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Abstract In this article, several thermoelastic benchmark cases are studied within the 
framework of ordinary state based peridynamic theory (OSPD). By using OSPD, the 
limitations of geometrical discontinuity in fracture analysis can be overcome. 
Meanwhile, double nodes can also be avoided during crack definition. A domain 
integral method with thermal effect is applied in calculating the thermal stress intensity 
factors (TSIFs). Meanwhile, peridynamic differential operators (PDDO) are utilized to 
rewrite the spatial derivatives in the domain integral. Numerical investigations of TSIFs 
in the single and mixed-mode crack scenarios are provided respectively, and verified 
by the reference solutions. Good agreements between OSPD and the reference solutions 
show high performance and capability of the proposed method in thermoelastic fracture 
analysis. 
 
Keyword Ordinary state based peridynamics · Peridynamic differential 
operator · Interaction integral · Thermoelastic fracture analysis · Thermal stress 
intensity factor. 

Nomenclature 
A Area enclosed by contours 

Γ0, Γ and crack surfaces 
a Crack length 
A0 Area enclosed by contour 

Γ0 and crack surfaces 
𝑎1, 𝑎2, 𝑎3, 𝑏, 𝑑 OSPD parameters 
𝐴(𝑛 𝑛 )(𝑞 𝑞 ) PD shape matrix 

𝑎𝑞 𝑞  Unknown coefficient 
matrix 

bfi Body force density of 
point i 

𝑏𝑛 𝑛  Known coefficient matrix 

cv Specific heat capacity 
𝐸, 𝐸∗ Elastic modulus 

𝑓(𝑥𝑖), 𝑓(𝑥 ) Arbitrary physical 
parameters on points xi 
and xj 

𝑓I, 𝑓II Functions for analytical 
solutions of crack tip 
stress field on mode-I and 
-II 

𝑔I, 𝑔II Functions for analytical 
solutions of crack tip 
displacement field on 
mode-I and -II 

𝑔2  2D PD function 

h Thickness of plate 
Hx Horizon of point x 
J J-integral or J value 
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𝐽𝑠 J-integral by 
superimposing states 

k Thermal conductivity 
𝐾I, 𝐾II Mode-I and -II SIFs 
𝐾I∗, 𝐾II∗   Normalized mode-I and -

II SIFs 
L Length of a 2D structure 
𝐿 Lagrangian 
m(x, t) Bond connection indicator 

of point x at time t 
M Interaction integral 
N Total number of material 

points in numerical model 
n Total number of material 

points in the horizon 
q, q,j q-function and its spatial 

derivatives in M 
R Remainder terms in 

Taylor Series 
R0 Region for q equals to 1 
R1 Region for linearly 

decrease of q from 1 to 0 
r Distance from crack tip 
rd Size of integral contour 
sij Bond stretch 
𝑇 Kinetic energies 
𝑇𝑖(𝑡), 𝑇𝑖 Temperature of point i at 

time t 
�̇�𝑖(𝑡), �̇�𝑖 Time derivative of 

temperature of point i at 
time t 

𝑇𝑖,1 Spatial derivative of 
temperature on x' direction 

tij Force state of point i 
𝑈 Potential energies 
𝑢𝑖 Displacement component 

of point i 
�̇�𝑖, �̈�𝑖 First and second order 

time derivatives of 𝑢𝑖 
𝑢𝑖,1 Spatial derivative of 𝑢𝑖 

on x' direction 
Vi Volume of point i 
W Width of a 2D structure 

WF Thermoelastic strain 
energy density 

Wi Strain energy density of 
point i 

wij Weight function for 
equation of motion in 
OSPD 

𝑥, 𝑦 Global coordinates 
𝑥 , 𝑦  Local coordinates 
𝑥𝑖, 𝑥  Initial configuration of 

points i and j 
𝑦𝑖, 𝑦  Deformed configuration 

of points i and j 
α Coefficient of thermal 

expansion 
𝛤, 𝛤0 Outer and inner J-integral 

contour 
δ Horizon size 
δij Kronecker delta 
εij Strain components 
Δx Grid space 
θ Angle between horizontal 

axis and bond 
Θ𝑖 Dilatation term of point i 
κ Bulk modulus 
�̃� Micro thermal 

conductivity 
λL Lamé’s constant 
μ Shear modulus 
μL Lamé’s constant (shear 

modulus) 
ν Poisson’s ratio 
ξ1, ξ2 x and y components of 

bond 
ρ Mass density 
σij Cauchy stress components 
τ Temperature difference 

between pairwise points of 
bond 

ϕ Angle from horizontal 
axis 

𝛷𝑖(𝑥, 𝑡) Damage value of point i 
on position x at time t 

ψ Crack inclined angle 
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𝜔𝑞 𝑞  Weight function for 
PDDO 

Abbreviation 
ADR Adaptive dynamic relaxation 

BBPD Bond based peridynamics 

CCM Classical continuum mechanics 

CTE Coefficient of thermal expansion 

FEM Finite element method 

OSPD Ordinary state based 
peridynamics 

PD Peridynamics 

PDDO Peridynamic differential operator 

PDEs Partial differential equations 

SIFs Stress intensity factors 

TSIFs Thermal stress intensity factors 

Superscript

aux Auxiliary field   
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1 Introduction 
Fracture analysis is one of the most cutting-edge research topics including complex 
physical behaviors in solid mechanics. Cracks, usually as an inevitable phenomenon in 
physics, are commonly existed in almost all materials and structures in the world. 
Unstable crack growth and propagation might lead to failure of local and global 
structural integrity. In many engineering applications, such as solid oxide fuel cell, LNG 
tank and internal combustion chamber, structures are always accompanied with extreme 
temperatures during operation. Therefore, thermal effects can play significant roles in 
fracture phenomenon, which requires tremendous attention on them. 
 
Many efforts are devoted to the investigation of damage and failure. Irwin [1] proposed 
an analytical method in solving the stress concentration level in the vicinity of the crack 
tip. He found that the stress values in this region can be expressed by a scaled factor, 
which is known as stress intensity factors (SIFs). However, the stress state around the 
crack tip is complex and it will bring mathematical difficulties for the determination of 
stress and strain fields. Therefore, Rice [2] introduced a path-independent method to 
approximate the strain/stress concentration at crack tip regions, named as J-integral (or 
J value). By appropriately defining the integral contour, strain energy release rate can 
be calculated, and then the SIF can be determined as 𝐾 = 𝐽 ∙ 𝐸, where E is an elastic 
modulus and J represents J-integral value. Without direct evaluation, the difficulties of 
SIF calculation can be overcome and the accuracy can be assured.  
 
