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ABSTRACT   

 

SONG, H. and TAO, L., 2007. Homotopy analysis of 1D unsteady, nonlinear groundwater flow through porous 
media. Journal of Coastal Research, SI 50 (Proceedings of the 9th International Coastal Symposium), pg – pg. 
Gold Coast, Australia, ISBN 1-891276-54-9 

In this paper, the 1D unsteady, nonlinear groundwater flow through porous media, corresponding to flood in an 
aquifer between two reservoirs, is studied by mass conservation equation and Forchheimer equation instead of 
Darcy's law. The coupling nonlinear equations are solved by homotopy analysis method (HAM), an analytic, 
totally explicit mathematic method. The method uses a mapping technique to transfer the original nonlinear 
differential equations to a number of linear differential equations, which does not depend on any small 
parameters and is convenient to control the convergence region. Comparisons between the present HAM solution 
and the numerical results demonstrate the validity of the HAM solution. It is further revealed the strong 
nonlinear effects in the HAM solution at the transitional stage.  

ADDITIONAL INDEX WORDS: Homotopy analysis method, Forchheimer equation, porous media   
 

INTRODUCTION 
Groundwater flow through porous media is traditionally 

described by Darcy’s law and it is normally valid for low 
Reynolds pore-scale numbers. For moderate and high velocity 
flow, however, Forchheimer equation should be applied due to 
nonlinear effects. STARK (1972) numerically solved the Navier-
Stokes laminar flow equations and tested the relations of Darcy’s 
law, Forchheimer equation and others; INNOCENTINI et al. (1999) 
compared Darcy’s law and Forchheimer equation and 
recommended highly the latter in order to take into account 
permeability; NIELD (2000) discussed the inertial effects on 
viscous dissipation for the case of Darcy, Forchheimer and 
Brinkman models.  

Forchheimer equation could be derived in different approaches 
(e.g. AHMED and SUNADA, 1969; HASSANIZADEH and GRAY, 1987; 
WHITAKER, 1996) and has been proved in theoretical and 
experimental way (MACDONALD et al., 1979; THAUVIN and 
MOHANTY, 1998). Extensive studies on the parameters in 
Forchheimer equation have been carried out. COULAUD et al. 
(1988) introduced a nonlinear term into Darcy’s equation and 
solved it numerically. In his approach, the hydrodynamic 
constants in the Forchheimer equation were expressed by the 
expression of porosity and geometrical data. WANG and LIU (2004) 
investigated the scaling relations for the fluid permeability and the 
inertial parameter in the Forchheimer equation, by solving the 
Navier-Stokes equation for flow in a two-dimensional percolation 
porous media.  

Although the application of the Forchheimer flow is very useful 
and practical, very limited attempts on the analytical approach 
have been reported in the literature. MOUTSOPOULOS and 
TSIHRINTZIS (2005) solved the Forchheimer flow through porous 

media in 1D form by perturbation method, dividing the problem 
into two stages and solving them by two sets of equations. For 
numerical method, GREENLY and JOY (1996) used one-
dimensional finite element method and Forchheimer equation to 
investigate the groundwater flow through a valley fill. EWING et 
al. (1999) used finite difference, Galerkin finite element and 
mixed finite element techniques to investigate Forchheimer flow 
in a hydrocarbon reservoir. KIM and PARK (1999) and PARK (2005) 
used mixed finite element method to analyse the flow of a single-
phase fluid in a porous medium governed by Forchheimer 
equation.  

Recently, a new mathematical technique, namely homotopy 
analysis method (HAM) has been applied to nonlinear fluid 
dynamics problems (LIAO, 1995, 2004). The approach does not 
depend on small or large parameters and is easy to adjust the 
convergence region and rate of approximation series. In this paper, 
homotopy analysis method is applied to solve the 1D unsteady, 
nonlinear groundwater flow through porous media, corresponding 
to a flood in a long aquifer between two reservoirs, or to a flow in 
a laboratory column restrained by two external tanks. The 
coupling equations are transformed by similarity law and a global 
solution, which is analytical, totally explicit is obtained. The 
piezometric head from the present HAM solution for nonlinear 
flow agrees well with numerical results and the previous 
perturbation solutions.  

