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ABSTRACT 

The existence of ice and its interaction with structure greatly threaten the navigation of the icebreaker. Due to the 

damage characteristics of ice, the traditional numerical ways based on mesh method are challenging to solve ice-

structure interaction. The nonlocal particle methods have increasingly gained popularity as an essential tool for 

calculating large deformation problems. In the present work, a meshfree particle-based computational model is 

developed to investigate the icebreaking process and dynamic icebreaking resistance. The model employs ordinary 

state-based Peridynamics theory to establish the constitutive relation for ice which is modelled as an isotropic 

homogeneous elastic material. Furthermore, a continuous contact detection algorithm is proposed, which can be 

applied to detect the contact process between irregular structures and particles, to study the process of ice-ship 

interaction. Two dimensional (2D) three-points bending of ice beam and 3D ice sphere impact are studied 

numerically to validate the method specifically in modelling ice failure. Then, the investigation on the continuous-

mode icebreaking process is carried out. The comparison of the present numerical results with existing experimental 

data demonstrated the validity and accuracy of the present numerical model for analyzing the icebreaking process 

and predicting the icebreaking resistance. 
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Nomenclature 

shipV  Speed of icebreaker   Scaling factor 

WLL  Length waterline of icebreaker           B  Width waterline of icebreaker 

WLB  Beam of the waterline of icebreaker xF  Force in the direction of the x-axis 

yF  Force in the direction of the y-axis           zF  Force in the direction of the z-axis           

D  Draft of icebreaker                     Bow waterline angle of icebreaker 

  Bow stem angle of icebreaker              Bow flare angle of icebreaker    

  Normal angle                         f  Flexural strength 

u  Displacement vector of the material point x  x  Position of a material point              

u  Displacement vector of the material point x  x  Position of family point of  x             

t  Time t  Time step 

  Mass density                          T  Force state 

ξ  Relative position                      η  Relative displacement 

xH  Family   Internal length (horizon) 

s  Bond stretch                          0s  Critical stretch 

( , )t x  Local damage                         0G  Critical energy release rate 

K  Bulk modulus                         v  Velocity vector 

( , , )t x  History-dependent scalar-valued function   pV  Volume of the material point 

IK  Fracture toughness                     F  Force 

E  Young’s modulus                      v  Poisson’s ratio 

x  Particle spacing value                  kP  Control point of the panel 

  Shear modulus   
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1 Introduction 

With the increase of arctic activities, such as resources exploitation, investigation work, and transportation, 

icebreaker plays a pivotal role in ensuring safe navigation and opening channels in ice navigation. Ice loads are 

regarded as the dominant control force when icebreaker sailing in the common ice condition, level ice, especially 

in the bow and shoulder area. Ice load will not only damage the structure of the ship but also reduce the navigation 

performance of the ship. A reliable way to predict the icebreaking resistance accurately of an icebreaker is paramount 

for the design and safe operation of ice-class ships. However, the engineering performance varied with the 

environment, and the complex failure mode of ice add challenges to analyze the ice-ship interaction. 

The ice-ship interaction process and the ice resistance have been studied using a variety of methods, including 

experimental measurements, analytical approach, and numerical simulation. Early research on icebreaking 

resistance was mainly carried out by full-scale measurement (e.g. (Lee et al., 2014; Majid and Menon, 1983; Riska 

et al., 2001; Sodhi et al., 2001; Williams and Spencer, 1992),) and model-scale test (Derradji-Aouat and van Thiel, 

2004; Huang et al., 2018; Huang et al., 2016; Molyneux and Kim, 2007; Shi, 2002). Although the experimental 

study is the most direct and reliable method to examine the icebreaking ability of icebreakers and observe the ice-

ship interaction process (especially the model test), it is often time-consuming and requires considerable manpower, 

materials, equipment and consequently leads to substantial costs. In addition, it can be difficult to provide sufficient 

information about the mechanical contact process through experiments. For the ice model test, the scale effect also 

needs to be further explored and studied (Guo et al., 2016). The approaches for predicting ice resistance in level ice 

include empirical, semi-empirical, theoretical models, and mostly the combination of the three methods (Liu, 2009). 

The development is mostly based on three kinds of formulas, i.e., the Lindqvist formula (Lindqvist, 1989) developed 

based on full-scale tests, Keinonen formulas (Keinonen, 1996) based on a case study of icebreaking vessels, and 

Riska formulas (Riska et al., 1997). More details of ship hull, ice mechanism, and theoretical analysis were 
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considered in the study, and this was partly reviewed in detail by researchers (Erceg and Ehlersa, 2017; Kämäräinen, 

1993; Li et al., 2018b; Liu et al., 2006). 

More recently, Myland and Ehlers (2016) modified the Lindqvist formula by taking two more shape parameters 

of the ship into account. Jeong et al. (2017) proposed a semi-empirical formula to calculate icebreaker’s resistance 

in level ice, which is a combination of the Lindqvist formula and physical analysis of ice failure process. Also, based 

on the Lindqvist method, Myland et al. (2019) suggested a semi-empirical model for prediction, which embedded a 

particle swarm optimization algorithm. This model was applied to study the influence of different encountering 

conditions on total resistance of the icebreaker. In those models, reasonable simplifications were made, and the 

empirical coefficients were derived by data fitting from a large number of experiments, including model tests and 

field tests. Generally speaking, the useful information obtained from the experiments is extremely limited. As a 

result, these models can only be used to calculate some conventional and straightforward cases with few empirical 

constants. It is noted that the results calculated based on those formulations vary substantially with the ship size 

(Erceg and Ehlersa, 2017), which in turn limits their application. 