Based on classical continuum mechanics (CCM), various numerical simulation 
methods are developed for SIF evaluation. Chen et al. [3] proposed a Lagrangian finite 
difference method (FDM) in the fracture analysis of central cracked plate. The dynamic 
SIF at the vicinity of crack tip is discussed and summarized in detail. Based on J-
integral, Yau et al. [4] and Stern et al. [5] developed an interaction integral in calculating 
the mix-mode SIFs for two-dimensional (2D) pre-damaged plates. By processing the 
composition of the actual field and auxiliary field, mode-I and -II SIFs can be extracted 
separately. Yu et al. [6] and Song et al. [7] further applied the interaction integral on 
non-homogeneous material. Kim et al. [8] used the interaction integral on the fracture 
analysis of functional grade materials. The interaction integral is also widely employed 
in thermoelastic fracture mechanics. Zamani et al. [9] and Duflot [10] analyzed mix-
mode TSIFs by using extended FEM. Besides, Nguyen et al. [11] studied the 
thermoelastic benchmark problems by using extended nodal gradient FEM. Various 
types of crack modes are elaborately discussed in terms of static and dynamic TSIFs. 
Moreover, Hosseini-Tehrani et al. [12] applied the boundary element method (BEM) to 
calculate dynamic mode-I SIF. These numerical methods have proved the strong 
applicability and reliability of the interaction integral in both mechanical and 
thermoelastic fracture analysis. 
 
In CCM, the deformation of structures or particles is described by partial differential 
equations (PDEs), and the geometrical continuity is strongly required [13]. However, 
fracture and failure are geometrically discontinuous in their nature. It will bring 
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difficulty for tracking the crack evolution, and the re-meshing process is unavoidable 
during numerical simulation, which will consume large amount of computing resources 
[14]. Hence, for the analysis of dynamic fracture behavior, various techniques are 
developed, such as cohesive zone method (CZM) [15, 16]. However, CZM experience 
dependency problem due to the alignment of cohesive elements on element boundaries. 
Therefore, extended finite element method (XFEM) is employed to overcome this 
limitation. Even though allowing the crack propagation within elements, the detection 
of the crack surface in 3D modelling is a challenged problem for XFEM. Phase field 
method is also popular in the evaluation of dynamic fracture mechanics [17]. Since this 
method is governed by higher order PDEs in primal form, it might have difficulties in 
solving problems with complicated geometries [18]. On the other hand, meshfree 
methods are developed to overcome the limitations of CCM in fracture analysis. Tanaka 
et al. [19] introduced a meshfree Galerkin method in the investigation of 2D in-plane 
fracture mechanics problem. Based on stabilized conforming nodal integration (SCNI), 
this meshfree method has shown excellent reliability and accuracy in calculating of 
mix-mode SIFs. The SCNI is further employed and validated on the fracture analysis 
of Mindlin-Reissner plate [20, 21]. Meanwhile, Pant et al. [22] also studied the 
thermoelastic problems by applying the meshfree Galerkin method.  
 
Nonlocal theory and higher-gradient continuum mechanics have been introduced by 
Gabrio Piola more than 100 years ago [23], but they become popular in recent decades. 
Peridynamic theory (PD), as an alternative nonlocal meshfree method, was first 
introduced by Silling [24] and it has many applications in fracture analysis. Imachi et 
al. [25] employed the OSPD in the analysis of mixed-mode 2D fracture problems. Good 
agreements between OSPD solutions and reference solutions in terms of dynamic SIFs 
indicate the OSPD has strong capability in fracture mechanics. Dai et al. [26, 27] further 
utilized the PDDO in fracture analysis of flat shell structure by OSPD. By using PDDO, 
the PDEs can be replaced by spatial integral equations, which makes the interaction 
integral embed into the OSPD framework properly. The PD has also taken the 
deformation under thermal effect into consideration. Oterkus et al. [28] had applied the 
bond based peridynamic theory (BBPD) in simulating the thermal diffusion and 
coupled field thermoelastic deformation. Later on, Madenci et al. [29] used OSPD to 
investigate of thermoviscoelastic deformation and fracture evolution. Nguyen et al. [30] 
applied OSPD to investigate the thermoelastic behaviors of shell structures. Ren et al. 
[31] improved the PD by introducing the dual horizon. The dual horizon PD has shown 
a better calculating efficiency and good performance in multi-material fracture analysis. 
Based on FEM, Dorduncu et al. [32] had developed a truss element for PD. Comparing 
with the traditional PD, it requires much fewer computing efforts before failure. Based 
on integro-differential equations, PD is straightforward to deal with discontinuities with 
good accuracy and efficiency. Within the framework of PD, PPDO can transform the 
PDEs into spatial integral equations. Although there are some other techniques 
available for the same purpose such as smoothed particle hydrodynamics (SPH), 
reproducing kernel particle method (RKPM), etc., PDDO is a robust technique and has 
similar characteristics as traditional PD. 
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To the best of authors’ knowledge, the studies about thermoelastic fracture analysis by 
using interaction integral under the framework of OSPD are rare. Therefore, in this 
article, TSIFs are evaluated by calculating several classical benchmark problems, and 
results by OSPD will be validated by reference solutions.  
 
The paper is structured as follows: In the second section of this article, the fundamental 
knowledge about OSPD will be presented, and the 2D PDDO will be illustrated in the 
third section. In the fourth section, the expression of thermoelastic interaction integral 
will be provided and the numerical benchmark problems will be discussed in the fifth 
section. In the final section, the numerical method and results will be briefly 
summarized. 
 
