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AlexNet, they produced models that took longer to
train and had worse accuracy results. This is sugges-
ted to be due to more overfitting present due to higher
divergence in training and validation loss plots.

Alternative signal processing methods could have
been used in this method such as short-term Four-
ier transform (STFT). The output spectrogram from
STFT analysis is very similar to the scalogram from
CWT analysis, with the main difference being the res-
ulting frequency and time resolutions. STFT uses a
fixed window size resulting in time-frequency graphs
with uniform time and frequency resolutions. A
trade-off between the frequency and time resolutions
must be made when choosing the fixed window size
for STFT, which is not required for CWT. CWT
uses variable, scaled window sizes to create graphs
with non-uniform time and frequency resolutions.
The non-uniform resolutions allow lower frequency
trends in the data to be seen at longer time intervals
and higher frequency trends to be seen at shorter time
intervals. Due to the non-stationary nature and var-
ied frequency range of EEG signals, CWT was chosen
as the most appropriate signal processing method.

In comparison to the literature reviewed in
section 2, the results improve on the accuracy of HA
vs MCI vs AD presented by the most recent study
from leracitano ef al (2020), who produced a com-
bined Bispectrum and CWT feature model, with a
maximum average accuracy of 89%. Their paper uses
more subjects (n = 189) in comparison to the sub-
jects in this study’s database (1 = 141) and is bal-
anced between classes which means the data are better
suited for DL applications. The results are also calcu-
lated over a range of ten tests which gives reliability
to their results. The results also improve on the max-
imum accuracy found in literature, from Bi and Wang
(2019) at 95% accuracy of HA vs MCI vs HA using
an alternative method and data set. The input to their
bespoke machine learning model uses a unique com-
bination of spectral topography maps to produce this
result, however, lacks depth as the subject pool is very
small (n = 16) in comparison to our data set. Both
papers included a statistical analysis of the results,
such as ROC curves and confusion matrices, further
allowing direct discussions and comparison between
the papers.

The other papers in section 2 by Kim and Kim
(2018), Fan et al (2018) and Zhao and He (2015) are
all binary classifiers. As this research study produced
three-class classification of AD vs MCI vs HA, ithas a
clear impact advantage. The signal processing meth-
ods of RP from Kim and Kim (2018) and MSE from
Fan et al (2018) are less computationally complex
compared to CW'T. Conversely, their respective DNN
and LASSO classification models were more complex
than the proposed CNN in this study. All three papers
also use databases that are much smaller compared to
the database used in this study, despite this still pro-
duce lower accuracy results.
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Despite the promising results presented, our
study has limitations. The recording of scalp EEG
signals was conducted in a controlled environment,
requiring clinical space and trained professionals
which can be time consuming and expensive. Bias is
an important topic in medical AT and DL and should
be reduced as much as possible. By removing human
interaction in the signal processing and classification
stages, this study has attempted to avoid bias; how-
ever, there were still areas for improvement. The data-
base required initial input of labels for this supervised
learning method, which means that there was a pos-
sibility of errors within the diagnosis via the stand-
ard clinical criteria explained in section 3.2 (Batum
et al 2015). The educational level of the subjects,
which is a known contributor to AD, has not been
assessed in the data pre-processing. The similarities
and differences between the 5 s epochs within the
10 min samples have also not been assessed, which
could affect the results. Furthermore, it is unrealistic
to compare these results directly to the in vive dia-
gnostic accuracy of AD (77%) as the results within
this report rely on pre-defined labels using gold stand-
ard techniques. To be used in a clinical setting, this
method would need to be validated using additional
data, ideally progressing onto a model that produces
significant results regardless of the patient’s demo-
graphical information such as age, location, and edu-
cational history.

6. Conclusions

In this study, a signal processing method combined
with an optimised DL model has been developed that
presents accuracy results of 98.9%, currently higher
than any results presented in literature within this
field.

Other methods were tested and discussed, includ-
ing spectrogram time-frequency images, alternative
DL architectures GoogleNet and ResNet-18 and a
variety of different hyperparameter values. These dif-
ferent strategies did not produce superior accuracy
results but provided a useful comparison to the final
model.

This study has shown some very promising results
but further work is required to progress this research,
with the end goal to produce a clinically accurate tool
that could be used to aid healthcare professionals in
providing better diagnosis for elderly patients with
symptoms that are typical of MCI or AD. Recom-
mendations for future work could encompass the
tollowing:

o Test this model as a two-class problem by com-
paring the AD vs MCI accuracies against the MCI
vs HA accuracies. This leads to a hypothesis that
a lower number of classification categories would
result in improved accuracies.
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o Explore alternative ways to create RGB images from
EEG signals, possibly by combining other signal
processing methods quantifying changes in these
signals related to AD.

e Explore additional pre-trained networks or
bespoke DL architectures.

e Use the model on other databases (out of sample
data) to further understand its reliability and
accuracy.

o Test the use of automatic hyperparameter selection
using methods such as Bayesian optimisation.

e Create an ‘International Standard’ data set for
training and testing similar systems for the dia-
gnosis of AD.

The findings presented in this study have sig-
nificantly added to the continued knowledge sur-
rounding DL of EEG signals for AD diagnosis. The
increased accuracy results show promising outcomes
for future applications of DL to the classification and
diagnosis of AD. This could eventually help combat
the resource-intensive and human dependant meth-
ods that are currently used, ultimately providing a
quantitative probability value for the diagnosis of a
patient.
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