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Abstract

Objective. This study aimed to produce a novel deep learning (DL) model for the classification of
subjects with Alzheimer’s disease (AD), mild cognitive impairment (MCI) subjects and healthy
ageing (HA) subjects using resting-state scalp electroencephalogram (EEG) signals. Approach. The
raw EEG data were pre-processed to remove unwanted artefacts and sources of noise. The data were

then processed with the continuous wavelet transform, using the Morse mother wavelet, to create

time-frequency graphs with a wavelet coefficient scale range of 0—600. The graphs were combined

into tiled topographical maps governed by the 10-20 system orientation for scalp electrodes. The

application of this processing pipeline was used on a data set of resting-state EEG samples from
age-matched groups of 52 AD subjects (82.3 + 4.7 years of age), 37 MCI subjects (78.4 4 5.1 years
of age) and 52 HA subjects (79.6 + 6.0 years of age). This resulted in the formation of a data set of
16197 topographical images. This image data set was then split into training, validation and test
images and used as input to an AlexNet DL model. This model was comprised of five hidden
convolutional layers and optimised for various parameters such as learning rate, learning rate

schedule, optimiser, and batch size. Main results. The performance was assessed by a tenfold

cross-validation strategy, which produced an average accuracy result of 98.9 4 0.4% for the

three-class classification of AD vs MCI vs HA. The results showed minimal overfitting and bias
between classes, further indicating the strength of the model produced. Significance. These results
provide significant improvement for this classification task compared to previous studies in this
field and suggest that DL could contribute to the diagnosis of AD from EEG recordings.

1. Introduction

Dementia is a term that describes a collection of dis-
eases that affects approximately 50 million people
worldwide (Prince et al 2015). It is characterised
by a measured cognitive decline in two or more
domains such as memory, language, behaviour and
personality, ultimately leaving the individual unable

© 2021 The Author(s). Published by IOP Publishing Ltd

to perform simple everyday tasks (Weller and Budson
2018). The global healthcare cost of dementia is
upwards of $818 billion, which is increasing year by
year (Prince et al 2015). Alzheimer’s disease (AD)
contributes to approximately 60%—80% of the global
dementia diagnoses and is most prevalent in adults
aged 60 and above (Weller and Budson 2018). The
biggest risk for AD is age, with a reported doubling


https://doi.org/10.1088/1741-2552/ac05d8
https://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/ac05d8&domain=pdf&date_stamp=2021-6-17
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2354-9234
https://orcid.org/0000-0002-2105-8725
https://orcid.org/0000-0002-2412-648X
https://orcid.org/0000-0003-2681-4240
https://orcid.org/0000-0002-4268-2885
mailto:cameronjhuggins@gmail.com

BOP Publishing

J. Neural Eng. 18 (2021) 046087

of the disease prevalence every 6.3 years after the age
of 60 (Prince et al 2015). Other factors include health
risks such as high body mass index, high fasting gluc-
ose, smoking and increased intake of sugar-sweetened
beverages (GBD 2016 Dementia Collaborators 2019).

AD is related to neurofibrillary tangles and amyl-
oid plaques developing in the cerebral cortex area
of the brain, especially in the hippocampus (DeTure
and Dickson 2019). An intermediary stage between
healthy ageing (HA), sometimes referred to as healthy
control, and AD has been widely recognised as a stage
called mild cognitive impairment (MCI). It is cur-
rently unclear who amongst individuals with MCI
will develop AD dementia (Kramer et al 2007). At
present, the only definitive way to diagnose AD is
via post-mortem examination to find the plaques or
tangles within the brain (DeTure and Dickson 2019).
However, with the advent of novel dementia bio-
markers which can be gathered in vivo, a new biolo-
gical definition of AD has been introduced (Jack Jr
etal 2016) (JackJr ef al 2018). Biomarkers are expens-
ive, invasive, little specific, and only available in spe-
cialised centres (Parra et al 2019).

The gold standard, or current state of the art,
for diagnosing AD uses mental examinations com-
bined with costly and time-consuming neuroima-
ging scans such as magnetic resonance imaging and
positron emission tomography (Cassani ef al 2018).
These imaging tools aim to highlight biomarkers,
such as amyloid-/3 peptides, that indicate the form-
ation of plaques within the brain. This method is
highly dependent on trained doctors that interpret
and analyse the results to determine the diagnosis.
The reported diagnostic accuracy of AD by experts
alone is only 77% (Sabbagh et al 2017).

Early diagnosis of AD, during the MCI stage,
would allow healthcare professionals to avoid misdia-
gnosis, deliver quick and more appropriate treatment
options, and provide better overall disease manage-
ment. To achieve this, the analysis of electroencephal -
ogram (EEG) signals has been suggested by research-
ers to find features and biomarkers that may aid in
AD diagnosis (Dauwels et al 2010, Rossini et al 2020).