2 Ordinary state based peridynamic theory 
PD, later named as BBPD, was first introduced by Silling [24] as an extension of solid 
mechanics. In this theory, structure is discretized by finite number material points with 
a certain volume. Each point can interact with all surrounding points within finite 
distance and the collection of these points is called “Horizon” (Hx) as shown in Fig. 1. 
The interaction between each pair of these points is named as “bond”. It is assumed that 
bonds can only exist within the horizon. The influence from points outside the horizon 
are so weak that can be ignored. Bonds may deform as structure deforms, which gives 
rise to the pairwise forces as shown in Fig. 1. However, the BBPD is oversimplified 
and it has many limitations in numerical simulation. For example, the Poisson’s ratio 
has to be 1/3 and 1/4 for 2D and 3D problems, respectively. Therefore, Silling et al. [33] 
had further developed the constitutive model and proposed the OSPD. By redefining 
material-dependent parameter and introducing the concept of “state”, the limitations in 
BBPD had been overcome.  

 
Fig. 1 Horizon and pairwise force 

 

2.1 Equation of motion 
Equation of motion could be derived from principle of virtual work by solving the 
Lagrange’s equation [34], which is shown as: 
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𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�𝑖

−
𝜕𝐿
𝜕𝑢𝑖

= 0, (1) 

with 
 𝐿 = 𝑇 − 𝑈, (2) 

 
where 𝑢𝑖  and �̇�𝑖  refer to the displacement components and the time derivate of 
displacement components of point i, respectively. Lagrangian 𝐿 is defined as shown 
in Eq. (2), where 𝑇 and 𝑈 are total kinetic and potential energies respectively, which 
can be expressed as: 

 𝑇 =
1
2
𝜌�̇�𝑖�̇�𝑖𝑉𝑖,

𝑖=1

 (3) 

 𝑈 = 𝑊𝑖𝑉𝑖 −
𝑖=1

𝑏 𝑖𝑢𝑖𝑉𝑖
𝑖=1

, (4) 

where Wi is the strain energy density of point i. N is the total number of material points 
in the solution domain. bfi and Vi are body force density and volume of point i, 
respectively. Substituting Eqs. (2)-(4) back to Eq. (1), the numerical expression of 
equation of motion of OSPD can be expressed as: 

 𝜌�̈�𝑖 = 𝑡𝑖 − 𝑡 𝑖 𝑉 + 𝑏𝑖

𝑛

=1

, (5) 

 𝑡𝑖 =
1
𝑉

𝜕𝑊𝑖

𝜕 𝑦 − 𝑦𝑖

𝑦 − 𝑦𝑖
𝑦 − 𝑦𝑖

, (6) 

where n represents the total number of material points in the horizon. Note that, even 
though the force states tij and tji are similar in expression, they are not the same in 
physical meaning, because they are determined by the material points in their own 
horizons. In OSPD by considering thermal effects, Wi can be expressed as: 

 

𝑊𝑖 = 𝑎1Θ𝑖2 − 𝑎2Θ𝑖𝑇𝑖(𝑡) + 𝑎3 𝑇𝑖(𝑡)
2
 

+𝑏 𝑤𝑖 𝑦 − 𝑦𝑖 − 𝑥 − 𝑥𝑖 − 𝛼𝑇𝑖(𝑡) 𝑥 − 𝑥𝑖
2
𝑉

𝑛

=1

 , 
(7) 

where 𝑇𝑖(𝑡) is the temperature of point i at time t and α is the coefficient of thermal 
expansion (CTE). For 2D cases, the dilatation term Θi can be expressed as: 

 Θ𝑖 = 𝑑 𝑤𝑖 𝑠𝑖 − 𝛼𝑇𝑖(𝑡)
𝑦 − 𝑦𝑖
𝑦 − 𝑦𝑖

𝑥 − 𝑥𝑖 𝑉 + 2𝛼𝑇𝑖(𝑡).
𝑛

=1

 (8) 

The PD parameters 𝑎1, 𝑎2, 𝑎3, 𝑏 and 𝑑 in Eqs. (7) and (8) can be represented as 
[34]: 

 𝑎1 =
1
2
(𝜅 − 2𝜇), 𝑎2 = 4𝛼𝑎1, 𝑎3 = 4𝛼2𝑎1, 𝑏 =

6𝜇
𝜋ℎ𝛿4

, 𝑑 =
2

𝜋ℎ𝛿3
 , (9) 
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where κ is bulk modulus and μ is shear modulus, h is the thickness of the 2D structure 
and δ is the size of horizon. 
 
Usually, the shape of horizon is line, circle and sphere for 1D, 2D and 3D problems, 
respectively. Therefore, the member points within the horizon may not always have full 
volume especially for the points located on the boundary of the horizon. Hence, a 
volume correction factor, varies from 0 to 1, is employed for each material to represent 
the real volume enclosed by the horizon. Meanwhile, some material points might not 
have a full-size horizon, since they are closed to the structure boundaries. Therefore, it 
will lead to a decrease on both local and global stiffness of the structure. Hence, by 
comparing with CCM, a surface correction factor is applied to OSPD formulation to 
minimize the surface effect. 
 
2.2 Damage 
Bond may elongate or shorten during the structural deformation. Once the bond stretch 
exceeds a critical value, bond will irreversibly break as shown in Fig. 2. Usually, a 
parameter m is applied to indicate the situation of bond connection. m(x, t) = 1 indicates 
normal bond and m(x, t) = 0 for broken bond. Therefore, in PD, damage of a material 
point generally refers to the percentage of broken bond in its horizon, which can be 
represented as: 

 𝛷𝑖(𝑥, 𝑡) =
∫ 𝑚(𝑥, 𝑡)𝑑𝑉

∫ 𝑑𝑉
. (10) 

(a) (b) 
Fig. 2 Damage occurrence: (a) before damage, (b) after damage 
 
3 Peridynamic differential operator 
Generally, most kind of physical phenomena, such as thermal conduction, ion diffusion 
and mechanical deformation can be described by PDEs. In specific cases, they are too 
complicated to be solved by analytical methods. Thanks to the development of 
computing technologies, numerical methods, such as FEM [35], FDM [36] and BEM 
[37] are widely applied in approximating the PDEs. As mentioned previously, these 
methods have difficulties in fracture analysis due to discontinuous property of the 
solution domain. Meanwhile, large amount computing resources are necessary for 
numerical solution [38]. Madenci et al. [39] proposed the PDDO to approximate the 
PDEs within the framework of PD. By using PDDO, PDEs are replaced by spatial 
integral equations, which overcomes the geometry discontinuity problem during 
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fracture analysis [40, 41]. In this article, 2D PDDO will be presented. 
 