There are some potential numerical methods proposed to investigate the icebreaker’s performance in the ice 

region, including ship motion, ice loads and icebreaking resistance. Combination of the numerical approach with 

semi-empirical sub-models is one of the common ways. One such method for the ice-load model was firstly 

developed by Wang (2001), in which contains two vital technical models. One is that a contact algorithm for ice-

ship is achieved by the geometric grid method (GM). Another is that the mechanical ice failure process is physically 

calculated at each contacting step. This model was extended and improved with consideration of a more complex 

ice-ship contact process and ship motion degrees (Li et al., 2019; Lubbad and Loset, 2011; Su, 2011; Tan, 2014; 

Zhou et al., 2016). Another model was established by Sawamura et al. (2009), in which the level ice was simulated 

by a circle contact detection technique. The model was further developed by scholars (Sawamura, 2018; Sawamura 
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et al., 2015; Sawamura et al., 2017). However, not all of the geometries of the ship hull were investigated by these 

methods. The other numerical methods modelling the icebreaking processes were either by analytical calculation 

(Zhou et al., 2018) or by numerical tools, such as Finite Element Method (FEM) (Wang et al., 2014), Discrete 

Element Method (DEM) (Lau, 2006) and combined Computational Fluid Dynamics (CFD) and FEM (Valanto, 

2001). The ice loads calculation in those studies is based on the analytical prediction of ice failure without showing 

the ice failure mode. Therefore, the development of meshfree methods on ice fracture mechanics and ice-structure 

interaction has become a newly popular research appraoch, such as Smoothed Particle Hydrodynamics (SPH). Das 

(2017) simulated ice behaviour in four-points bending by explicit solver LS-DYNA, and this work proves that the 

SPH method has potential application value in the field of ice damage research. Based on the SPH equation, Zhang 

et al. (2017) used Drucker-Prager yield surface to model the elastoplastic deformation of ice, and cohesion softening 

law was embedded to solve the fracture process. Then, a correct SPH method was developed to model structure-ice 

interaction (Zhang et al., 2019). It can be seen that the SPH method for ice simulation is still in its initial stage of 

development. In particular, it requires external crack growth criteria to simulate damage (Madenci and Oterkus, 

2014; Zhang et al., 2019). 

The meshfree method offers several advantages over traditional grid-based approaches (Das et al., 2014), 

especially in its ability to solve fracture and damage issues in large deformation of structures. Peridynamics (PD), 

as a nonlocal meshfree method, was initially introduced by Silling (2000). It has strong applicability in engineering 

problems, including large deformation, damage, fracture, impact, penetration, and instability of both homogeneous 

and inhomogeneous materials and structures (Madenci and Oterkus, 2014). Moreover, PD can also be applied to 

subjects other than fracture mechanics (Javili et al., 2019). Many updated mathematical models based on PD theory 

have been developed over the years: dual-horizon PD was proposed to solve the issue of spurious wave reflections 

when variable horizons are adopted (Ren et al., 2017); Dual-support SPH was developed in solid within the 
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framework of variational principle (Ren et al., 2019); the PD differential operator provided a differential form for 

numerical analysis (Gao and Oterkus, 2020); as well as the combination of PD and FEM model (Madenci et al., 

2018) and PD least squares minimization (Madenci et al., 2019). Recently, PD was applied to predict ice-structure 

interaction for a simple structure interaction with ice (Liu et al., 2017; Lu et al., 2018), which showed PD’s potential 

to study ice fracture. Liu et al. (2018) predicted the ice loads of a ship in rubble ice using the PD theory and Voronoi 

diagram. A more complex interaction model was introduced to simulate ice-structure contact (Ye et al., 2019; Ye et 

al., 2017), and the extended work was carried to calculate propeller performance in ice (Wang et al., 2018a). A case 

of a rigid sphere impacting the ice plate was studied by non-ordinary state-based PD (Song et al., 2019). Recently, 

ice failure with consideration of fluid is studied by coupling bond-based Peridynamic with updated Lagrangian 

particle hydrodynamics (Liu et al., 2019). It is worth pointing out that most work reported in the literature has a 

restriction on Poisson’s ratio. This is because bond-based PD employed in these models has the fixed value of 

Poisson’s ratio of 1/3 for 2D and 1/4 for 3D, which is not accurate enough to model ice mechanics since the Poisson’s 

ratio of ice depends on ice temperature and often exceeds 0.33. 

Through the above review of the current status of ice-ship interaction, it is noted that the existing models, 

including empirical formula, semi-empirical method, and grid method of traditional medium mechanics, are able to 

predict ship’s performance as well as ice loads. However, there is a clear weakness among the existing methods in 

the capability of studying ice failure mechanism or damage evolution in real-time ice-ship interaction. Despite SPH 

is still in its initial development stage in ice simulation, the PD method offers a clear advantage to handle large 

deformation and complex fracture patterns. This will contribute to the innovative analysis of the icebreaking process, 

such as ice failure mode and icebreaking pattern at present work.  

Ice is a strain rate-sensitive material (Derradji-Aouat, 2003; Palmer and Dempsey, 2009; Tippmann, 2011). Ice 

exhibits the mechanical characteristics of ductility under low strain rate loading conditions, and it fails in the form 
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of creep and microcracks instead of crack formation. Therefore, ice materials can be regarded as viscoelastic plastic 

materials at low strain rates (Jordaan, 2001; Molyneux, 2017). At high deformation strain rates, i.e., above ≈10-

4~10-3, the cracks form and propagate in the ice body which is typically an elastic and brittle process (Schulson, 

1990; Schulson, 1999; Schulson, 2001). Normally, the ice is under the action of a high strain rate during the 

continuous icebreaking process (Derradji-Aouat, 2003; Gao et al., 2015; Molyneux, 2017). In other words, ice can 

be treated as elastic material and analysed with brittle failure mode when contacting ships. As a result, it is 

reasonable if the viscous-plastic deformation is not included in the process of ice-ship interaction, and the ice is 

modelled in the properties of PMB (Prototype Micro-elastic Brittle) for the simulation of ice-ship interaction (Ye et 

al., 2017). However, a more accurate ice model should be established considering the effects of viscosity and 

plasticity in future work. 

In the present investigation, the ice model is established based on ordinary state-based Peridynamic(OSB-PD) 

theory, which allows the use of arbitrary Poisson’s ratio in the formulation. A continuous contact detection algorithm 

based on spatial location judgment for ice-ship interaction is introduced, in which the ship is regarded as a rigid 

body without deformation. The proposed contact detection method can be applied to the contact problem between 

material particles and any unconventional and complex structural shapes, such as ship hull. Numerical simulation 

of the icebreaking process and icebreaking resistance is demonstrated in detail by comparing both the model test 

and the Lindqvist formula calculation. Prior to that, two cases, i.e., a 2D three-points bending of ice beam failure 

and a 3D ice sphere impact simulation, are conducted to validate the present method in modelling ice failure process. 