Conventionally, EEG analysis has been used clin-
ically to evaluate different conditions such as epi-
lepsy, sleep disorders and strokes (Britton et al 2016).
In addition, these signals have also been analysed in
research settings using visual and statistical meth-
ods for the diagnosis of AD. The drawback of this
is that standalone, EEG analyses have not produced
results which can compete with standard practices
(Craik et al 2019). Typically, EEGs are subject to sig-
nal processing techniques that provide condensed tea-
tures for classification. There are three main features
of EEGs that differ between AD and HA which are:
slowing of the EEG, reduced complexity of the EEG
and EEG synchrony (Dauwels et al 2010). Examples
of signal processing methods for the detection of
slowing of the EEG include time frequency analysis
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techniques such as discrete Fourier transform, power
spectral density (PSD) and continuous wavelet trans-
form (CWT). Entropy and Lempel-Ziv complexity
are examples of algorithms used to explore EEG com-
plexity and the Pearson correlation coefficient and
Coherence function have been used to identify per-
turbations in EEG synchrony (Dauwels et al 2010).
The problematic poor performance of EEG analysis
for AD diagnosis has drawn interest from new devel-
opments in Artificial intelligence (AI), with the abil-
ity to analyse signals with increased complexity and
depth.

Deep learning (DL) is a subsection of Al that
has become popular in recent years due to advance-
ments of Graphics processing units (GPUs) in com-
puting. It aims to mimic the learning of the human
brain by using complex algorithms to obtain fea-
tures of data that cannot be seen using conventional
statistical analysis methods. Thus, millions of learn-
able parameters, particularly useful in image classi-
fication problems, are built to detect perturbation
teatures. These algorithms have proven results that
exceed human performance in classification prob-
lems such as ImageNet (Dodge and Karam 2017).
Many biomedical engineering applications, including
EEG analysis, can produce graphical image outputs
that can be used as inputs to these DL networks.

It is hypothesised that improved accuracies for the
diagnosis of AD can be achieved using DL to cor-
rectly classity the EEG recordings from AD, MCI or
HA subjects. This study employed a novel signal pro-
cessing technique to convert complex EEG record-
ings into usable input images for a DL network. A
pre-trained DL model was optimised for this study’s
focus, trained using the ground truth values associ-
ated with each image. It was then cross validated to
evaluate the reported classification accuracy result.

The outline of this paper is as follows. Section 2
details the related literature and studies in this field.
Section 3 describes the materials and methods used.
Section 4 displays the results of the study and section 5
contains the discussion. Finally, section 6 presents the
conclusions and further work.

2. Related studies

This section details seven studies that relate to the
research topic of improving diagnosis of AD using DL
of EEG signals. It is split into two sections detailing
three-class and two-class classification.

The first reported paper to complete three-class
(tertiary) classification of AD vs MCI vs HA using DL
techniques was by Morabito ef al (2016). The authors
propose a two-layer deep convolutional neural net-
work (CNN) that uses extracted features from time-
frequency maps as the input to the network. The
signal processing method used was CWT with the
Mexican Hat mother wavelet. The reported accur-
acy was relatively low at 82% and used a reasonably
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small data set consisting of 23 AD, 23 MCI and 23 HA
subjects.

A discriminative deep probabilistic model was
proposed by Bi and Wang (2019) which produced an
accuracy result of 95.04% for three-class classifica-
tion of AD, MCI and HA. The employed signal pro-
cessing technique created spectral topography maps
from raw signals, showing the relative power (RP) per
frequency band across each electrode in one image.
One shortfall of this paper is that, although a com-
bined 12000 images were used across training and val-
idation, the data originated from a very small sample
size of four subjects per class. This could indicate
that the results are more susceptible to error and less
accurate than what is stated within the paper.

A paper published by leracitano et al (2019) used
2D greyscale PSD images as an input to a CNN for
the three-class classification of AD, MCI and HA. The
authors report an accuracy of 83.33% for the CNN,
which was superior compared to shallow machine
learning techniques such as support vector machine
(SVM), multi-layered perceptron (MLP) and linear
discriminant analysis. This result showed clear accur-
acy benefits for using CNNs within this field; how-
ever, the authors correctly conclude that without
future work, this method would not be sufficient
alone for clinical diagnosis of AD. In addition to the
large data set of 63 HA, 63, MCI and 63 AD sub-
jects, a clear explanation of the importance of avoid-
ing bias by balancing and age-matching the data set
was included. Despite the large number of subjects,
there were only 2340 images used within the model
due to the sampling size which is below the general
guidelines of 1200 images per class (Stanford Vision
Lab 2010).

The most recent published paper by Ieracitano
et al (2020) used a ‘multi-modal machine learning’
approach to classity EEG recordings in dementia. The
authors make use of a novel combination of fea-
tures extracted from Bispectrum analysis and CWT
time-frequency analysis to classify AD vs MCI vs HA.
The results indicate a maximum of 89.22% accuracy
for this classification, which is a significant increase
in using either signal processing method individu-
ally. The results published are supported with statist-
ical evidence and used the largest number of features
seen within this field equalling 207900. However, the
authors do not innovate within machine learning,
using a simple MLP as the classifier for this prob-
lem. It successfully identities areas of future research,
such as linking this work with a feasibility study using
a novel spiking neural network (NN) architecture
called NeuCube (Capecci et al 2014).