PDDO can be derived from Taylor’s Series. The 2D Taylor’s Series can be expressed 
as:  

 
𝑓 𝑥 = 𝑓(𝑥𝑖) + 𝜉1

𝜕𝑓(𝑥𝑖)
𝜕𝑥

+ 𝜉2
𝜕𝑓(𝑥𝑖)
𝜕𝑦

 

+
1
2!
𝜉12
𝜕2𝑓(𝑥𝑖)
𝜕𝑥2

+
1
2!
𝜉22
𝜕2𝑓(𝑥𝑖)
𝜕𝑦2

+ 𝜉1𝜉2
𝜕2𝑓(𝑥𝑖)
𝜕𝑥𝜕𝑦

+ 𝑅, 
(11) 

where f(xi) and f(xj) can be any physical parameter of material point i and j, respectively. 
ξ1 and ξ2 refer to the x and y component of the bond vector ξ, respectively. R, as 
remainder terms, are assumed small enough to be neglected. Moving the first term on 

the right-hand side to the left, and multiplying each term with PD function (𝑔2 (𝝃)) 

and integrating through the horizon, Eq. (11) can be reformulated as: 
 
 

 

𝑓 𝑥 − 𝑓(𝑥𝑖) 𝑔2 (𝝃)𝑑𝑉 =
𝜕𝑓(𝑥𝑖)
𝜕𝑥

𝜉1𝑔2 (𝝃)𝑑𝑉 

+
𝜕𝑓(𝑥𝑖)
𝜕𝑦

𝜉2𝑔2 (𝝃)𝑑𝑉 +
𝜕2𝑓(𝑥𝑖)
𝜕𝑥2

1
2!
𝜉12𝑔2 (𝝃)𝑑𝑉 

+
𝜕2𝑓(𝑥𝑖)
𝜕𝑦2

1
2!
𝜉22𝑔2 (𝝃)𝑑𝑉 +

𝜕2𝑓(𝑥𝑖)
𝜕𝑥𝜕𝑦

𝜉1𝜉2𝑔2 (𝝃)𝑑𝑉, 

(12) 

where p1, p2 = 0, 1, 2 except p1 = p2 = 0. In current 2D second order integrations, the 
horizon size is defined as three times of the grid size. Invoking the orthogonality 
property of PD function yields: 

 
1

𝑛1! 𝑛2!
𝜉1
𝑛 𝜉2

𝑛 𝑔2 (𝝃)𝑑𝑉 =𝛿𝑛 𝛿𝑛   𝑤𝑖𝑡ℎ  𝑛1, 𝑛2 = 0, 1, 2, (13) 

where 𝛿𝑛  is Kronecker delta. Substituting Eq. (13) into Eq. (12), the relationship 
between PDEs and PD functions can be expressed as: 

 

⎩
 
 
 
 
 

 
 
 
 
 
𝜕𝑓(𝑥𝑖)
𝜕𝑥

𝜕𝑓(𝑥𝑖)
𝜕𝑦

𝜕2𝑓(𝑥𝑖)
𝜕𝑥2

𝜕2𝑓(𝑥𝑖)
𝜕𝑦2

𝜕2𝑓(𝑥𝑖)
𝜕𝑥𝜕𝑦 ⎭

 
 
 
 
 

 
 
 
 
 

= 𝑓 𝑥 − 𝑓(𝑥𝑖)

⎩
 
 

 
 𝑔2

10(𝝃)
𝑔201(𝝃)
𝑔220(𝝃)
𝑔202(𝝃)
𝑔211(𝝃)⎭

 
 

 
 

𝑑𝑉. (14) 
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The 2D PD functions, 𝑔2 (𝝃), are composed of weight function ω and elements of 

unknown matrix 𝑎𝑞 𝑞  as: 

 
𝑔2 (𝝃) = 𝑎10 𝜔10𝜉1 + 𝑎01 𝜔01𝜉2 + 𝑎20 𝜔20𝜉12 

+𝑎02 𝜔02𝜉22 + 𝑎11 𝜔11𝜉1𝜉2. 
(15) 

The unknown coefficient matrix 𝑎𝑞 𝑞  depends on PD shape matrix 𝐴(𝑛 𝑛 )(𝑞 𝑞 ) 

and known coefficient matrix 𝑏𝑛 𝑛 , which can be expressed as: 

 𝐴(𝑛 𝑛 )(𝑞 𝑞 )𝑎𝑞 𝑞 = 𝑏𝑛 𝑛

2−𝑞

𝑞 =0

2

𝑞 =0

 . (16) 

Matrix 𝐴(𝑛 𝑛 )(𝑞 𝑞 ) depends on a weight function ω and initial bond vector ξ. The 
relationship between these factors can be represented as: 

 𝐴(𝑛 𝑛 )(𝑞 𝑞 ) = 𝜔𝑞 𝑞 𝜉1
𝑛 + 𝜉2

𝑛 + 𝑑𝑉. (17) 

The known coefficient matrix 𝑏𝑛 𝑛  can be constructed as: 

 𝑏𝑛 𝑛 = 𝑛1! 𝑛2! 𝛿𝑛 𝛿𝑛 . (18) 

Weight function is a manually defined function to represent the influence of interaction 
between material points. Usually, the larger in distance, the less in influence. Therefore, 
in this study, weight function is defined as: 

 𝜔𝑞 𝑞 =
𝛿
|𝝃|

𝑞 +𝑞 +1

. (19) 

Substituting, Eqs. (17)-(19) back to Eq. (16), the unknown coefficient matrix 𝑎𝑞 𝑞  

can be calculated as: 

𝑎𝑞 𝑞 =

⎣
 
 
 
 
 
 
 
 
 
 
2

𝜋ℎ𝛿4
0 0 0 0

0
2

𝜋ℎ𝛿4
0 0 0

0 0
9

𝜋ℎ𝛿6
−

3
𝜋ℎ𝛿6

0

0 0 −
3

𝜋ℎ𝛿6
9

𝜋ℎ𝛿6
0

0 0 0 0
12
𝜋ℎ𝛿6⎦

 
 