THEORETICAL CONSIDERATION  
Consider a one-dimensional (1D) flow in a confined porous 

medium shown in Figure 1. Before t=0, the piezometric head is a 
constant hI. After t=0, the piezometric head at left end raises Δh, 
while the piezometric head at the far right end remains unchanged. 
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The movement of the flow satisfies the equation of mass 
conservation as following:   

( )hS Bq
t

∂
+∇ =

∂
r R ,    (1) 

where S is the storage coefficient; h is the piezometric head; t is 
the time; ∇  is the 2D Nabla operator; B is the thickness of the 
aquifer;  is the velocity; and R is the external sink-source term, 
which is assigned zero in this particular problem.  

qr

Assuming that the properties of the aquifer are homogeneous, 
the Forchheimer or Forchheimer-Dupuit equation is:  

h aq bq q−∇ = + | |
r r r ,    (2) 

where a and b are coefficients.  
Equations (1) and (2) can be expressed in 1D form as   

0h qS B
t x

∂ ∂
+ =

∂ ∂
,     (3) 

2h aq bq
x
∂

− = +
∂

.     (4) 

The initial condition is:  
at 0Ih h t= = .     (5) 

The boundary conditions are:   
for 0 at 0Ih h h x t= + Δ = > ,  (6) 

for at anyIh h x t= = +∞ .  (7) 
Introducing  

Ih hh
h
−

=
Δ

% ,      (8) 

Equations (1) and (2) are transformed as:   

0S h qh
B t x

∂ ∂
Δ ⋅ + =

∂ ∂

% ,     (9) 

2hh aq bq
x
∂

−Δ = +
∂
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From Equation (10), the velocity can be expressed as  
2 4
2

h
xa a b h

q
b

∂
∂− + − Δ

=
%

.    (11) 

If 24 h
xb h a∂
∂− Δ >% , the inertial term is dominant, otherwise the 

Darcy (viscous) term is dominant.  
Substituting Equation (11) into Equation (9), we have:  

22

1 22

h h hC
x t x

⎛ ⎞∂ ∂ ∂ C/ = +⎜ ⎟∂ ∂ ∂⎝ ⎠

% % % ,     (12) 

subject to the initial and boundary conditions:   
0 forh =% 0t =

0x

,     (13) 

1 forh = =% ,     (14) 

0 forh x= = +∞% ,     (15) 

where ( )2
1 4 S

BC b h= − Δ , ( )2
2

S
B=C a .  

Using the similarity transformations:  
1 2 2( ) ( )h x t t f x tξ ξ/, = , =% / ,    (16) 

Equation (12) becomes  
2

1 2
1 2

( ) 2 ( )16 2 ( )
( ) 2 ( )
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f f
ξ ξ ξ ξ ξ
ξ ξ ξ
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with boundary conditions:   
3(0)f C= ,      (18) 

( ) 0f +∞ = ,      (19) 
where 1 2

3 1C t /= / , which is a constant for a given time t.  
Alternatively, Equation (17) can be expressed as,  

[
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SOLUTION METHOD 
Define  

 1τ λξ= + ,     (21) 
where λ is a constant parameter to be determined later, Equation 
(20) can be transformed to Equation (22) (see Appendix), and the 
boundary conditions become  

 
3(1)f C= ,     (23) 

 ( ) 0f +∞ = .     (24) 
From the above boundary conditions, f(τ) can be expressed by a 

set of base functions 
 .     (25) { | 1m mτ − ≥ }

]
Establish the zeroth-order deformation equation:  

0(1 ) [ ( ) ( )] ( ) [ ( )p F p f p H F pτ τ τ τ− ; − = ;hL N ,      (26) 
subject to the boundary conditions:  

3(1 ) ( ) 0F p C F p; = , +∞; = ,    (27) 
where [0 1]p∈ ,  is an embedding parameter and L  is a linear 
auxiliary operator; F(τ;p) is a real function of τ and p. The 
auxiliary nonzero parameter ħ is used to adjust the convergence 
rate and region. By introducing HAM, we set up a 
mapping ( ) ( )f F pτ τ→ ; . It is seen from Equation (26) that the 
solution F(τ;p) continuously varies from the initial estimate f0(τ) to 
the exact solution f(τ) as the embedding parameter p increases 
from 0 to 1.  