Three of the seven papers analysed only repor-
ted two-class classification which severely reduced the
complexity requirement of the models proposed.

Zhao and He (2015) used time-domain EEG sig-
nals as the input to a restricted Boltzmann machine
(RBM) network to obtain features from the data,
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which are classified using an SVM. The unique feature
of this paper is that the authors conducted a detailed
optimisation experiment on the number of hidden
layers and number of nodes within each layer for this
network. They conclude that a low number of layers
(L = 3) and high number of nodes (n = 2000) was
preferential, resulting in a two-class (binary) classific-
ation accuracy of 92%. The authors reduced comput-
ing time by only using 10 out of the 30 available sub-
jects (15 AD, 15 HA) but showed that the sample size
was small in comparison to a relatively large 19200
input images.

Kim and Kim (2018) investigated early diagnosis
of AD by producing a model that detects the differ-
ence between MCI and HA subjects. The model com-
prises of a deep neural network (DNN) with feature-
based inputs relating to the RP of different frequency
bands within EEG signals. The model’s performance
was poor in comparison to other papers analysed,
with just 75% accuracy over a small data set of 10 HA
and 10 MCI subjects. In comparison to the paper by
Zhao and He (2015), the authors also investigate the
effect of the number of hidden layers within the net-
work but report the highest accuracy with the largest
number of hidden layers tested (L = 4). This ditfer-
ence could be explained by various factors such as the
difference in NN type, data set and type of two-class
classification.

Fan et al (2018) made use of a complexity meas-
ure, multiscale entropy (MSE), to extract features of
the EEG signals, in numerical form, for the input to
a DL linear regression model. A calculated 46470 fea-
tures were used which produced a maximum accuracy
result of 82%, low compared to the other papers in
this section. An interesting data set classification was
used which compared HA subjects to three different
severities of AD based on increasing clinical Demen-
tia rating (CDR) scores (AD1, AD2 and AD3). The
specificity of each AD diagnosis has advantages and
disadvantages; it could lead to better diagnosis accur-
acy results but limits the model to this data set as
the CDR scale is not readily available for many other
databases. Although the data set was large with 123
subjects, it was also highly unbalanced with only 15
HA subjects. The authors were able to suggest future
improvements including altering the MSE method,
collecting more data and assessing the interactions
between electrodes.

A summary of the key information presented in
each discussed paper is detailed in table 1.

Cassani et al (2018) produced a review paper on
EEG for AD diagnosis and includes recommenda-
tions for the future of this research area. The authors’
recommendations focus on the EEG databases, which
should be balanced around demographics such as age,
gender, number of subjects and education level as well
as being as large as possible. The paper also suggests
that clearer and more detailed information should be
provided about the process of machine or DL. This



BOP Publishing

J. Neural Eng. 18 (2021) 046087

CJ Huggins et al

Table 1. A summary of the previous directly related papers in the field of DL of EEG signals for the diagnosis of AD, showing the
database size and age matching, signal processing methods employed, machine learning architectures used and final classification results.

Database size Signal processing Machine learning
Reference and age matching method architecture Results
Ieracitano et al 63 HA Features from Mexican MLP AD-MCI-HA = 89%
(2020) 63 MCI Hat CWT and Bispectrum

63 AD estimation.

Balanced
Bi and Wang 4HA 2D RGB images by DCssCDBM AD-MCI-HA = 95%
(2019) 4 MCI combining spectral Two hidden layers

4AD topographical maps

Balanced
Ieracitano et al 63 HA 2D greyscale Periodogram ~ CNN AD-MCI-HA = 80%
(2019) 63 MCI images One hidden layer MCI-HA = 92%

63 AD AD-HA =91%

Balanced MCI-AD = 84%
Kim and Kim 10NC Features from RP DNN MCI-HA = 75%
(2018) 10 MCI Four hidden layers

Age-matched
Fan et al (2018) 15 HA Features from MSE LASSO Model HA-AD1 = 42%

15 AD1 Analysis HA-AD2 = 69%

69 AD2 HA-AD3 = 79%

24 AD3 AD1-AD3 = 82%

Unknown AD2-AD3 =72%

AD1-AD2 =71%

Morabito et al 23 HA 2D RGB images from CNN AD-MCI-HA = 82%
(2016) 23 MCI Mexican Hat CWT Two hidden layers MCI-HA = 85%

23 AD AD-HA = 85%

Balanced MCI-AD = 78%
Zhao and He 15 HA Raw Data RBM AD-HA =92%
(2015) 15 AD Three hidden layers

Unknown

AD = Alzheimer’s disease, CNN = Convolutional neural network, CWT = Continuous wavelet transform,

DCssCDBM = Discriminative contractive slab and spike convolutional deep Boltzmann machine, DNN = Deep neural network,

HA = Healthy aging, LASSO = Least absolute shrinkage and selection operator, MCI = Mild cognitive impairment, MLP = Multi-layer
perceptron, MSE = Multiscale entropy, RBM = Restricted Boltzmann machine, RGB = Red, green and blue, RP = Relative power.

is apparent after reviewing the above seven papers, as
they all provide different levels of detail surrounding
the experimentation and design process and make it
difficult to reproduce or build upon their results. The
reviewed papers show the possibility of high accur-
acy classification using a combination of signal pro-
cessing and DL of EEGs, and there are lots of different
methods that are yet to be explored.