2 Numerical model 

2.1 Framework of ordinary state-based Peridynamics 

In PD theory, the continuum is constituted of infinite particles at any instant of time. The main idea of the PD 

is that the motion information and force information of material points are related to the particles in a certain range 
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(which is usually known as the horizon). All the particles in the horizon make up the family (The volume occupied 

by the family is expressed by 
xH  ) of this material point. It can be inferred that each material point has a 

corresponding family and the interactions with those family members only exist in the horizon. The information on 

the interactions, such as deformation, force, is stored in different arrays named state. In an undeformed state of the 

continuum, the selected material point i  is located in the global coordinate system, x  represents its position in 

the coordinate system, as shown in Fig. 1. The particles in 
xH  have interaction with i ; for example, the particle

j  is one of the family members located by the vector x . The horizon of the material point i  is described by a 

circle in 2D (a spherical shape in 3D) with a finite radius  called internal length. In the deformed state, as shown 

in Fig. 1, both the material point i  and j  has a new position y  and y . The deformation process of particle 

points is represented by vectors u  and u . 

 

Fig. 1. Material point i  interacts with those in the sphere 
xH  through bonds 

Here, ξ = x - x  and ξ + η , in which ( , ) - ( , )t t= u x u x , represent the relative positions of the material 

points i   and j   in undeformed state and deformed state, respectively. Then, stretch   describing the 

deformation can be defined as： 



s
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s
 − −

= =


y - y x - x ξ + η ξ
x - x ξ

                        (1) 

The PD governing equations is derived as follow (Madenci and Oterkus, 2014; Silling et al., 2007): 

 
    ( ) ( , ) , , ( , )

X

x
H

t t t dV t 
  = − − − +x u x T x x x T x x x b x   (2) 

Force vector state is given as (Madenci and Oterkus, 2014; Silling et al., 2007): 

t=T M                                            (3) 

where M is deformed direction vector state: 

    
 −

=
 −

y yM
y y

                                       (4) 

Substituting the algebraic formula of force density between particles, which is obtained by partial 

differentiation of strain energy density, into Eq.(2) can lead to the final expression of the PD governing equation 

(Madenci and Oterkus, 2014): 

2( ) ( , ) ( ) 4 ( , )
X

x
H

d at bs dV t 
    

  
= + + + 

 −  
x u x M b x

x x
             (5) 

The dilatations   for material point i ,   for material point j , are defined as (Gao and Oterkus, 2018; 

Madenci and Oterkus, 2014): 

XH

d s dV  =                                            (6a) 

XH

d s dV   =                                            (6b) 

where the PD auxiliary parameter,  , is defined as: 

( ) (
 

=  = 
 

y - y x - x ξ + η ξ) ( )
y - y x - x ξ + η ξ

                              (7) 

According to Madenci and Oterkus, 2014, the PD parameters a , b , and d  in Eq. (5) can be calculated as: 

3 2

10, ,  for 1D
2 2

Ea b d
A A 

= = =                                (8a) 

4 3

1 6 2( 2 ), ,  for 2D
2

a K b d
h h



   

= − = =                        (8b) 

5 4

1 5 15 9( ), ,  for 3D
2 3 2 4

a K b d


 
= − = =                        (8c) 
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2.2 Peridynamic failure criterion 

In OSB-PD theory, by making the interaction between two particles disappear, the fracture process is then 

predicted. This process is not reversible once the interaction disappears. Therefore, a recording function   is 

introduced to express the failure of the continuum, that is, whether there is an interaction between two particles. 

When the value of   is true, it indicates that interaction exists between particles, and when the value is false, it 

means that the force between particles disappears (Madenci and Oterkus, 2014; Silling and Askari, 2005): 

0

0

1  ( , )   
( , )

0  ( , )
s t s

t
s t s


 

= 
 





                           (9) 

in which 0s  represents the critical stretch for interaction between particles in tension condition. It should be noted 

that ice-structure interaction involves tension failure and compression failure beyond the ice bending test. Generally, 

ice has compression strength that is 3–4 times its tensile strength (Wang et al., 2018b). Therefore, failure criterion 

for ice-structure interaction is: 

 
0

0

0   ( , )      
( , ) 0   ( , ) -3  

1       

s t s
t s t s

otherwise


 


= 





                                 (10) 

The critical stretch value is: 

4

0

2

          for 3D4(3 ( ) ( 2 ))
3

         for 2D6 16( ( )( 2 ))
9

c

c

G

K
s

G

K

  

  
 



 + −


= 



+ −


                        (11) 

where 
cG  is energy release rate, and can be expressed by fracture toughness 𝐾𝐼, that is 𝐺𝑐 = 𝐾𝐼

2/𝐸. K is bulk 

modulus.   is shear modulus.                        

In order to quantify the ice failure, a quantity known as local damage is proposed as: 

( , , )
( , ) 1 xH

t dV
t

dV




 
 = −

 x
x                            (12) 
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The value of ( , )t x  is between 0-1, and the closer to 1, the greater the degree of the ice damage. ( , , )t x  is a 

history-dependent scalar-valued function. 

3 Contact detection algorithm for ice-ship interaction 

In this paper, a method whose function is to calculate the relocation and contact force between an impactor and 

a PD object is adopted to solve the contact problem (Madenci and Oterkus, 2014). On this basis, a new algorithm 

based on geometric graphics is developed to detect the contact between material points and a rigid body.  

Ice-structure contact is assumed as the impact process between a rigid body and an ice target. The ice target 

governed by the PD equation moves towards a rigid stationary plate, see Fig. 2 (a). When contact happens, the 

material points inside the ice body penetrate the rigid body, which is not allowed in the real process, as shown in 

Fig. 2 (b). Thus, an algorithmic process for the relocation of the coordinates of material points is implemented to 

reflect reality, as shown in Fig. 2 (c). Ice particles entering the rigid body are relocated to the outside of the impactor 

surface according to the principle of nearest distance distribution.  