The linear auxiliary operator L   has a various choices, which 
will affect the convergence of the solution. We select  

 ( )[ ( )] ( )F pF p F pττ τ τ
τ

∂ ;
; = + ;

∂
L ,  (28) 

with the property 
 

4[ ]C 0τ/ =L .     (29) 
The nonlinear operator N   is defined in Equation (30) (see 

Appendix). 
Expand F(τ;p) in Taylor series with respect to p, we have  

 
0

1
( ) ( ) ( ) m

m
m

F p f f pτ τ τ
+∞

=

; = +∑ ,   (31) 

where  
 

0

1 ( )( )
m
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=
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=

! ∂
.    (32) 

Figure 1. The sketch of the problem. 
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If the auxiliary parameter ħ is properly chosen that the series are 
convergent at  p=1, then 

 
0

1
( ) ( ) ( )m

m
f f fτ τ

+∞

=

= +∑ τ .    (33) 

Define  
 { }0 1 2( ) ( ) ( ) ( )nn f f f ff τ τ τ τ= , , , ,

r
L .   (34) 

Differentiating Equation (26) m times with respect to p, then 
setting p=0, and finally dividing them by m!, the mth-order 
deformation equation can be obtained: 
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Substituting N  and F(τ;p) in Equations (30) and (31) 
respectively into Equation (38), we can have the detailed form of 
Rm. 

Suppose  
 

0 3( )f Cτ τ= / ,     (39) 
then the whole problem can be solved by iteration:  

4
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1
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where H(τ) can be chosen as H(τ)= τ2.  
From the first few orders of the solution, it can be concluded 

that fm(τ) can be expressed as  
 9 1

1
( )

m
n

m m
n

f τ β τ
+

−
,

=

= ∑ ,    (41) 

where βm,n is a coefficient. 
Substituting Equation (41) into the high-order deformation 

equation (35) and equating the same power of τ, the recurrence 
formulae of βm,n can be obtained, which is very long and omitted 
here. 

From Equation (36), βm,1 can be determined uniquely.  
 .    (42) 9 1

1
2
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If the series (33) is convergent, it must be an exact solution of 

Equation (20), since the following equation stands when the series 
(33) is convergent:  

 lim ( ) 0mm
f τ
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Using Equations (26), (35) and (37), we have  
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which gives 
 ,     (45) 

1
1

( )m m
m

R f τ
+∞

−
=

, =∑
r

for any τ ≥ 1.  
Under the definition (38), it is easy to prove that Equation (20) 

holds. From Equations (36) and (39), the boundary conditions (18) 
and (19) also hold. Therefore, if ħ and λ are properly chosen to 
ensure the series convergence, f(ξ) is an exact solution of the 
similarity questions. 

RESULTS AND DISCUSSION  
In this section, the physical problem of groundwater flow 

through porous media is solved by homotopy analysis method 
described above and the HAM solutions are compared to the 
perturbation solution of MOUTSOPOULOS and TSIHRINTZIS (2005) 
in Figure 2. The principle data of the first three figures are 
a=0.05s/m, b=15s2/m2, S0=S/B=0.02m-1 and Δh=1m while the data 
of the last two figures are a=0.634s/m, b=30.8s2/m2, S0= 0.02m-1 
and Δh=1m. The time instances corresponding to the results 
shown in the five figures are (a) 42s, (b) 99s, (c) 504s, (d) 2970s 
and (e) 4425s respectively. As can be seen in the figures, the first 
three figures are nonlinear dominated and the rest two are quasi-
Darcy. The numerical results from Matlab are calculated by pdepe 
function with Δx=3m and Δt=0.2s for the distance and time 
intervals, assuming x=3000m is sufficiently large. For homotopy 
analysis method, we choose ħ = -1 and λ=1/50 respectively. 

It can be seen that the results from homotopy analysis method 
agree well with the numerical method and MOUTSOPOULOS and 
TSIHRINTZIS (2005) in nonlinear dominated cases, but less accurate 
in quasi-linear cases. If the solution contains a linear function, the 
results should be more reasonable for quasi-linear flow. In the 
present study, nonlinear base functions were employed, so that the 
phenomena of unsteady, nonlinear flow through porous media 
could be described accurately. Without the component of a linear 
function, the present HAM solution is more suitable for the initial 
unsteady, nonlinear stage, which is highly concerned by scientists 
and engineers. For quasi-linear flow, Darcy’s law could be applied 
directly. Thus the problem could be simplified to a linear problem 
and easy to be solved. 

Table 1 is an example of the convergence of the series at t=42s 
and x=30m. A rapid convergence rate of the series is evident. 

CONCLUSIONS 
In this paper, a new analytic method, namely homotopy analysis 

method (HAM) has been applied to give an analytic, totally 
explicit and uniform valid solution to the problem of unsteady, 
nonlinear groundwater flow through porous media. The HAM 
analytic solution agrees well with numerical results and previous 
perturbation method for nonlinear flow. The present approach 
shows a great potential to other unsteady nonlinear problems. 
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Table 1: The convergence of the series at t=42s and x=30m. 