3. Materials and methods

3.1. Model design

The overall design of the proposed model within this
study is outlined in the experimental flow diagram in
figure 1. First, the raw EEG signals were pre-processed
and split into epochs of 5 s. Each sample was then sub-
ject to signal processing and converted into RGB col-
our images that were suitable as an input to an optim-
ised DL NN. The resulting image data set was then
randomly split into ten folds, from which a discrete
portion of the folds were used in the training, valida-
tion, and test splits of the DL NN model. The model
was then validated using k-fold cross validation and
assessed using confusion metrics.

3.2. Subjects

This study consisted of 141 subjects originating from
the Behavioural and Cognitive Neurology Unit of the
Department of Neurology and the Reference Centre
for Cognitive Disorders at the Hospital das Clin-
icas in Sao Paulo, Brazil (henceforth referred to as
the ‘Brazil’ study) (Cassani et al 2017). The Brazil
study diagnosed AD and HA subjects according to
the National Institute of Neurological Disorders and
Stroke and Alzheimer’s disease and related disorders
(NINCDS) criteria. Typically, within this study AD
subjects presented a Mini Mental State Examination
(MMSE) score of <24 and a CDR of 0.5-2, and HA
subjects presented an MMSE score of >25 and a
CDR of 0. The AD subjects were required to have
shown functional and cognitive decline over the pre-
vious 12 months. The MCI subjects are presented
with an MMSE score of =24 and a CDR of 0-0.5,
with objective evidence of impairment in one or
more cognitive domains but retaining independence
in functional abilities (Albert et al 2011) (Petersen
and Knopman 2006) (Petersen and Negash 2008). In
addition, all subjects were required to display absence
of conditions that cause cognitive decline specified
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Figure 1. Experimental flow diagram showing a simplified version of the proposed model. The training folds/test folds describe a
proportion of the data assigned to train or test the model respectively. Reproduced with permission from Krizhevsky et al (2012).

as diabetes mellitus, kidney disease, thyroid disease,
alcoholism, liver disease, lung disease or vitamin B12
deficiency (Cassani et al 2017).

The EEG recordings from the Brazil study
were collected using a resting-awake eyes-closed
method using the Braintech 3.0 EEG device (EMSA
Equipamentos Médicos Inc., Brazil) with a sampling
frequency of 200 Hz. The electrode positioning
consisted of 21 electrode, positioned on the scalp
according to the 10-20 layout system (Fp1, Fp2, Fpz,
F3, F4, Fz, C3, C4, Cz, P3, P4, Pz, Ol1, O2, Oz, F7, F8,
T3, T4, T5, T6), in which each point corresponds to
a brain region. A time series of 587 s (~10 min) was
captured for each subject (excluding 2 AD, 1 MCI
and 3 HA subjects which had shorter recordings).

3.3. EEG pre-processing

The data were pre-processed by utilising a sequence
of different methods. They were first filtered using a
1-60 Hz band-pass, FIR filter with an order of 330
and de-noised using independent component ana-
lysis (ICA) and notch filters at 21 and 42 Hz to remove
significant oscillatory noise artefacts and its har-
monic. They were processed further using the mul-
tiple artefact rejection algorithm (EEGLAB plugin
for MATLAB®) to automatically classify and remove
other noise related ICA components. The de-noised
data set was then split into age-matched groups of 52
AD subjects (82.3 £ 4.7 years of age, MMSE score
of 21.0 £ 4.8), 37 MCI subjects (78.4 &£ 5.1 years of
age, MMSE score of 25.4 & 2.7) and 52 HA subjects
(79.6 =+ 6.0 years of age, MMSE score of 27.5 + 1.6).
It is noted that 22 AD subjects, 19 MCI subjects and
24 HA subjects did not have recorded MMSE scores
but were still used for this analysis. Misclassification

of older HA subjects and younger AD subjects can
occur when comparing subjects of a large age-range
due to the natural progressive neurological degrada-
tion during human ageing. Therefore, it is important
to use data sets with age-matched subject groups to
ensure reliable results (Dukart et al 2011).

The time series was then split into 5 s epochs,
removing 3.5 s from the start and end of the sig-
nal to account for any discrepancies or noise. Using
all the raw data available from the 141 subjects
over the 21 electrode positions, a total of 340137
samples of 1000 data points were made available
for analysis. The number of artefact-free epochs for
each subject diftered, however all available data were
included to provide as many data as possible for
analysis.

3.4. Signal processing
For each sample, the data were processed using the
CWT, shown by equation (1):

W(a,b) — 7x(r) Ly (t;b) &t (1)

|al a

where: t = time; 1y = mother wavelet; x(f) = time
domain signal; a = range of scales; b = translations;
W(a,b) = wavelet coefficients (amplitudes of a series
of wavelets), * = complex conjugate.