 
 
 
 
 
 
 
 

 . (20) 

Therefore, according to Eq. (15), 2D PD can be calculated as: 
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 𝑔210(𝝃) =
2

𝜋ℎ|𝝃|𝛿2
cos 𝜃, (21a) 

 𝑔201(𝝃) =
2

𝜋ℎ|𝝃|𝛿2
sin 𝜃, (21b) 

 𝑔220(𝝃) =
9

𝜋ℎ|𝝃|𝛿3
cos2 𝜃 −

3
𝜋ℎ|𝝃|𝛿3

sin2 𝜃, (21c) 

 𝑔202(𝝃) = −
3

𝜋ℎ|𝝃|𝛿3
cos2 𝜃 +

9
𝜋ℎ|𝝃|𝛿3

sin2 𝜃, (21d) 

 𝑔211(𝝃) =
12

𝜋ℎ|𝝃|𝛿3
cos 𝜃 sin 𝜃, (21e) 

where θ is the angle between bond and horizontal axis. Substituting Eqs. (21) in Eq. 
(14), the integral form of 2D PDEs in both first order and second order can be calculated. 
Meanwhile, the 1D and 3D PD function can be found in [39, 42, 43]. 
 
4 Thermal stress intensity factor 
4.1 Interaction integral by taking thermal effect into account 
According to Irwin’s theory [1], SIFs, as important fracture characteristic parameters, 
represent the stress concentration states in the vicinity of crack tips in linear elastic 
fracture mechanics. Based on the theory proposed by Wilson and Yu [44], for 
homogeneous material and static situations, the domain integral with consideration of 
thermal effect can be expressed as: 

𝐽 = 𝜎𝑖 𝑢𝑖,1 −𝑊 𝛿1 𝑞, 𝑑A + 𝛽 𝜀𝑖𝑖𝑇𝑖,1𝑞𝑑A
AA

+ 𝛽 𝜀𝑖𝑖𝑇𝑖,1𝑑A
A

 . (22) 

As shown in Fig. 3, local coordinate x' and y' is defined on crack tip. A is area enclosed 
by contours Γ0, Γ and crack surfaces. A0 is area enclosed by contours Γ0 and crack 
surfaces. As A0 is shrinking to the crack tip, the third term on the right-hand side of Eq. 
(22) can be ignored. ui,1 and Ti,1 are spatial derivatives of displacement vector and 
temperature in x direction, respectively. δij is Kronecker delta. Based on [45], the strain 
energy density can be represented by considering thermal effects as: 

 𝑊 =
1
2
𝜎𝑖 𝜀𝑖 −

𝛽
2
𝑇𝑖(𝑡)𝜀𝑖𝑖, (23) 

where εij is elastic strains and σij is corresponding to Cauchy stress which can be 
expressed as: 

 𝜎𝑖 =
𝜕𝑊
𝜕𝜀𝑖

= 2𝜇𝐿𝜀𝑖 + 𝜆𝐿𝜀𝑘𝑘𝛿𝑖 − 𝛽𝑇𝑖(𝑡)𝛿𝑖 , (24) 

where μL and λL are Lamé’s constants. The parameter β can be expressed as: 

 𝛽 =

𝐸𝛼
1 − 𝜈

plane stress
𝐸𝛼

1 − 2𝜈
plane strain

, (25) 

where E is elastic modulus; ν is Poisson’s ratio and α is coefficient of thermal expansion. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 
Fig. 3 J-integral contour at the crack tip region 
By superimposing the actual and auxiliary fields of Eq. (22), the interaction integral can 
be formulated. The superimposing domain integral (denoted as 𝐽 ) can be expressed 
as: 

 

𝐽 = 𝜎𝑖 + 𝜎𝑖𝑎 𝑢𝑖,1 + 𝑢𝑖,1𝑎 − (𝑊 +𝑊𝑎 )𝛿1 𝑞, 𝑑A
A

 

+𝛽 (𝜀𝑖𝑖 + 𝜀𝑖𝑖𝑎 ) 𝑇𝑖,1 + 𝑇𝑖,1𝑎 𝑞𝑑A
A

, 

(26) 

where q is manually defined weight function. Usually, it varies from 0 at contour edge 
to 1 at crack tip. In this study, q can be explained by frustum shape model as shown in 
Fig. 4. Within the region R0, q equals to 1. Within the region R1, q value experiences a 
linear decrease from 1 on inner boundaries to 0 on the outer boundaries of R1, as shown 
in Eq. (27). 𝑞,  refer to the spatial derivatives of q function on local coordinates x' and 
y'. 

 𝑞 =
1 𝑤𝑖𝑡ℎ𝑖𝑛 𝑅0

(0, 1) 𝑤𝑖𝑡ℎ𝑖𝑛 𝑅1
0 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑅1

 (27) 

 

 
Fig. 4 Description of q distribution surrounding a crack tip 
By decomposing Eq. (26), the interaction integral can be expressed by actual field J 
and auxiliary field J aux domain integrals as: 
 𝑀 = 𝐽 − 𝐽 − 𝐽𝑎 , (28a) 
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 𝑀 = 𝜎𝑖𝑎 𝑢𝑖,1 + 𝜎𝑖 𝑢𝑖,1𝑎 − 𝜎𝑖𝑘𝜀𝑖𝑘𝑎 𝛿1 𝑞, 𝑑A
A

+ 𝛽𝜀𝑘𝑘𝑎 𝑇𝑖,1 𝑞𝑑A
A

. (28b) 

The auxiliary stress fields and displacement fields are distributed as shown in Fig. 5 
[46] and they can be expressed as: 

 𝜎𝑖𝑎 = 𝐾I𝑎 𝑓I(𝑟, 𝜙) + 𝐾II𝑎 𝑓II(𝑟, 𝜙), (29a) 

 𝑢𝑖𝑎 = 𝐾I𝑎 𝑔I(𝑟, 𝜙) + 𝐾II𝑎 𝑔II(𝑟, 𝜙), (29b) 
where r and ϕ are coordinates in polar coordinate system. The expression of parameter 
𝑓I(𝑟, 𝜙) , 𝑓II(𝑟, 𝜙) , 𝑔I(𝑟, 𝜙)  and 𝑔II(𝑟, 𝜙)  can be found in many studies in the 
literature, such as [46]. Recalling Eq. (14), the derivatives in Eq. (28b) can be replaced 
by integral equation with respect to horizon, which has built up the relationship between 
the domain integral and OSPD. 