Order h%  
0 0.007200822998231   
1 0.700000106609584   
2 0.700000213217835   
3 0.700000319824756   
4 0.700000426430345   
5 0.700000533034602   
6 0.700000639637528   
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Figure 2. Comparison of dimensionless piezometric head in 
MOUTSOPOULOS and TSIHRINTZIS (2005). 

 

 

 

 

 

 

 

 

Journal of Coastal Research, Special Issue 50, 2007 



 

H. Song and L. Tao 

LITERATURE CITED 
AHMED, N. and SUNADA, D.K., 1969. Nonlinear flow in porous 

media. Journal of Hydraulic Division ASCE, 95, 1847-1857. 
COULAUD, O., MOREL, P. and CALTAGIRONE, J.P., 1988. 

Numerical modelling of nonlinear effects in laminar flow 
through a porous medium. Journal of Fluid Mechanics, 190, 
393-407. 

EWING, R.E.; LAZAROV, R.D.; LYONS, S.L.; PAPAVASSILIOU, D.V.; 
PASCIAK, J. and QIN, G., 1999. Numerical well model for non-
Darcy flow through isotropic porous media. Journal 
Computational Geosciences, 3(3-4), 185-204. 

GREENLY, B.T. and JOY, D.M., 1996. One-dimensional finite-
element model for high flow velocities in porous media. 
Journal of Geotechnical Engineering, 122(10), 789-796. 

HASSANIZADEH, S.M. and GRAY, W.G., 1987. High velocity flow 
in porous media. Transport in Porous Media, 2(6), 521-531. 

INNOCENTINI, M.D.M.; PARDO, A.R.F.; SALVINI, V.R. and 
PANDOLFELLI, V.C., 1999. How accurate is Darcy's law for 
refractories. American Ceramic Society Bulletin, 78(11), 64-
68. 

KIM M.-Y. and PARK E.-J., 1999. Fully discrete mixed finite 
element approximations for non-Darcy flows in porous media. 
Computers and Mathematics with Applications, 38(11), 113-
129. 

LIAO, S.J., 1995. An approximate solution technique not 
depending on small parameters: a special example. 
International Journal of Non-Linear Mechanics, 30(3), 371-
380. 

LIAO, S.J., 2004. Beyond Perturbation: Introduction to the 
Homotopy Analysis Method. Florida: Chapman & Hall / CRC. 

MACDONALD, I.F.; EL-SAYED, M.S.; MOW, K. and DULLIEN, 
F.A.L., 1979. Flow through porous media - the Ergun equation 
revisited. Industrial and Engineering Chemistry 
Fundamentals, 18(3), 199-208. 

MOUTSOPOULOS, K.N. and TSIHRINTZIS, V.A., 2005. Approximate 
analytical solutions of the Forchheimer equation. Journal of 
Hydrology, 309, 93–103. 

NIELD, D.A., 2000. Resolution of a paradox involving viscous 
dissipation and nonlinear drag in a porous medium. Transport 
in Porous Media, 41(3), 349-357. 

PARK, E.J., 2005. Mixed finite element methods for generalized 
Forchheimer flow in porous media. Numerical Methods for 
Partial Differential Equations, 21(2), 213-228. 

STARK, K.P., 1972. A numerical study of the nonlinear laminar 
regime of flow in an idealised porous medium. In: 
Fundamentals of Transport Phenomena in Porous Media, 
New York: Elsevier Publishing Company, 86-102. 

THAUVIN, F. and MOHANTY, K.K., 1998. Network modelling of 
non-Darcy flow through porous media. Transport in Porous 
Media, 31(1), 19-37. 

WANG, X.-H. and LIU, Z.-F., 2004. The Forchheimer equation in 
two-dimensional percolation porous media. Physica A: 
Statistical and Theoretical Physics, 337(3-4), 384-388.  

WHITAKER, S., 1996. The Forchheimer equation: A theoretical 
development. Transport in Porous Media, 25(1), 27-61. 

