and is set to 1 if a facility is allocated to site j and is
set to 0 otherwise. Finally, Ni is the set of locations eligible to
cover to demand point i. Objective function given in (1) aims
to maximise the number of charging demand served within
the desired driving distance by achieving maximal coverage.
Constraint given in (2) shows that yi equals to 1 when one
or more stations are established at locations in the set Ni (i.e.
one or more stations are located within S km of demand point
i). The second constraint given in (3) ensures that exactly P
number of stations are allocated. Constraints given in (4) and
(5) respectively reflect the binary nature of the station siting
decisions and demand node coverage.

C. Solution Method

The MCLP problem is an NP-hard problem and can be
solved effectively using heuristic methods as given in [19]
or linear programming (LP) relaxation. Some of the heuristic
solutions methods include greedy-add heuristic, greedy-add-
with-substitution heuristic, genetic algorithms, and heuristic
concentration [19]. LP relaxation results in a nearly optimal
result in exchange for computational efficiency. In this paper,
Python’s PuLP with GLPK package (an LP modeler written
in Python) is used to solve the optimisation problem and
details about its implementation can be found in [20]. In LP
relaxation approach, binary decision variables (e.g., xj and yi)
are transformed into continuous variables between 0 and 1.
This technique transforms the NP-hard optimization problem
into a one that is solvable in polynomial time.



Fig. 1. Raleigh map with census boundaries and Point IDs.

III. CASE STUDY

A. Study Setup

As a case study, we consider the city of Raleigh, NC by
considering the following aspects. Raleigh is one of the fastest
growing cities in the United States, its population is nearly half
a million, covers a land area of 147.6 square miles, and 78%
of the population drive a car alone to work [21]. Furthermore,
41% of the population lives in multi-unit housing possibly with
limited access to a dedicated charger when EVs become a main
mode of transport. The state of North Carolina has introduced
plans to push more EVs into the mainstream acceptance [22].
Finally, the city council provides public datasets on traffic,
population, and GIS maps which are essential to carry out
this study [23].

B. System Inputs

The city of Raleigh is located in Wake county and the
official county website hosts a list of public datasets that are
related to locating charging stations. Some datasets are census-
block boundaries of Raleigh, census-data for North Carolina,
and the yearly averaged traffic data for North Carolina. It is
assumed that the demand points (denoted by set I in constraint
(2)) are related to population data and/or traffic data. Hence,
the coverage problem aims to locate charging stations to
regions with high demand. We use these datasets to get data
for block-wise population and traffic. A view of the GIS map
with block boundaries is presented in Fig. 1.

Moreover, Fig. 2 shows the highway network along with
the centroids of each census blocks. Each bounded demand
polygon contains attributes for the population of the specific
census block. The demand points are calculated as centroids
of the bounded demand polygons. We use a spatial join to

Fig. 2. Demand points and traffic highways in Raleigh, North Carolina

TABLE I
TOP 5 DEMAND POINTS AS PER POPULATION AND TRAFFIC. POINT IDS

ARE SHOWN IN FIG. 1.

Point-ID Population Attribute Point-ID Traffic Attribute

22 8745 27 97000
76 8334 64 68750
134 6970 90 51800
248 6614 87 50786
21 6134 226 49900

add attributes to the centroids. Note that in GIS operations,
a spatial join appends data from one layer’s attribute table
to another. The traffic data available via the traffic layer is
averaged for a demand polygon and added as an attribute to
the centroid that contains the highway road. In Table I, a brief
description of the attributes available to measure cost for top
five demand centroids is presented.

After processing of demand data from Wake county [23],
Google Maps is used [24] to obtain the locations of existing
fuel stations and fast EV charging stations, and convert the
parsed locations to the correct projection for usability in the
mapping software. Next, the underlying layer is modified to
convert the locations to a polygon type and a coverage radius
is added for each facility.

In Fig. 3, the locations of 40 fuel-stations as fetched
from Google maps are depicted. After candidate facilities
and demand data are imported the modified spatial layers
are fed into MCLP algorithm. A Python API for QGIS is
used to calculate the distance between regions and to create
a matrix of distances for consumption in the algorithm. It
is noteworthy that Euclidean distance metric is employed
throughout the calculations. As discussed earlier, the MCLP



Fig. 3. Optimal Locations of charging stations with a 5 km diameter.

