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Abstract

The concept of nonlinear modes has been proved useful to interpret a wide class of nonlinear phenomena

in mechanical systems such as energy dependent vibrations and internal resonance. Although this concept

was successfully applied to some small scale structures, the computational cost for large-scale nonlinear

models remains an important issue that prevents the wider spread of this nonlinear analysis tool in industry.

To address this challenge, in this paper, we describe an advanced adaptive reduced order modelling (ROM)

technique to compute the damped nonlinear modes for a large scale nonlinear system with frictional interfaces.

The principle of this new ROM technique is that it enables the nonlinear modes to be computed in a reduced

self-adaptive modal subspace while maintaining similar accuracy to classical reduction techniques. The

size of such self-adaptive subspace is only proportional to the number of active slipping nodes in friction

interfaces leading to a significant reduction of computing time especially when the friction interface is in a

micro-slip motion. The procedure of implementing this adaptive ROM into the computation of steady state

damped nonlinear mode is presented. The case of an industrial-scale fan blade system with dovetail joints

in aero-engines is studied. Damped nonlinear normal modes based on the concept of extended periodic

motion is successfully calculated using the proposed adaptive ROM technique. A comparison between

adaptive ROM with the classical Craig-Bampton method highlights the capability of the adaptive ROM

to accurately capture the resonant frequency and modal damping ratio while achieving a speedup up to 120.

The obtained nonlinear modes from adaptive ROM are also validated by comparing its synthesized forced

response against the directly computed ones using Craig-Bampton (CB) method. The study further shows

the reconstructed forced frequency response from damped nonlinear modes are able to accurately capture

reference forced response over a wide range of excitation levels with the maximum error less than 1% at

nearly zero computational cost.
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1. Introduction

Nonlinearity is widely existing in engineering structures in many different forms such as friction in bolted

joints, large amplitude vibrations, material behaviour, or fluid-structure interactions [1, 2, 3]. These nonlin-

earties can pose a big challenge to engineers because nonlinear systems can exhibit a wide range of complex

dynamic characteristics that are very difficult to predict and potentially catastrophic. Therefore, the dynamic

analysis of structures with nonlinear characteristics is becoming an important topic in different engineering

fields to drive an improved design to ensure high structural efficiency and reliability. Those nonlinearities

involved in a complicated engineering system can be broadly classified into two main types, which are dis-

tributed and localised nonlinearities. Geometrical nonlinearity is mainly due to large amplitude vibrations.

It is a typical example of distributed nonlinearities where the nonlinearities is distributed among all degrees

of freedom in a whole structure. In terms of localised nonlinearities, the contact friction is one of typical

examples, which are widely existing in large scale assemblies particularly in a jet engine. Such a localised

nonlinearity in a large scale engineering system is the focus of this study. The main feature of such a system

is that, depending on the level of motion, very different levels of energy dissipation can be achieve through

the friction interfaces ranging from full stuck to fully sliding contact. Such a dissipation from the nonlinear

contact friction force also leads to a reduction in the global stiffness of the system and generate a strong

energy dependent damping, resonant frequency and also instability problems [4, 5, 6, 7, 8]. These inherent

nonlinearities are however often ignored or linearised or simplified for the design of a large scale system due

to high computational expense and numerical instability problems [9]. To ensure an improved design of such

nonlinear systems, effects of localised nonlinearities on the dynamics must be taken into account through an

efficient nonlinear analysis tool [10].

Nonlinear modal analysis becomes an increasingly popular tool to give an insight into the response of

a nonlinear system [1, 2, 3]. The concept of nonlinear modes is to extend the modal analysis of a linear

system. In a linear system, the free vibration response is defined as the linear normal mode. As an extension

of linear normal mode in nonlinear system, nonlinear mode can be considered as limit cycle oscillation, but

also are general solutions of an autonomous system. This concept has been proved very useful to interpret

a wide class of nonlinear phenomena such as energy dependent damping and resonance, mode localisation,

internal resonance and the stability of the system [3]. Compared with linear normal mode, the superposition

principle and orthogonality between different modal deflection shapes are not valid for nonlinear system.

Also, it would not guarantee the uniqueness of the solutions and some of these solutions might be unstable.