 

 

(a) Step, n                      (b) Step, 1n +                     (c) Step, 1n +  

Fig. 2. Relocation of ice material particle inside the ship body 

When the material point ( )ix  is assigned to its new location, then the velocity at 1n +  step is calculated as: 

1
1

n n
n i i
i t

+

+ −
=
u uv                                  (13) 

In which 1n
iu +  is the displacement of the relocated material point at 1n +  step， n

iu  is the displacement of this 

Ice particles 

Ship body Advancing direction 

Ice particles 

Ship body 
 Advancing direction 

Particles inside ship body 

Motion direction of the particle 

 

Ice particles 

Ship body 
Advancing direction 

Relocate the particle  
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material point at time . t  represents the time interval of each step. The contact force of ice-structure at 1n +  

step: 

1
1

( ) ( ) ( )1
n n

n i i
i i iV

t




+

+ −
= − 

v vF                             (14) 

In which ( )i  and ( )iV are density and volume of the particle, respectively. By integrating force of all material 

points that contacts with the rigid plate, the contact force is obtained: 

1 1 1
( ) ( )

1

n n n
total i i

k
+ + +

=

=F F                                 (15) 

Where 1
( )
n
i
+  indicates the contact state between particles and structure, and is： 

1
( )

1 inside structure  
0 outside structure

n
i + 

= 


                              (16) 

Thus the reaction velocity and force are calculated by Eq. (14)- Eq. (16). However, the ship hull is a more 

complex surface rather than a plane or a sphere surface. The judgment of the contact process of ice particles and 

ship hull is more difficult than that mentioned above. In order to detect the contact between ice particles and the 

hull surface at each moment, the hull is discretized into a number of elements (see Fig. 3), which can be 

approximated to the plane elements. Each plane element is expressed as: 

0Ax By Cz D+ + + =                                    (17) 

Then the judgment of the contact between ice and hull surface can be transformed into the judgment of the 

relative position of particles and quadrilateral surface element. This contact process is performed by the 

mathematical calculation of the spatial position relations between the points and surfaces (Ye et al., 2019). 

For a certain material particle P  of ice with coordinate 
0 0 0( , , )x y z , this point can only collide with one plane 

element of the hull. For all quadrilateral panels on the hull surface, we can always find its minimum and maximum 

values of the corners in the three directions, that is minx , maxx , miny , maxy , minz  and maxz . If min 0 maxx x x 

and min 0 maxz z z  , or min 0 maxx x x  and min 0 maxy y y  . We consider that these plane elements are possible 

to collide with the particle P . Then, the nearest plane element to the material point P  can be found by calculating 

t
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the spatial distances between the point P   and these collision-possible plane elements. The contact judgment 

between the particle and each possible surface element can be expressed as follow: 

1 0 1 0 1 0 1 0 Contact
Otherwise  Nocontact

A x B y C z D+ + + 



                       (18) 

Thus, the process of ice particles-ship hull contact is determined. The particles need to be relocated, and its 

relocated distance can be determined according to the distance formula of points P  and surfaces in space: 

1 0 1 0 1 0 1

2 2 2
1 1 1

A x B y C z D
d

A B C

+ + +
= =

+ +

n α
n

                     (19) 

In which n  is the normal vector of the element. α  is the vector passing point on the element surface and the 

particle P . This process is illustrated in Fig. 3. 
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Fig. 3. Detailed relocation procedure when ice-ship contact is detected 

The new position of the relocated point ( )kx  can be calculated by: 

( ) ( )
t t
k k shipV t d + = +  + x x n                             (20) 

To reduce the unnecessary contact detection process to achieve efficient calculation, a simple and efficient 

method to exclude the material points that cannot contact the hull surface is proposed in this work based on Nezami 

et al. (2004). As shown in Fig. 4, a cuboid is set to enclose the whole ship hull. The length, width, and height of the 

cuboid equal to the length L , breadth B , and depth D  of the ship, respectively. Contact detection algorithm 

starts only with the ice particle inside the cuboid. It is demonstrated in Fig. 4: Only a tiny part of the ice particles 
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enter into the cuboid and may collide with the hull. The particles outside the cuboid do not need to enter the contact 

detection process leading to a considerable reduction in the calculation cost. 

 

Fig. 4. Illustration of the model to determine the possible contact ice material particles 

4 Numerical Strategy 

In the numerical implementation, the ice body is discretized into uniform arranged particles. Then the discrete 

form of Eq.(5) at time step n  is: 

2
( ) 4 ( , )

n
ijn n n n n n

i i j ij j ii i
j i j

d a
bs t V

 
    

 
 = + + +

−  
u b

x x
                      (21) 

where i  represents the material point at the current integral step. j  is the family members of i .  

The contact displacement of ice particles is calculated by the central difference method: 

1 1

2

2n n n
n i i i
i t

+ −− +
=
u u uu                                  (22) 

The discretization of dilatation based on Eq. (6a) is: 

( , )n n n n
i ij ij j

j
d s t V   = ξ                                    (23) 

In this study, the surface effects and volume corrections follow the same procedure proposed by Madenci and 

Oterkus (2014). The horizon    is set to be 3 x =    according to convergence studies conducted by most 

researchers (Hu et al., 2012; Madenci and Oterkus, 2014; Madenci and Oterkus, 2017; Pashazad and Kharazi, 2019). 

The boundary conditions of displacement and velocity are imposed according to Oterkus et al. (2014). To obtain 
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convergent results of explicit time integration scheme, the stability condition is necessary and for the time step size, 

Δt, is given here (Madenci and Oterkus, 2014): 

( )

( )
( )( ) ( )( )

( ) ( )
( )( ) ( )( )

2

1 1

42 ( )

i

ll
l i l j

c j jj
i j i j

t

d V
bad v V





  


 


   
   +

   
   +

 
 
 
 




             (24) 

The implementation of the program consists of three modules including the main part and two subroutines. 