The CWT function is an analysis method that
transforms the raw, one-dimensional input signal
into the time-frequency (often called the time-scale)
domain. The transform is controlled by a mother
wavelet with a zero average which is subject to adapt-
ations over a range of scales (a) and time translations
(b), resulting in the output wavelet coefficients (W).
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The signal is fit to match the wavelet, so it is important
that an appropriate shaped mother wavelet is chosen
for each individual application. There is a plethora
of families of mother wavelet choices such as Haar,
Daubechies, Coiflets, and Morlet, with the Mexican
Hat wavelet proving most popular within this spe-
cific field as shown in table 1 (Mallat 2009). Despite
this, a family of wavelets called the Morse wavelets,
introduced by Olhede and Walden (2002}, was chosen
for this study (Greco et al 2003). This mother wave-
let is a form of analytic wavelet, which are complex-
valued wavelets designed for the analysis of modu-
lated oscillations that have useful information in both
magnitude and phase (Lilly and Olhede 2010). Due
to this unique feature, the Morse wavelet is directly
applicable to the complex and non-stationary nature
of EEG signals.

3.5. Image data set generation

The output of the CWT function can be displayed
visually as a time-frequency map. In this situation,
a plot called a scalogram is created which plots fre-
quency against time, with the energy of the CWT
coefficients indicated by the colour of the plot.

When computing the CWT over many EEG
samples, it is important to determine a standard for
the colour bar scale. The colours presented on the plot
are governed by the scale choice, including the max-
imum and minimum values and the scale base (i.e.
logarithmic or linear). The scalogram plot, by design,
plots absolute values of the wavelet coefficients, so
a minimum value of 0 was chosen. To obtain the
maximum value on the scale and the type of scale, the
maximum value of the coefficients for each sample
were plotted on a linear scale and a logarithmic scale.
These plots indicated that a logarithmic scale would
be more appropriate for this task as the data con-
tained a high quantity of low maximum coetficient
values in contrast to a low quantity of high maximum
coetticient values, as shown in figure 2. By round-
ing the highest maximum coefficient to the nearest
whole number, a maximum scale value of 6 x 102 was
chosen that could encompass all the signals.

The colour map used for the time-scale represent-
ation of the coefficients was “parula) with the default
number of unique colours set at 256. This value was
kept relatively low to reduce image complexity and
therefore computational expense. A dark blue col-
our represents an intensity value of 0 (absolute coet-
ficient value = 0), and a light-yellow colour rep-
resents an intensity value of 1 (absolute coefficient
value = 6 X 10%), changing colour logarithmically
between these values (Mathworks 2020).

The generated scalogram plots were then saved
and combined into tiled images based on the 10-20
system. The images relating to each electrodeina 5 s
epoch were combined using the orientation in figure 3
to produce topographical images based on the 10-20
system.

CJ Huggins et al

The resulting image data set consisted of 16197
images, of which there were 6020 AD, 4289 MCI and
5888 HA images.

3.6. DL model

The DL model used was a modified AlexNet archi-
tecture that was optimised for three-class classifica-
tion, shown in figure 4. AlexNet, is a deep CNN that
consists of eight main layers, five of which are convo-
lutional layers and the remaining three as fully con-
nected layers (Krizhevsky et al 2012).

The architecture had to be altered by reducing the
weights on the final fully connected layer from the
standard 1000 classes to three. A variety of parameters
and hyperparameters were optimised throughout the
training of this model and were altered one-by-one
over a range of values to provide a model which pro-
duced the best output accuracy performance.

3.6.1. DL parameters

This section will detail the DL parameter and hyper-
parameter choices that were optimised to tune the
model. The tuned model provided the best results
in terms of accuracy, loss and generalisation per-
formance. These were manually adjusted and tested
sequentially to obtain the final model. The order of
optimisation was chosen by starting with the most
impactful parameters first and ending with fine tun-
ing parameters, relating to the performance determ-
ined by the final classification accuracy.

The optimiser choice was tuned first, compar-
ing three common optimisers: stochastic gradient
descent (SGD), moving average of squared gradi-
ents (RMSProps) and adaptive moment estimation
(ADAM). Optimiser choice is important as it is used
to update the weights of the model during training,.
SDG is a gradient descent method whereas RMSProp
and ADAM are both adaptive techniques. In short,
RMSProp is an extension of SGD and ADAM is a fur-
ther extension of RMSProp (Ruder 2017). As expec-
ted, the ADAM optimiser produced the best accuracy
performance (Kingma and Ba 2015).

The learning rate is one of the most impacttul
parameters as it describes how often the weights of
the model are updated and is therefore important to
be paired with the optimiser. Four learning rates were
tested, 1 x 10,1 x 107%,5 x 10 and 1 x 1077,
with a learning rate of 1 x 10™* producing the best
accuracy performance.