 
Fig. 5 Auxiliary stress distribution at the vicinity of the crack tip  
The relationship between domain integral and TSIFs under mixed-mode can be 
expressed as: 

 𝐽 =
(𝐾I + 𝐾I𝑎 )2 + (𝐾II + 𝐾II𝑎 )2

𝐸∗
, (30) 

where 𝐸∗ = 𝐸  for plane stress assumption and 𝐸∗ = 𝐸 (1 − 𝜈2)⁄  for plane strain 
assumption. Substituting Eq. (30) into Eq. (28a), the interaction integral can also be 
expressed in terms of TSIFs as: 

 𝑀 =
2
𝐸∗
(𝐾I𝐾I𝑎 + 𝐾II𝐾II𝑎 ). (31) 

By selecting particular auxiliary modes, the mode-I and -II TSIFs can be extracted 
respectively, as: 
 

𝐾I =
𝐸∗

2
𝑀 (𝐾I𝑎 = 1, 𝐾II𝑎 = 0), 

(32a) 

 
𝐾II =

𝐸∗

2
𝑀 (𝐾I𝑎 = 0, 𝐾II𝑎 = 1). 

(32b) 

 
4.2 Thermoelastic deformation 
Coupled thermal-mechanical deformation with PD quantities are also given in PD [34, 
47, 48]. Since thermoelastic deformation is addressed in Eqs. (5)-(9), thermal diffusion 
in PD will be briefly discussed in this part. Without considering additional heat source, 
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2D thermal conduction can be described by Fourier’s Law as [49]: 

 𝜌𝑐
𝑑𝑇𝑖(𝑡)
𝑑𝑡

= 𝑘∇2𝑇𝑖(𝑡), (33) 

where ρ is mass density, cv is specific heat capacity and k is thermal conductivity. In 
PD, the heat conduction, without considering the effect from mechanical deformation 
and heat source, can be expressed as: 

 𝜌𝑐 �̇�𝑖 = �̃�
𝜏
|𝝃|

𝑑𝑉 , (34) 

where �̃�  is micro-conductivity and 𝜏  is mean value of temperature difference 
between pairwise points of the bond. With the help of PDDO, the spatial PDEs in the 
heat conduction equation, can be replaced by integral equation directly. The 
transformation of material parameter between Eq. (33) and Eq. (34) becomes 
unnecessary. Therefore, Eq. (33) can be rewritten as: 

 𝜌𝑐 �̇�𝑖 = 𝑘 𝑇 − 𝑇𝑖 𝑔220𝑑𝑉 + 𝑇 − 𝑇𝑖 𝑔202𝑑𝑉 . (35) 

In this study, PDDO is applied in all of the simulations of thermal conduction and the 
calculations of interaction integral. 
 
5 Numerical case studies 
Several benchmark cases under thermoelastic effects are presented. Based on the 
interaction integral, single and mixed-mode static TSIFs are calculated and discussed. 
Results calculated by the OSPD will be validated by the reference solutions. Generally, 
the static numerical simulations in this study follow the procedure, which can be 
described by a flowchart as shown in Fig. 6. In the pre-processing part, the numerical 
model is defined. After discretizing the model, the horizon for each material point is 
established. By removing bonds or pairwise interaction, the cracks and damages on the 
model can be created, while the corresponding correction factors are also calculated at 
the same time. In the solving part, the boundary conditions are defined in each time 
step. Meanwhile, the PD governing equations and thermal diffusion equations are 
solved until the steady solutions are obtained. In post-processing part, the interaction 
integral with considering the thermal effect is constructed. By using PDDO, the spatial 
derivatives can be transformed into spatial integral terms, and hence, the evaluation of 
TSIFs can be implemented. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 
Fig. 6 Procedure of numerical simulation by OSPD 
As shown in Eq. (5), the equation of motion of OSPD is in dynamic form. For static 
analysis, the displacement field can also be calculated by equating dynamic term 𝜌�̈�𝑖 
to 0. However, large amount of computing resource is needed, especially for problems 
with complex geometry, boundary condition and refined discretization. Underwood 
introduced a method, named as the adaptive dynamic relaxation (ADR), for static 
analysis [50]. By introducing a damping factor to dynamic motion, the fluctuating 
results will converge and the static values can be obtained. The manually defined 
damping factor is given in [34, 51] in detail. In this article, ADR is applied in all 
numerical simulations. 
 
5.1 Isotropic plate under uniform thermal loading  
Before moving to fracture analysis, it is necessary to verify the capability of OSPD in 
thermoelastic deformations. Therefore, a 2D intact isotropic plate is selected in this case 
as shown in Fig. 7. The geometrical and material properties, and loading information 
can be found in Table 1. 

  
Fig. 7 Isotropic plate under uniform thermal loading 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Table 1 Geometrical and material properties, and loading information of the uncracked plate 

Length (m) 1.0 Poisson’s ratio  1/3 

Width (m) 0.5 Mass density (kg/m3) 7,850 

Thickness (m) 0.01 CTE (/°C) 2.30×10-5 

Elastic modulus (GPa) 200 Thermal loading (°C) 50 
Since thickness of the plate is far less than its length and width, plane stress assumption 
is applied. Initially, the temperature on plate is 0 °C, and then 50 °C temperature is 
uniformly applied to the plate. The plate is unconstrained. The deformation of the 
central axes (shown as colored dash lines in Fig. 7) on the plate caused by temperature 
change ΔT can be obtained based on analytical solution: 
 𝑢 (𝑥, 0) = 𝛼Δ𝑇𝑥, (36a) 
 𝑢 (0, 𝑦) = 𝛼Δ𝑇𝑦. (36b) 

(a) 

(b) 
Fig. 8 Deformation along central lines: (a) ux along horizontal axis (b) uy along vertical axis 
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This case study is also investigated in [34]. However, the uniform thermal expansion is 
simulated by using Eq. (34) under the framework of BBPD. In this study, Eq. (35) is 
applied within the framework of OSPD. The plate is uniformly discretized by 100×50 
material points. Fig. 8 shows the results of uniform thermal expansion. Results have 
showed that OSPD has strong accuracy and reliability in coupled thermal-mechanical 
deformation. 
 