Fig. 4. Methodology for obtaining optimal facility locations.

algorithm takes the number of charging stations, the demand
layer, and the facilities layer as inputs. The algorithm locates
stations to maximize the demand coverage. The metric that
the algorithm uses as “distance” can be modified to include
traffic or population. In Fig. 4 a high-level overview of the
process to locate charging stations is presented.

C. Results

Maximal coverage location problem is solved for a number
of case studies to explore the relationship between different
system parameters such as demand sources (e.g. population
versus traffic), station diameter, the number of stations, and
comparison with existing charging station locations. As a first
evaluation, MCLP is solved to find the optimal locations of
the charging stations from a set of existing fuel/petrol stations
to satisfy a 5 km diameter coverage. In Fig. 3, locations of
existing fuel/petrol stations are marked with a black circle and
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Fig. 5. Optimal facility location using census and road traffic data using
existing charging stations and fuel stations as candidate locations.

TABLE II
COMPARISON OF RESULTS BY PERCENTAGE OF COVERED DEMAND.

Candidate Location Diameter
Max. Possible

Coverage

Fuel/Petrol Station 3 km 46%
Existing Charging Station 17.3%
Fuel/Petrol Station 5 km 75.4%
Existing Charging Station 32.2%
Fuel/Petrol Station 7 km 92.17%
Existing Charging Station 47.7%
Fuel/Petrol Station 10 km 95.3%
Existing Charging Station 64.2%

optimal locations are marked with a star sign. A more detailed
analysis is presented in Fig. 5. Proposed algorithm is evaluated
for four coverage diameters (3 km, 5 km, 7 km, and 10 km)
and both census population and road traffic population are
considered as demand metric. The location analysis further
compared existing fuel and charging stations locations. For
the presented urban setting, it is easy to see that locations
of the fuel/petrol stations provide a good coverage both for
highway traffic demand and population demand. For instance,
for the case of 10 km diameter, more than 90% of the demand
can be served with 7 charging stations when census population
is taken as the demand metric, while 90%+ coverage can be
achieved with 6 stations when highway traffic is considered
as the demand input.



Fig. 5 further depicts optimal coverage results when existing
charging station locations are considered. Note that the exist-
ing fast charging station locations are also embedded from
Google Maps and contain various fast chargers (50+ kW)
such as CHAdeMO, EVGo, and Tesla chargers. Since existing
chargers are mostly deployed in locations like hotels, shopping
malls, and parking spaces, their coverage is considerably
lower than petrol stations. Even with 10 km diameter case,
maximum coverage barely reaches to 75%. On the other hand,
significantly higher coverage can be achieved with less amount
of infrastructure investments.

Main findings are summarized in Table II. Since there are
13 fast charging stations in the region, two candidate locations
are compared based on the maximal possible coverage that can
be achieved with up to 13 locations. It can be seen that for
all coverage ranges, existing fuel/petrol stations provide sig-
nificantly higher coverage than existing fast charger locations.
For a practical diameter target of 7 km, the demand coverage
can be nearly doubled if fast chargers are located at existing
fuel/petrol stations.

IV. CONCLUSION

In this paper, optimal location of fast EV charging sta-
tions problem was considered. The optimization problem was
modeled with a maximum coverage location problem. Unlike
existing literature, the location of fuel/petrol stations are con-
sidered as candidate sites due to the long-standing capability
of fuel/petrol retail business to provide good coverage for light
duty vehicle demand. A GIS-based framework was developed
to solve the optimization problem using both census popula-
tion and highway traffic demand data. Actual geo-spatial maps
were used and a number of case studies were performed for
the city of Raleigh, NC. The results showed that the locations
of the existing fuel/petrol stations provide significantly higher
coverage than already deployed fast chargers. Such practical
results are critical in this early stage of deploying charging
infrastructure of the net-zero future.

As a future work, we will investigate the location analysis
in a larger metropolitan city and a small one to explore
whether the fast charging station coverage can be improved by
considering fuel/petrol stations or not. Moreover, optimization
problem will be expanded to calculate the optimal number
of chargers needed at each location to provide a reasonable
quality of service which is often measured by system waiting
times or blocking performance.
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