The learning rate can either be kept constant or
reduced over time with a policy. This policy can allow
greater control over the weights at the later stages
of training for fine tuning and avoidance of overtit-
ting. The reduction is split into the period and the
factor. The period describes the rate of change and
the factor describes the magnitude of the reduction.
During this step, factors of 1/2, 1/3 and 1/5 were
combined with periods of 10 and 5 epochs and were
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Figure 2. A line graph of the maximum absolute coefficient value on a logarithmic scale against sample number (n = 340137).
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Figure 3. A 5 x 5 tiled image created from individual
electrode position images.

compared against a stationary learning rate with no
policy. This resulted in a chosen policy of factor = 1/3
and period = 10 epochs.

The batch size describes how many sample images
are used in each iteration of the training. Smaller
batch sizes result in noisy updates and are compu-
tationally expensive but they offer a good regular-
ising effect. In contract, larger batch sizes decrease
processing time but may have poorer generalisation
to unseen data. Batch sizes of 50, 100 and 150 were
chosen as an initial starting point, moving on to batch
sizes of 16, 32, 64 and 128 due to MATLAB’s com-
putational efficiency when working with powers of
2. Although a smaller batch size produced superior
accuracy results, a batch size of 64 was used as it pro-
duced results that had a good compromise between
the advantages of both small and large batch sizes,
running each fold in approximately 30 min using a
GTX 1050Ti GPU.

Validation patience is a method of early stop-
ping and is governed by the number epochs used to
train the model. Patience is beneficial as it reduces the
chance of overfitting and gives the model enough time
to generalise. It does this by stopping the model a cer-
tain number of epochs after it has reached its lowest
validation loss. The validation patience of ten allowed
the model to reach its minimum validation loss whilst
avoiding overfitting. One epoch is comprised of using
each sample in the whole data set once.

Weight learn rate factor (WLRF) and bias learn
rate factor (BLRF) were the last parameters that were

optimised and relate directly to the final fully connec-
ted layers of the network. They determine the rela-
tionship between the weight and bias learning rates
and the global learning rate, used to fine-tune the res-
ult. Values of 10, 20, 30 and 40 for both WLRF and
BLRF were tested which varied the final accuracy by
~0.1%. From this, values of 20 for both WLRF and
BLRF was chosen as it produced the best combined
validation accuracy result.

A summary of each parameter, its value and the
justification for the choice can be seen in table 2.

3.7. Reporting metrics

To assess the performance of the proposed model,
Contusion Matrices and receiver operating charac-
teristic (ROC) curves were generated, in addition to
the calculation of four different confusion metrics
(Hossin and Sulaiman 2015).

Confusion matrices show the relationship
between the predicted classes of each image in the
test data set (predicted output) in relation to the true
class (ground truth) of each image in the test data
set (true output), given by the predefined label. In
general terms, the results along the diagonal show
correct predictions and off-diagonal values show the
incorrect predictions. Within this, there are four bins
each prediction can belong to:

e True positive (TP)—Predicting the sample as
positive when it is actually positive (i.e. AD classi-
fied as AD).

e True negative (TN)—Predicting the sample as
negative when it is actually (i.e. MCI classified as
MCI and HA classified as HA).

e False positive (FP)—Predicting the sample as
positive when it is actually negative (i.e. MCI/HA
classified as AD). Also known as a Type I error.

e False negative (FN)—Predicting the same as
negative when it is actually positive (i.e. AD
classified as MCI/HA). Also known as a Type II

€rror.
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Figure 4. A schematic of the AlexNet DL architecture, showing the tensor size as cuboids, kernel size as dashed pyramids and
informative descriptions of areas with max pooling and stride lengths, culminating in an example binary classifier. Reproduced

with permission from Krizhevsky et al (2012).

Table 2. A summary of the optimised parameters, detailing the parameter name, chosen value and justification of the choice.

Parameter Value Description

Architecture AlexNet Shallowest investigated network but produced the fastest and most accurate
results.

Optimiser ADAM Proven in experiment and literature to be a high performing optimiser for
image classification learning.

WLRF 20 Optimised to provide the highest accuracy values.

BLRF 20 Optimised to provide the highest accuracy values.

Mini batch size 64 Maintains a good relationship between the usage of GPU memory and
model fine detail.

Validation frequency 177 Provides a validation point at the end of every epoch.

Validation patience 10 Provides enough time for the validation accuracy results to stabilise.

Initial learning rate le™* Set to allow for a learning rate curve that asymptotes to zero roughly
following a smooth curved trajectory.

Learn rate schedule Piecewise Allows the learning rate to be altered as the model progresses.

Learn rate drop period 10 Reduces learning rate by 1/3 every ten epochs which were optimised for this

Learn rate drop factor 0.33 application to avoid overfitting.

These definitions relate directly to the calculation of
the per class accuracies shown in equation (2):

N _ TP4TN
MY = TP+ FP+ EN+ IN

(2)

where: TP = True positive; TN = True negative;
FP = False positive; FN = False negative

3.8. Model validation

The proposed model was validated using k-fold cross-
validation (k = 10) using the ten splits of the image
data set. This method is a statistically based evaluation
method which is applied to a DL model with a lim-
ited data set to show its expected performance on new
data. The data set is shuffled and split into folds ran-
domly, reducing the chance of the order of the data
affecting the model results.