5.2  An edge-cracked plate under thermal loading 
A strip with adiabatic edge-crack is under consideration. The strip is constrained on top 
and bottom surfaces. Initially, the temperature on the plate is 0 °C, and then the left and 
right edges are subjected to low and high temperature, respectively, as shown in Fig. 9. 
Therefore, the plate will experience contraction on the left edge and expansion on the 
right edge, which will lead to a mode-I crack scenario. Geometrical and material 
properties, and loading information are given in Table 2. The plane strain assumption 
is applied. 

 
Fig. 9 An edge-cracked strip under thermal loading 
Table 2 Geometrical and material properties, and loading information of the edge-cracked 
plate 
Length (mm) 0.5 Poisson’s ratio 0.25 
Width (mm) 2 CTE (°C) 1.67×10-5 

Crack length (mm) 0.25 Thermal loading T0 (°C) 1 
Elastic modulus (GPa) 218.4     

The numerical simulations are implemented by ANSYS (Mechanical APDL 19.2) for 
FEM and MATLAB (R2020b) for OSPD. Three different uniformed discretization 
schemes, coarse (50×200), intermediate (100×400) and refined (250×1,000), are 
applied respectively. In OSPD, fictitious regions are added to the upper and lower 
boundaries to avoid boundary effects and provide constrains. Meanwhile, fictitious 
regions with a size of δ are also added on left and right boundaries. For material points 
located in left fictitious region, the temperature remains as -1°C, and for those located 
in right fictitious region, the temperature keeps at 1°C. Since the bond or pairwise 
interaction across the crack surface is removed, the thermal flux can not pass through 
the crack. Therefore, insulated boundary condition on crack surface is automatically 
achieved without further manual intervention. Detailed information about the fictitious 
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regions can be found in [34]. After reaching the static state, the crack opening 
displacement and corresponding temperature distribution by FEM and OSPD are shown 
in Fig. 10. Results shows good agreement between OSPD and FEM in terms of 
displacement and temperature distribution. 

(a) 

(b) 
Fig. 10 Results comparison between FEM and OSPD: (a) crack opening displacement, (b) 
temperature distribution along crack surface 
As for TSIF calculations, within the elastic deformation assumption, the mode-I TSIF 
is normalized as: 

 𝐾I∗ =
𝐾I(1 − 𝜈)
𝐸𝛼𝑇0√𝜋𝑎

 . (36) 

Static TSIF results are validated by the reference solutions, which can be found in many 
studies in the literatures [10, 11, 22, 52, 53]. Results by OSPD based on different 
integral contours are shown in Table 3. 
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Table 3 Static TSIF results of edge-cracked plate 
Coarse Intermediate  Refined 

(Δx=10-5 m)  (Δx=5×10-6 m) (Δx=2×10-6 m) 
rd 𝐾I∗ error rd 𝐾I∗ error rd 𝐾I∗ error 

1.0×10-4 0.535 6.90% 1.0×10-4 0.532  6.48% 4.0×10-5 0.497  -0.64% 
1.5×10-4 0.541 8.18% 1.5×10-4 0.535  7.02% 8.0×10-5 0.496  -0.84% 
2.0×10-4 0.552 10.34% 2.0×10-4 0.539  7.86% 1.2×10-4 0.498  -0.36% 

         1.6×10-4 0.501  0.24% 
            2.0×10-4 0.505  0.96% 

 
Three different discretization schemes are presented in Table 3 and TSIF results are 
compared with reference solutions. Several integral contours are selected. Δx is grid 
space and rd is the size of the integral contour as shown in Fig. 4. From the results given 
in Table 3, the path independency is not accomplished in coarse and intermediate 
discretization cases. Moreover, the accuracy of normalized mode-I TSIFs is low, as 
compared with reference solution. This is most likely caused by the lack of physical 
values due to shortage of material points. However, in refined discretization, the path 
independency is accomplished and the error is maintained below 1%. It has proved the 
reliability of OSPD in the fracture analysis under thermal loading.  
 
5.3 A central-cracked plate under uniform thermal loading 
A pre-damaged square 2D plate, with an initial temperature of 0°C, is under 
consideration as shown in Fig. 11. The plate is fully constrained on all boundaries. A 
uniformed low temperature (-100 °C) is applied on the plate, which leads to a global 
contraction of the plate. Upper crack surface moves upwards and lower crack surface 
moves downwards, which forms a mode-I crack scenario. Side length of the structure 
2W is equal to 0.001 m, and a/W is equal to 0.5. Poisson’s ratio is 1/3. Other material 
properties of the structure remain the same as shown in Table 2. A plane stress 
assumption is considered. 

 
Fig. 11 A central-cracked plate under uniform thermal loading 
Similar to the edge-cracked case study, three discretization schemes, coarse (100×100), 
intermediate (200×200) and refine (400×400), are applied, respectively. Numerical 
results by OSPD are validated by reference solutions [54], which are shown in Table 4. 
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Four fictitious regions are added to all boundaries of the plate to define the boundary 
conditions. Within the elastic deformation assumption, mode-I SIF is normalized as: 

 𝐾I∗ =
𝐾I

𝐸𝛼|𝑇0|√𝑊
 . (38) 

Table 4 Static TSIF results of the central cracked plate 
Coarse Intermediate Refined 

(Δx=10-5 m) (Δx=5×10-6 m) (Δx=2.5×10-6 m) 
rd 𝐾I∗ error rd 𝐾I∗ error rd 𝐾I∗ error 

1.0×10-4 1.306 -2.03% 1.0×10-4 1.342 0.68% 5.0×10-5 1.342 0.62% 
1.5×10-4 1.350 1.28% 1.5×10-4 1.339 0.41% 1.0×10-4 1.336 0.22% 
2.0×10-4 1.346 0.94% 2.0×10-4 1.337 0.29% 1.5×10-4 1.334 0.08% 

      2.0×10-4 1.333 -0.01% 
Results calculated by coarse case are relatively low in accuracy. However, the errors 
are maintained below 1% for intermediate and refined case, which shows a good 
accuracy of numerical simulations. Meanwhile, path independency is also 
accomplished in intermediate and refined cases, which also indicate that OSPD is a 
reliable tool in thermoelastic fracture analysis.  
 