APPENDIX 
 

      

2 4 2 3 2 2 2 2 2
2 2 2 2

2 2 3 3
2 2

4 2 2 2 4 4 2 2
2 2 2

2 2 2
2

( ) 8 ( 1) ( ) ( ) [24 ( 1) 32 ] ( ) ( )
[128 ( 1) 32 ( 1) ] ( ) ( )
[256 128 ( 1) 16 ( 1) ] ( ) 128 ( 1) ( ) ( ) ( )

512 ( 1) ( ) ( ) ( ) [20

C f C f f C C f f
C C f f

C C f C f f f

C f f f

τ τ τ τ τ λ τ τ
τ λ τ τ τ

λ τ λ τ τ τ λ τ τ τ

τ λ τ τ τ

′ ′− − + − −
′+ − − −

′ ′+ − − + − − −

′ ′′+ − + 4 3 2 3
2

2 2 2 2 3 2 2
2 2

2 4 4 2 2 2 3 4 3
2

4 4 4 2 4
1

48( 1) 512 ( 1) ] ( ) ( )

128 ( 1) ( ) ( ) 512 ( 1) ( ) ( ) ( )
[6144( 1) 512 ( 1) ] ( ) ( ) 8192( 1) ( ) ( )
4096( 1) ( ) 4 ( 1) ( ) ( )

C f f

C f f C f f f
C f f f f

f C f f

′′

τ λ τ λ τ

τ λ τ τ τ λ τ τ τ
τ λ τ λ τ τ τ λ τ τ
τ λ τ τ λ τ τ

τ′ ′′− − −

′′ ′ ′′− − + −
′ ′′ ′ ′′+ − − − + −

′′ ′+ − − − 2 2 2 3 3
1

2 3 2 4 2 4 5 2 5 6
1 1 1

32 ( 1) ( ) ( )
96 ( 1) ( ) ( ) 128 ( 1) ( ) ( ) 64 ( 1) ( ) 0

C f f
C f f C f f C f

τ λ τ τ
τ λ τ τ τ λ τ τ τ λ τ

′+ −
′ ′ ′− − + − − − =

                                                     (22) 

 

   

2 4 2 3
2 2

2 2 2 2 2 2 2 3 3
2 2 2 2

4 2 2 2 4 4 2 2
2 2 2

( )[ ( )] ( ) 8 ( 1) ( )

( ) ( )[24 ( 1) 32 ] ( ) [ ] [128 ( 1) 32 ( 1) ] ( )[ ]

( ) ([256 128 ( 1) 16 ( 1) ][ ] 128 ( 1) ( )

F pF p C F p C F p
p

F p F pC C F p C C F p
p p
F p FC C C F p

p

ττ τ τ τ

τ ττ λ τ τ λ τ τ

τλ τ λ τ τ λ τ

∂ ;
; = ; − − ;

∂
∂ ; ∂ ;

+ − − ; + − − − ;
∂ ∂

∂ ; ∂+ − − + − − − ;
∂

N

2

2

2 2
2 2 2 4 3 2 3

2 22 2

2 2
2 2 2 2 3 2 2

2 22 2

) ( )

( ) ( ) ( ) ( )512 ( 1) ( )[ ] [2048( 1) 512 ( 1) ][ ]

( ) ( ) ( )128 ( 1) ( ) [ ] 512 ( 1) ( ) [ ]

[6144( 1)

p F p
p p

F p F p F p F pC F p C
p p p p

F p F p F pC F p C F p
p p p

τ τ

τ τ τ ττ λ τ τ λ τ λ

τ τ ττ λ τ τ λ τ

τ

; ∂ ;
∂ ∂

∂ ; ∂ ; ∂ ; ∂ ;
+ − ; + − − −

∂ ∂ ∂ ∂

∂ ; ∂ ; ∂ ;
− − ; + − ;

∂ ∂ ∂

+ −
2 2

2 4 4 2 2 2 3 4 3
2 2 2

2
4 4 4 2 4 2 2 2 3 3

1 12

2 3 2
1

( ) ( ) ( ) ( )512 ( 1) ][ ] [ ] 8192( 1) [ ]

( ) ( ) ( )4096( 1) [ ] 4 ( 1) ( ) [ ] 32 ( 1) ( ) [ ]

( )96 ( 1) ( ) [ ]

F p F p F p F pC
p p p p

F p F p F pC F p C F p
p p p

F pC F p
p

τ τ τ τλ τ λ τ λ

τ τ ττ λ τ λ τ τ λ τ

ττ λ τ

∂ ; ∂ ; ∂ ; ∂ ;− − + −
∂ ∂ ∂ ∂

∂ ; ∂ ; ∂ ;+ − − − ; + − ;
∂ ∂ ∂

∂ ;− − ;
∂

4 2 4 5 2 5 6
1 1

( ) ( )128 ( 1) ( )[ ] 64 ( 1) [ ]F p F pC F p C
p p
τ ττ λ τ τ λ∂ ; ∂ ;+ − ; − −
∂ ∂

                   (30) 

Journal of Coastal Research, Special Issue 50, 2007 