For each told, 8/10 tfolds were used for training,
1/10 fold was used for validation and 1/10 fold was
used for testing. Using the results from the ten folds,
the average (mean) and standard deviation (std) of
the reporting metrics were calculated.

4, Results

For each subject in the database, the EEG signals
were split into sample epochs of 5 s for each elec-
trode. For each sample, time-frequency maps were
created using the CWT for each electrode (number
of images produced from data analysis = 340137),
then the electrode images were combined using the
10-20 system to create one image per epoch (number
of images = 16197). The images, an example of which
is shown in figure 5, were randomly split into ten
folds, comprising of 8/10 folds training data, 1/10 fold
validation data and 1/10 fold test data, ensuring that
there was the correct proportion of classes within each
split. These were then fed into an optimised AlexNet
DL model to predict the classes associated with each
image. The model was split into ten folds and assessed
using k-fold cross validation for robustness, produ-
cing results in approximately 30 min per test.

The results of the ten-fold cross validation tests
are shown in table 3 and present an overall test
accuracy of 98.9 & 0.4%. The confusion matrices of
told 1-10 are shown in figures 6(a)—(j), respectively.
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Figure 5. An example output image, showing a 5 x 5 tiled image of CWT scalograms as detailed in figure 3.

Table 3. Model performance of each fold, detailing each class accuracy and the overall accuracy, including the mean and standard

deviation of each category, shown to one decimal place.

AD class MCI class HA class Overall
Fold accuracy (%) accuracy (%) accuracy (%) accuracy (%)
1 99.5 97.7 98.5 98.6
2 99.0 97.9 99.3 98.8
3 99.2 98.1 98.3 98.6
4 99.8 98.1 99.0 99.1
5 99.0 97.2 97.5 98.0
6 99.3 98.6 99.0 99.0
7 99.7 99.1 99.0 99.3
8 99.5 99.1 99.3 99.3
9 98.5 98.1 99.2 98.6
10 99.3 99.1 99.2 99.2
Mean 99.3 98.3 98.8 98.9
Std 004 00.6 00.5 004

To show additional information about the model, the
validation loss and accuracy values were used as a
comparison to the test accuracy. The average valida-
tion loss value, 0.07 = 0.02, is very low, which showed
that the model was fit to the data well. Across the
tolds, the average validation accuracy was 98.8 £+ 0.3%
which is similar to the overall average test accuracy,
indicating that the model has been trained appropri-
ately to stop over or underfitting.

In relation to class specific classification, there
was an accuracy for AD of 99.3 £ 0.4%, MCI of
98.3 £ 0.6% and HA of 98.8 + 0.5%. This shows
a very small bias towards the HA and AD classes,
indicative of the bias within the original data set. The
overall range of 1.0% shows that this bias is minimal,
and the skewed data set has been accounted for in the
model.

The low standard deviation values across all the
accuracy values also shows robustness and consist-
ency between the ten validation tests.

5. Discussion

This paper has presented a classification method with
an overall three-class classification accuracy for AD
vs MCI vs HA of 98.9 & 0.4%. The resulting classi-
fication accuracy showed minimal bias between class
predictions over a large database of 52 AD, 37 MCI
and 52 HA subjects. The proposed method extrac-
ted artefact free, 5 s long EEG signals and ana-
lysed them using the CWT signal processing method
with a Morse mother wavelet. Image maps created
from the output scalogram graphs were then used as
the input to an optimised DL model based on the
AlexNet architecture for three-class classification. The
model was assessed using a ten-fold cross validation
method, presenting results that improved upon cur-
rent reviewed literature within the proposed field.
During the development of this model, alternat-
ive signal processing techniques and pre-trained DL
models were researched and tested. Networks such as
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Figure 6. (a)—(j) Confusion matrices showing the model predictions (output class) against the ground truth (target class) from
folds 1-10 respectively, relating to table 3.

‘ResNet-18" and ‘GoogleNet’ were investigated and
compared to ‘AlexNet’ leading to surprising results.
ResNet-18 has 18 convolutional layers and makes
use of residual learning every two convolutional lay-
ers to skip over layers of the network if required.
These address the vanishing gradient problems which
occurs when adding a large number of layers to a
network (He et al 2015). GoogLeNet is even larger,
with 22 convolutional layers. GoogLeNet introduced

a unique model that uses inception modules to reduce
the depth of the model by collating convolutional
resulting using parallel layers of 1 x 1, 3 X 3 and
5 x 5 kernel filters. This resulted in a model that
has 12-time fewer parameters than AlexNet, which
has 5000000. It also contains two auxiliary classifi-
ers that offer a regularising effect on the network
(Szegedy et al 2014). Despite the increased complex-
ity of both GoogLeNet and ResNet-18 compared to
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AlexNet, they produced models that took longer to
train and had worse accuracy results. This is sugges-
ted to be due to more overfitting present due to higher
divergence in training and validation loss plots.