The purpose of the main program is to realize the discretization, model processing, and integral calculation of the 

PD method; one subroutine is used to input the ship node and node numbers obtained from the pre-processing; the 

last one is the subroutine of contact detection, which transmit the contact pointer 1
( )
n
i
+  to the main program. The 

framework of implementation is depicted in Fig. 5. 

 

 Fig. 5. The framework of the numerical implementation 

While constructing the family members, two different arrays are utilized in a conventional way. One is to store 

all material points inside each particle’s horizon, while another is utilized as an indicator for the first array. The 

family search process is one of the most time-consuming parts of a PD analysis. Especially for problems that require 

continuous updates of family members inside the horizon of a material point, the time spent searching for family 
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members becomes crucial (Vazic et al., 2020). The most common algorithm used for family search is the Brute-

force search algorithm. However, all material points have to be searched for each point’s family in the Brute-force 

search algorithm, and the time consumed in this process depends on the number of particles. In the present work, 

the Link-list algorithm (Monaghan, 1985) is applied to determine the array of family members. Link-list search 

algorithm divides interest domain into numbers of regions by grid. When determining the family of the particle, 

only the grid, which the particle is located, and its neighbour grids need to be searched. As a result, the computational 

cost of the family search process is greatly reduced by utilizing the Link-list algorithm. 

Fig. 6 is a flow chart of numerical strategy. In Fig. 6, 
tN , 

nodeN , 
eN  represents total steps of integral process, 

the total number of material points in the interest domain, the total number of hull elements, respectively. n

represents the current integration step. 
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Fig. 6. Flow chart for the numerical strategy 

5 Validation of the numerical method in modelling ice failure 

In this section, the numerical investigation on the 2D bending process of the ice beam is carried out first to 

verify the developed model in simulating ice failure. Then, a 3D ice sphere impacting rigid plate is simulated to 

further demonstrate the ability and efficiency of the proposed model in solving contact process and crack 
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propagation. The destruction process of the ice is predicted and compared to the test results. 

5.1 2D three-points bending of ice beam 

 Ji et al. (2011) conducted the bending test of the ice beam with a dimension of 700 mm× 75 mm× 75 mm. 

These experimental results are used as the verification data for the present numerical model. In the test, the ice beam 

was supported by two fixed bearings in the position of 
0 700mmL = , as shown in Fig. 7. The movable loading 

head applies the load down from the middle position on the upper side of the ice beam, as shown in Fig. 7. To 

simulate such a case, the 2D ice beam is discretized into uniformly distributed particles with grid size 0.005mx = . 

The rigid supports and leading head are constructed as rigid impactors. The ice beam features are set up the same 

as the test. Elastic modulus is 1.8GPaE =  . Density is 3900kg/m =  . The timestep is set to 65 10 st − =   . 

Poisson’s ratio is related to temperature and loading loads which can be calculated as 0.389 =  with temperature 

-8℃ (Timco et al., 2010). For the critical stretch, the value of 
0 0.001212s =  is calculated by Eq. (11) and Eq. (12) 

with fracture toughness 0.5225kPa mIM =   (Timco et al., 2010). The pre-crack with dimension 10mma =  is set 

on the centre line near the bottom to include the initial damage for crack propagating. In the numerical model, the 

ice beam is set to be a free-moving object, the loading head and support are treated as rigid fix impactors.  

 

Fig. 7. Numerical model of three-points bending of ice beam     
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(a) t=0.8 s 

     

(b) t=3.5 s 

 

(c) t=4.3 s 

Fig. 8. Contour snapshots of three-points bending of ice beam  

The simulation results are shown in Fig. 8, in which (a), (b), and (c) show the contour colour of local damage 

at 0.8 s, 3.5 s and 4.3 s separately. In contour legend, the D refers to the failure of the ice, which is a quantity 

calculated by Eq. (13). The failure process of sea ice in the three-points bending mainly goes through three phases. 

In the first phase, the loading head keeps pressing down at a constant speed, the particles’ z-direction displacement 

in the middle area near the head increases continuously, the z-direction displacement in the two ends of the bar 

approaches 0. Ice has slight deformation with a small deflection without any damage except for the original crack. 

The local area beneath the mid-cross section is stretched out. In the second phase, with the increase of the head’s 

displacement, the tension acting on the cross-section of the specimens is strengthened. Damage propagates from the 

pre-existing crack. The small area damage rapidly expands to the whole mid-cross section, and the material point 

of the sea ice in the mid-cross section is no longer displaced since they are damaged. Then, both ends of the ice bar 
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move upward. In the third phase, the ice is subjected to maximum bending strength, and the mid-Cross section is 

completely destroyed. Fig. 9 is a detailed diagram of the local damage area. It can be observed that the cross-section 

is nearly smooth, which is in good agreement with the experimental results.  

      

(a)                             (b) 

Fig. 9. Detailed diagram in Fig. 8: (a) experimental snapshot (Ji et al., 2011); (b) numerical simulation  

The stress-time curve is shown in Fig. 10, which is a typical elastic-brittle trend. The flexural strength, which 

is 1.16 MPa measured in the test, is well captured as 1.17 MPa by numerical simulation despite the growth trends 

at the beginning. The simulation of the three-point bending test of ice shows that the PD method can deal with both 

the large-scale failure of materials and continuum slight deformation simultaneously.    
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Fig. 10. Comparison of the strain-time curve between numerical results with test data for the three-points bending experiment 

5.2 3D Ice sphere impact  

Impact studies with PD are widely studied by bond-based PD without a pre-existing crack (Parks et al., 2008; 
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Ruestes et al., 2014; Silling and Askari, 2005; Ye et al., 2019). Note that there is also no initial damage in this sphere 

impact model. The impact case is carried out on an ice impact problem with high speed (Tippmann et al., 2013). 

The initial snapshot of an ice sphere with a diameter 61mmsphereD =  impacting a rigid flat panel at high speed 

of 61.8 m/sV =  is shown in Fig. 13 (a) (right). The ice sphere is treated as isotropic homogeneous elastic material 

with a density of 3900kg/m = , a Poisson’s ratio of 0.33 = , and an elastic modulus of 1.8GPaE = . The critical 

stretch is 0.003133. The time step is 71*10 st − = . In the numerical model, the ice sphere is set to be a free-moving 

object, and the flat panel is treated as a rigid fix impactor. 