5.4  A slant cracked plate under thermal loading 
A 2D structure with slant crack is under investigation. Relationship between crack 
length and TSIFs are discussed. Initially, the temperature on the plate is defined as 0°C. 
High and low thermal loading are applied on upper and lower edges of the structure, 
respectively, as shown in Fig. 12. Meanwhile, the lower edge is fixed. Crack inclination 
angle ψ is equal to 30°. Length of the structure is 2.0 ×10-3 m and width of the structure 
is 1.0 ×10-3 m. Plane strain assumption is applied. Based on the previous TSIF studies, 
refined discretization scheme (400×200 or Δx = 5×10-6 m) is selected during the 
numerical implementation to keep high accuracy of numerical simulation. Two 
fictitious regions with size of δ are applied on the top and bottom edges. For material 
points located in top fictitious region, the temperature remains as 1°C. For material 
points located in bottom fictitious region, the temperature keeps at -1°C and 
displacement in y direction is fixed as 0 m. Additionally, the left corner points are fully 
constrained. Within the elastic deformation assumption, mixed-mode TSIFs are 
normalized as:  

 𝐾𝑖∗ =
𝐾𝑖

𝐸𝛼𝑇0
𝐿
𝑊 √𝐿

    (𝑖 = I, II) . (39) 

Comparison between OSPD and reference solutions in literatures [11, 53, 55] are 
provided in Table 6, Table 7 and Fig. 13. 
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Fig. 12 Slant cracked plate under thermal loading 
Table 5 Static TSIF results for a/L = 0.3 at ψ = 30° 

a/L = 0.3 
rd 𝐾I∗ 𝐾II∗  

30Δx 0.0081  0.0476  
35Δx 0.0082  0.0478  
40Δx 0.0084  0.0480  
45Δx 0.0085  0.0481  
50Δx 0.0086  0.0482  

Table 6 Static TSIF results for different crack length at ψ = 30° 
 Ref. [11] Ref. [53] Ref. [55] OSPD 

a/L 𝐾I∗ 𝐾II∗  𝐾I∗ 𝐾II∗  𝐾I∗ 𝐾II∗  𝐾I∗ 𝐾II∗  
0.3 0.0069  0.0460  0.0060  0.0480  0.0080  0.0480  0.0081  0.0476  
0.4 0.0152  0.0610  0.0140  0.0640  0.0150  0.0640  0.0154  0.0628  
0.5 0.0260  0.0720  0.0260  0.0760  0.0270  0.0760  0.0258  0.0756  
0.6 0.0370  0.0872  0.0400  0.0870  0.0410  0.0860  0.0386  0.0857  

Table 7 Differences between reference solutions and OSPD solutions at ψ = 30° 
 Ref. [11] Ref. [53] Ref. [55] 

a/L 𝐾I
∗𝑅𝑒𝑓 𝐾I∗ 𝐾II

∗𝑅𝑒𝑓 𝐾II∗  𝐾I
∗𝑅𝑒𝑓 𝐾I∗ 𝐾II

∗𝑅𝑒𝑓 𝐾II∗  𝐾I
∗𝑅𝑒𝑓 𝐾I∗ 𝐾II

∗𝑅𝑒𝑓 𝐾II∗  

0.3 0.852 0.966 0.741 1.008 0.988 1.008 
0.4 0.987 0.971 0.909 1.019 0.974 1.019 
0.5 1.008 0.952 1.008 1.005 1.047 1.005 
0.6 0.959 1.018 1.036 1.015 1.062 1.004 
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Fig. 13 Comparison of TSIFs between OSPD and reference solutions 
A plate with pre-existing slant crack (a/L=0.3) is first selected for thermoelastic fracture 
analysis. Five integral contours, whose size varies from rd = 1.5×10-4 m (30Δx) to rd = 
2.5×10-4 m (50Δx), are defined. According to Table 5, good path independency has been 
shown for both mode-I and -II TSIFs. Then, plate with different slant crack length is 
being tested. Crack size, a/L, varies from 0.3 to 0.6. Meanwhile, the size of integral 
contour, rd=1.5×10-4 m (30Δx), is defined in all numerical cases. Based on loading and 
constrain conditions, it is a mode-II dominant situation in this case study. Therefore, 
mode-II TSIF is larger than the mode-I TSIF as shown in the results. As the crack length 
increases, the TSIFs increase as well. According to Table 6, Table 7 and Fig. 13, The 
OSPD solutions for different crack length vary between these reference solutions. 
Overall, the comparison has proved the capability in mix-mode thermal fracture 
analysis. 
  
6 Conclusion 
In this study, OSPD is applied in the thermoelastic fracture analysis. As a nonlocal 
theory, long-range interactions are integrated within the horizon. By employing the 
spatial integral equation, the limitation due to geometrical discontinuity can be 
overcome in OSPD. Based on J-integral, interaction integral method is applied in TSIF 
calculation within the framework of OSPD. Meanwhile, both first and second order 
PDDO are utilized in thermal diffusion and TSIF calculation. PDEs are replaced by 
spatial integral equations, which contribute the numerical implementations of OSPD.  
 
Several benchmark cases studies are conducted in this study. The free expansion of 2D 
plate under uniform thermal loading is firstly simulated. Results have proved the 
capability and accuracy of OSPD in analysis of thermoelastic deformation. Then mode-
I TSIF is evaluated by using interaction integral. Finally, mixed-mode TSIFs are 
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simulated in order to investigate the relationship between crack characters and TSIFs. 
OSPD solutions have reached good agreements with reference solutions. It shows 
OSPD is a useful and reliable tool in the evaluation of TSIFs, which brings an 
alternative way in thermoelastic fracture analysis. 
 
Due to the limitation of proposed method, there are relative low accuracy in evaluation 
of mode-II dominant fracture problems. In future research, OSPD formulation will be 
optimized in order to accurately simulate the shearing behaviors of cracks. The 
thermoelastic fracture analysis in this article will not only contribute to the development 
of PD, but also provide theoretical supports for engineering practice. 
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