Alternative signal processing methods could have
been used in this method such as short-term Four-
ier transform (STFT). The output spectrogram from
STFT analysis is very similar to the scalogram from
CWT analysis, with the main difference being the res-
ulting frequency and time resolutions. STFT uses a
fixed window size resulting in time-frequency graphs
with uniform time and frequency resolutions. A
trade-off between the frequency and time resolutions
must be made when choosing the fixed window size
for STFT, which is not required for CWT. CWT
uses variable, scaled window sizes to create graphs
with non-uniform time and frequency resolutions.
The non-uniform resolutions allow lower frequency
trends in the data to be seen at longer time intervals
and higher frequency trends to be seen at shorter time
intervals. Due to the non-stationary nature and var-
ied frequency range of EEG signals, CWT was chosen
as the most appropriate signal processing method.

In comparison to the literature reviewed in
section 2, the results improve on the accuracy of HA
vs MCI vs AD presented by the most recent study
from leracitano ef al (2020), who produced a com-
bined Bispectrum and CWT feature model, with a
maximum average accuracy of 89%. Their paper uses
more subjects (n = 189) in comparison to the sub-
jects in this study’s database (1 = 141) and is bal-
anced between classes which means the data are better
suited for DL applications. The results are also calcu-
lated over a range of ten tests which gives reliability
to their results. The results also improve on the max-
imum accuracy found in literature, from Bi and Wang
(2019) at 95% accuracy of HA vs MCI vs HA using
an alternative method and data set. The input to their
bespoke machine learning model uses a unique com-
bination of spectral topography maps to produce this
result, however, lacks depth as the subject pool is very
small (n = 16) in comparison to our data set. Both
papers included a statistical analysis of the results,
such as ROC curves and confusion matrices, further
allowing direct discussions and comparison between
the papers.

The other papers in section 2 by Kim and Kim
(2018), Fan et al (2018) and Zhao and He (2015) are
all binary classifiers. As this research study produced
three-class classification of AD vs MCI vs HA, ithas a
clear impact advantage. The signal processing meth-
ods of RP from Kim and Kim (2018) and MSE from
Fan et al (2018) are less computationally complex
compared to CW'T. Conversely, their respective DNN
and LASSO classification models were more complex
than the proposed CNN in this study. All three papers
also use databases that are much smaller compared to
the database used in this study, despite this still pro-
duce lower accuracy results.
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Despite the promising results presented, our
study has limitations. The recording of scalp EEG
signals was conducted in a controlled environment,
requiring clinical space and trained professionals
which can be time consuming and expensive. Bias is
an important topic in medical AT and DL and should
be reduced as much as possible. By removing human
interaction in the signal processing and classification
stages, this study has attempted to avoid bias; how-
ever, there were still areas for improvement. The data-
base required initial input of labels for this supervised
learning method, which means that there was a pos-
sibility of errors within the diagnosis via the stand-
ard clinical criteria explained in section 3.2 (Batum
et al 2015). The educational level of the subjects,
which is a known contributor to AD, has not been
assessed in the data pre-processing. The similarities
and differences between the 5 s epochs within the
10 min samples have also not been assessed, which
could affect the results. Furthermore, it is unrealistic
to compare these results directly to the in vive dia-
gnostic accuracy of AD (77%) as the results within
this report rely on pre-defined labels using gold stand-
ard techniques. To be used in a clinical setting, this
method would need to be validated using additional
data, ideally progressing onto a model that produces
significant results regardless of the patient’s demo-
graphical information such as age, location, and edu-
cational history.

6. Conclusions

In this study, a signal processing method combined
with an optimised DL model has been developed that
presents accuracy results of 98.9%, currently higher
than any results presented in literature within this
field.

Other methods were tested and discussed, includ-
ing spectrogram time-frequency images, alternative
DL architectures GoogleNet and ResNet-18 and a
variety of different hyperparameter values. These dif-
ferent strategies did not produce superior accuracy
results but provided a useful comparison to the final
model.

This study has shown some very promising results
but further work is required to progress this research,
with the end goal to produce a clinically accurate tool
that could be used to aid healthcare professionals in
providing better diagnosis for elderly patients with
symptoms that are typical of MCI or AD. Recom-
mendations for future work could encompass the
tollowing:

o Test this model as a two-class problem by com-
paring the AD vs MCI accuracies against the MCI
vs HA accuracies. This leads to a hypothesis that
a lower number of classification categories would
result in improved accuracies.
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o Explore alternative ways to create RGB images from
EEG signals, possibly by combining other signal
processing methods quantifying changes in these
signals related to AD.

e Explore additional pre-trained networks or
bespoke DL architectures.

e Use the model on other databases (out of sample
data) to further understand its reliability and
accuracy.

o Test the use of automatic hyperparameter selection
using methods such as Bayesian optimisation.

e Create an ‘International Standard’ data set for
training and testing similar systems for the dia-
gnosis of AD.

The findings presented in this study have sig-
nificantly added to the continued knowledge sur-
rounding DL of EEG signals for AD diagnosis. The
increased accuracy results show promising outcomes
for future applications of DL to the classification and
diagnosis of AD. This could eventually help combat
the resource-intensive and human dependant meth-
ods that are currently used, ultimately providing a
quantitative probability value for the diagnosis of a
patient.
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