In the PD theory, it is crucial to determine grid size x  and the horizon size   to achieve high accuracy 

with sufficiently small amount of computational time. These two variables can be obtained by the m-convergence 

study and the δ-convergence study, in which x m =   . However, m is suggested to be 3 or 3.015 in most PD 

application literature (Madenci and Oterkus, 2014; Silling and Askari, 2005; Wang et al., 2020). Moreover, the PD 

application in ice simulation (Vazic et al., 2019; Wang et al., 2018a; Zhang et al., 2020) has also demonstrated that 

the 3.015 is the optimum value for m. Therefore, 3.015m =  is chosen in the present study. The convergence 

study of    is also carried out with the horizon sizes being set to 4.5979mm =  , 6.1305mm =  , 

9.1957mm =  , 18.3915mm =  corresponding to / 40x D =  , / 30x D =  , / 20x D =  , 

/10x D = , respectively. Fig. 11 and Fig. 12 depict the ice sphere failure and time-history impacting force. 
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Fig. 11. Impact loads with different particle spacing 

 

（a） 4.5979mm =   b） 6.1305mm =  （c） 9.1957mm =   （d） 4.5979mm =  

Fig. 12. Ice spere failure with different particle spacing at 120μst =  

As shown in Fig. 11, the impact forces are in a high degree of a coincidence for 4.5979mm =  and 

6.1305mm = . However, it can be seen that the cracks are not propagating well when 6.1305mm = , as 

shown in Fig 12 (d). Thus, 4.5979mm =  is subsequently chosen for further study. 

Fig. 13 shows a series of snapshots of the dynamic impact process of the ice sphere from experimental 

photographs (Tippmann et al., 2013) and the present numerical results at different times. The contour legend of ice 

failure in the PD simulation is shown above the figure. Both the test and numerical results clearly demonstrate the 

initiation of contact, fracture of sphere body and the evolution of the crack. Local fragmentation at the contact face 

begins at 40 µs in Fig. 13 (b), which is captured by the present PD simulation, and the level of ice failure are shown 
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clearly in the PD simulation by local damage (Eq.(12)). Cracks, perpendicular to the contact surface, continue to 

travel in this direction from 40 µs to 120 µs. Except for local damage at the contact face, the ice spherical maintains 

a relatively complete shape at the first 120 µs. During this period, the strip crack extends rapidly from the contact 

surface to the left side of the ice sphere, which is shown in green particles in the PD simulation. By the time step of 

760 µs, the sphere has lost its shape and broke into small fragments and powder spray. Minor units in the PD model 

are particles, so the fully damaged red independent particles in the contact surface can be regarded as a diffused 

powder displayed in experimental photos. It can also be found that the fragmentation of the ice sphere becomes 

more severe with time.  

As shown in Fig. 13, the present model and contact detection algorithms are reliable to model the ice impacting 

damage and fracture evolution. Different damage patterns are observed, similar to those observed in experiments. 

It is shown that the PD model has an advanced ability to simulate ice failure.  

 

 

(a) t=0 µs                                (b) t=40 µs 
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  (c) t=80 µs                               (d) t=120 µs 

 

(e) t=160 µs                          (f) t=240 µs 

 

 (g) t=320 µs                        (h) t=760 µs 

Fig. 13. Comparisons of the failure progress of the dynamic impact of the ice sphere between test photographs (Tippmann et 

al., 2013) (left) and the PD numerical simulation snapshots (right) 

6 Numerical simulation of icebreaking resistance 

The average fashions are usually used to describe the resistance force in the ice-ship interaction process. 

Amongst those the most well-known and acceptable is the form proposed by Riska (Riska, 2011). The resistance 

force is divided into breaking ice forces, submerging broken ice forces, friction forces along the ship hull (both ice 

floes breaking and sliding along the hull) and hydrodynamic forces. The breaking force plays a vital role in lower 

speed conditions, and it contributes over 50% of the resistance. Furthermore, ice failure is complex since it consists 

of a multi-mode failure process, including crushing, bending, buckling and shearing (Fig. 14), in which bending and 
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crushing are common failure patterns and are modelled by the PMB model in the present work. However, the visco-

plastic model is also needed in future work to study very initial contact between ice and ship deeply.  

 

Fig. 14. Two main failure patterns of the icebreaking process 

 The present work focuses on ice failure process and dynamic icebreaking loads in continuous-mode 

icebreaking in level ice. In this part, the icebreaking process of ice-ship interaction is considered based on PD theory 

and continuous contact detection algorithm, and icebreaking resistance acting on the ship hull is investigated. The 

scale ratio of 1:40 for the icebreaker is adopted in the numerical model, and the working condition is the same as 

the model test. It should be noted that the hydrodynamic effect of ice floes after breaking has not been discussed 

yet. However, the prediction of icebreaking resistance and ice failure pattern in this paper is still reasonable by the 

validation with the experiment. 

6.1 Model test description 

 The model test was carried out at the Ice Engineering Laboratory of Tianjin University. Test facilities and 

model ice are described in (Huang et al., 2016). The study object is an icebreaker with a scaling factor λ=40, showing 

in Fig.15. And the main parameters of the icebreaker are shown in Table 1. A tactile sensor was used to measure the 

distribution and variation of the ice load on the bow region in model tests. It is a total of 464 mm in length and 464 

mm in width and is formed of 1024 sensing elements (each 14.5 × 14.5 mm) arranged on a soft sheet. According to 

field measured data and scale factor, the required ice conditions at the model scale are 37.5 mm in thickness and 

12.5 KPa in flexural strength, respectively. 
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Fig. 15. Icebreaker model 

Table 1. Parameter for full scale and model scale of icebreaker 

Parameters Full scale Model scale 

Length waterline ( WLL ) (m) 155 3.875 

Beam of WL(
WLB ) (m) 23 0.575 

Draft ( D ) (m) 9 0.225 

Bow waterline angle   (deg) 22 22 

Bow stem angle   (deg) 24 24 

Bow flare angle    (deg) 40 40 

Navigating speeds shipV  1kn, 2 kn, 3 kn, 4 kn and 5 kn 

0.082m/s, 0.164 m/s, 0.246 m/s, 0.328 

m/s and 0.410 m/s 

6.2 Geometry and numerical setup 

For the hull model, it is simplified to a rigid body and discretized into a series of quadrilateral elements which 

are used to detect contact between ship hull and ice particles. Since the shape in the bow region is relatively 

complicated, and the ice force of ice-bow interaction contributes the most icebreaking resistance, the quadrilateral 

elements in this area are refined, as shown in Fig. 17.  

As illustrated in Fig. 18, in the configuration of the initial ice-ship interaction model, level ice is 6miceL =  in 

length, 4.8miceB =  in width, and thickness 0.0375miceH =  (the same with the model test). The right and left 
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sides along the forward direction of the ice model are set to be fixed boundaries. Spacing between two ice particles 

is set to be / 3micex H =  . Therefore, the volume of each particle is calculated as 6 31.95*10 mV − =  . The 

engineering properties of ice are also listed here, e.g., the density of ice 3900.0kg/m = , the elastic modulus is set 

to be 25.0MPaE = , which is 2000 times the flexural strength (Molyneux, 2017). Poisson’s ratio 0.33 = . The 

time step is 41*10 st = . 

At first, the mesh convergence studies for determining the best hull element size are carried out with the 

icebreaker breaking the ice at its velocity of 0.41m/sshipV = . The basic mesh sizes are /180WLL , /220WLL , and 

/100WLL . The icebreaking force in the x-direction is plotted in Fig. 16. it can be seen that the force curves with size 

/220WLL  and size /180WLL  are almost coincident, and their mean values are 12.2 N and 13.6 N, respectively. 

Although the force curve with size /100WLL  has a similar trend, it has more peaks and a larger mean value of 17.2 

N. Therefore, the mesh sizes /220WLL  and /180WLL  are enough to describe the ship hull. In this work, the mesh 

size /180WLL  is set in the ship model.  
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Fig. 16. The icebreaking force in the x-direction for different mesh size 

 

 

(a)  
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(b) 

Fig. 17. The 3D model of icebreaker (a) top view of the numerical model; (b) side view of the numerical model 

 

(a)                                                      (b) 

Fig. 18. Configuration of the initial condition: (a) numerical model in level ice; (b) experiment in level ice      

6.3 Icebreaking process 

Fig.19, which includes snapshots from the ice tanker test and the numerical calculation, shows the continuous 

icebreaking process at the speed of 0.410 m/s. In order to better observe ice damage, the hull is set to be translucent. 

The ice crushing process starts upon ice-hull contact. As described by Liu (2009), a crushing process occurs before 

the ice is bent to broken ice floes. This is observed at the initial contact stage t = 1.88 s (Fig. 19(a)) when the 

icebreaker contacts the ice layer: local crushing failure of ice occurs at bow stem. The local damage of the ice sheet 

close to the bow stem is serious since crushing failure is severer than bending failure (see Fig. 15), so it showed in 

red colour in the numerical result (as shown in Fig. 19 (a)). While the vertical component of icebreaking force is 

insufficient to cause bending failure (generally shaped in the circumferential crack), the ice continues to be damaged 

in crushing mode (also as shown in Fig. 19 (a)). In Fig. 19 (b), with the icebreaker going forward, a new bending 

crack forms due to the propagation of the last bending crack. Simultaneously, a large-scale circumferential crack at 

both sides of the hull is propagating towards the bow stem, just as the same as the snapshot of the test video. 
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Along with time, cracks propagate, and the ice sheet is broken into small cracked ice. The crushed ice floes 

(close to red-colored floes) and bent ice floes (close to green colored floes) are pushed to both sides of the ship hull, 

and an icebreaking channel formed behind the ship body, which can be found in Fig. 19 (c). Ice floes keep twirling 

along the hull edge with the influence of the icebreaker navigation till they parallel with the hull, followed by 

submerging and sliding. Finally, the floes break contact with the hull. Crushing is likely to be the unique failure 

mode in some zones, usually at the bow and shoulders, where there are large slope angles (almost vertical) 

(Lindqvist, 1989). However, since water is not taken into account in the simulation, the ice floes drop down instead 

of floating around the hull. The investigation model for ice floes rotating and submerging in the water at the next 

icebreaking stage will be established in future work. 

In this case, the crushing failure, bending failure, and mixed failure mode, as well as crack propagation in the 

icebreaking process, are well simulated by the PD numerical method. The broken ice floes are the basis to further 

study forces from submersion and hydrodynamics, while most of the other methods can only calculate them by 

empirical formulas (Li et al., 2018a; Myland et al., 2019). This demonstrates the effectiveness of the present 

numerical method for modelling the failure process of ice-ship interaction. 
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(a)  

  

(b)  



 
32 

 

      

(c)  

Fig. 19. Icebreaking process of field, experimental and numerical icebreaking process (a) Initial contact stage t = 1.88 s (b) Crack 

propagation stage) t = 4.14 s (c) Mixed failure mode stage t = 10.16 s 

Detailed observation of the icebreaking pattern at different parts of the ship was captured by test videos and 

the present numerical simulation, which shows a good agreement in the phenomenon of the icebreaking pattern. Fig. 

20 gives the comparison of the detailed icebreaking pattern between diagrammatic sketches observed in the model 

tests and snapshots captured in the present numerical simulation. It is observed that bending damage, which is 

mainly caused by the formation and evolution of circumferential cracks, plays a critical role in the failure mode 

during all tests by Huang et al. (2018). The computational results visualized a similar phenomenon. The cycle 

process of ice failure mode in the icebreaking process begins with the initial appearance of a long circumferential 

crack. 

It is noticeable that, in the model experiment, the circumferential cracks on both sides are symmetrical in the 
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middle longitudinal section with non-simultaneous development behaviour. However, this is completely symmetric 

in the numerical simulation due to the assumption of isotropic in the ice model. It is visualized the formation of 

radial crack, which is extended from the position of half breadth in the bow region, breaks the propagation of the 

initial circumferential crack. Meanwhile, other breaking patterns were captured successively and successfully. The 

local crushing events, occurring from stem to position of quarter breadth, is accompanied by the appearance of a 

secondary circumferential crack. This kind of crack is almost paralleled the bow shape line, and its direction of 

travel develops to the stem. There appears a short circumferential crack near the bow, which leads to the ice was cut 

into small cusps. The present numerical method developed in this paper has captured most of the icebreaking 

patterns in the real ice–ship interaction process.  

 

(a)                                                (b) 
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(c) 

Fig. 20. Illustration of icebreaking patterns along the vessel (a) schematic diagram for the experiment (Huang et al., 2016) (b) 

snapshot for numerical simulation form top view (c) snapshot of detail 1 in (b) 

6.4 Icebreaking resistance  

Since the longitudinal component of the global ice load is the main component of icebreaking resistance, the 

global ice force is the critical factor to help ship design for optimal performance (Riska, 2019). In general, the ice 

load prediction process should distinguish between the maximum force and the average force. However, the effect 

of the maximum ice force is reduced by the inertia of the ship during icebreaking (Riska, 2011). Therefore, the 

icebreaking resistance is treated as the time average of the global (or total) ice load or its longitudinal component in 

most research work (e.g., (Su et al., 2011; Zhou, 2012),). In this paper, the comparison is made by the mean value 

of the numerical simulation, model test data, and the Lindqvist method. The icebreaking resistance in the model test 

is collected by tactile sensor measurements. With the consideration of the most decisive hull shape coefficient and 

its working condition, the Lindqvist method (Lindqvist, 1989) calculates total resistance by formulas based on 

experience data and physical analysis (Myland and Ehlers, 2016), making it the most popular approach. Lindqvist 

divided icebreaking resistance into two components of bending and crushing, which are (Lindqvist, 1989): 
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where 
BR  is the bending resistance, f  the flexural strength, B the ship breadth, 

ih  the ice thickness,   the 

Poisson’s ratio, 
w  the density of water, g  the gravitational acceleration,   the normal angle,   the friction 



 
35 

 

coefficient between ship hull and ice, 
CR   the crushing resistance. The normal angle is calculated from the 

waterline entrance angle and the stem angle according to Eq. (28). Then, the breaking force is calculated: 

1.4( ) (1 )br C B
i

VR R R
gh

= +  +                                   (29) 

The time histories of icebreaking resistance of an icebreaker sailing with forwarding speed 0.410 m/s are shown 

in Fig. 21. Because the hull, ice model and contact position of the numerical calculation process are completely 

symmetrical, the force in the y-axis direction is equal to zero. The ice loads history in the continuous icebreaking 

process is obviously periodic, stochastic and impulsive. The global ice load usually fluctuates in a period of time, 

while the maximum ice load only appears in an extremely short period of time. It can be seen that the force in the 

longitudinal component (z-axis) shown in Fig. 21 (b) is much higher than a component in the x direction shown in 

Fig. 21 (a), and it is almost equal to the total force shown in Fig. 21 (c). This is clear evidence that the ice load in 

the z-direction is the main component of the icebreaking resistance, which is caused by the lifting force from ice 

bending failure.  
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(a) Historical force-time curve in the x-axis 
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(b) Historical force-time curve in the z-axis 

0 1 2 3 4 5 6
0

50

100

150

200

Fo
rc

e 
(N

)

Time (s)

 Force of numerical simulation
 mean value of experiment
 mean value of numerical simulation
 Lindqvist-breaking

 

(c) Historical force-time curve 

Fig. 21. Historical force-time curve at a speed of 0.410 m/s (a) Historical force-time curve in the x-axis (b) Historical force-time 

curve in z-axis (c) Historical force-time curve 

The other four velocity conditions including 0.082 m/s, 0.164 m/s, 0.246 m/s and 0.328 m/s are shown in Fig. 

22 to Fig. 25. It is found that the mean values of ice resistance in the present numerical simulation are slightly larger 

than those in the model test. The main reason may be that the vertical contact force for ice sliding down is calculated 

in the contact detection process.  
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Fig. 22. Historical force-time curve at a speed of 0.082 m/s 
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Fig. 23. Historical force-time curve at a speed of 0.164 m/s 
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Fig. 24. Historical force-time curve at a speed of 0.246 m/s 
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Fig. 25. Historical force-time curve at a speed of 0.328 m/s 
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Fig. 26. Comparison of icebreaking resistance in terms of different ship velocities  

The comparison of icebreaking resistance is plotted with navigating velocity among the present numerical 

simulation, experiment results, and Lindqvist calculation in Fig. 26. The results of the numerical simulation are 

obtained by averaging the corresponding icebreaking resistance from Fig. 22 (c) to Fig. 25. Although the rate of 

resistance increasing with a forward speed in the numerical calculation is closer to that of the Lindqvist method, 

and the increasing trend with navigating speed is in good agreement in all three methods. Moreover, the present 

numerical results are in notably better agreement with the experimental measurements. 
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7. Conclusion 

In this paper, the ice is modelled by the nonlocal particle PD method, and the continuous contact detection 

algorithm for ice-ship interaction is introduced to investigate the icebreaking process in level ice. The contact 

detection algorithm is more suitable for the interaction of a complex structure surface and particles. The predicted 

stress-time history and ice behaviour of the ice bending process are consistent with the experimental results. The 

computational damage mode of the ice sphere impact case is qualitatively agreed with that observed in the 

experiment.  

The validated PD model is applied to ice-structure interaction investigating the ice damage pattern and 

icebreaking resistance of an icebreaker sailing in level ice. Good agreement between the present numerical results 

and the experimental data demonstrates the good performance of the present PD model in terms of accuracy and 

visualization.  

As one of the highlights in the present approach, the crack generation is obtained naturally without setting pre-

existing crack at impact simulation, though it is also acknowledged that the damage initiation should be included in 

future work. In addition, the present numerical model ignored ship motion and the influence of water, subsequential 

researches are required to including these important issues for improved numerical modelling, such as the 

hydrodynamic effect on interaction process and efficient parallel computation.  
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