However, similar to linear modes, the nonlinear modes can still reproduce the resonant vibration behavior

subjected to harmonic excitation. Furthermore, the invariance property in the resonant response also applies

to nonlinear mode. The foundation of theory of nonlinear mode can be traced back to centre theorem from

Lyapunov and Poincaré [11, 12]. The first definition of nonlinear normal modes (NNM) was given by

Rosenberg [13] who defined NNM for a conservative system as periodic unison motion where all points in a

system reach their equilibrium position and their extreme position simultaneously. However, this definition
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of NNM cannot be used to explain internal resonances. Shaw and Pierre then defined the NNM as an

invariant manifold in phase space which is tangent to the eigenspace of the linear modes at the equilibrium

points [14]. This definition allows the concept of NNM to capture the internal resonance and be extended to

a non-conservative system that include damping terms. This type of NNM was defined as damped Nonlinear

Normal Mode (dNNM). Since then, NNM computation was further extended to nonlinear systems with

strong dissipation by Laxalde and Krack [15, 16]. Laxalde extended the concept of complex linear modes

to nonlinear and non-conservative systems based on a definition of eigenfunctions as generalized Fourier

series. Thanks to the definition of this complex nonlinear modes, the computation of dNNMs for a large

scale structure with friction interface is achievable. Krack further developed a numerical method, namely

Extended Periodic Motion Concept (EPMC), to compute a dNNM based on a enforced periodic concept by

introducing an artificial damping term to balance the dissipated energy from the non-conservative nonlinear

force [17]. Compared to the method presented in [18], EPMC has shown a better quantification of energy

dissipation within the system and works well when the system is highly damped [19]. The EPMC is therefore

used in this study for the computation of dNNMs for a large scale system with contact friction nonlinearties.

Another main benefit of dNNMs is that forced frequency response can be synthesised from obtained

dNNMs without large computational efforts. One of main techniques for nonlinear modal synthesis is based

on single nonlinear resonant mode theory [20]. It assumes that a single nonlinear mode dominates the sys-

tem response and is treated as nonlinear while the remaining modes are approximated by their linearised

counterpart because of their low energy levels. Krack has applied this method to the system with contact

friction [21]. Grolet and Sarrouy also employed this method to reconstruct the forced response of a geo-

metrically nonlinear system using a amplitude-phase formulation [22, 23, 24]. The study by Sarrouy found

that the forced response synthesised from dNNMs can achieve a better accuracy than undamped NNMs. It

was also clear that one of the main limitations about this nonlinear modal synthesis is that it is not able

to capture nonlinear modal interaction. The other main method to interpret forced response from NNMs is

called energy balanced method (EBM). It has been attempted by Kuether and Hill [2, 25] who used it to

identify the isolas and also relate the NNM to resonant solution in forced response for a conservative non-

linear system. Recently, EBM has been further extended to systems with non-conservative nonlinear system

by Sun et al. [26], which is named extended energy balance method (E-EBM). The resonant response can be

accurately predicted for a system with strong contact friction nonlinearties. It proves that the use E-EBM

can significantly improve the efficiency and reduce the computational cost for the computation of resonant

solution in a forced response, especially for structure with frictional contact. However, the effectiveness of

both methods has not been compared in open literature. In this paper, the forced response interpretation

from dNNMs will be demonstrated with both nonlinear modal synthesis and energy balance method.

Although dNNMs have attractive features to interpret nonlinear systems, the computation of dNNMs

for a large scale system is still challenging even for the system with localised nonlinearities such as contact

friction [27]. To overcome this problem, sub-structuring techniques are often used for model order reduc-
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tion [10, 9, 6, 28, 29]. The main idea is to consider the components in an assembly as distinct sub-structural

elements. The reduced basis for such an assembly can be then constructed with the linear normal modes

and the static modes associated to the retained interface nodes from the sub-structural elements [30, 31, 32].

The reduction can effectively eliminate most internal DOFs for each component while retain the whole

nonlinear DOFs [33]. The other benefit of sub-structuring methods is that it is convenient to integrate non-

linear constitutive model such as friction models on the interface. However, the size of substructuring based

ROMs is proportional to the size of contact interfaces. Despite of the advance in computational power, the

computation of such a ROM is still very challenging for a large scale system e.g. bladed disc assembly in

turbomachinery [9, 34].

To overcome above-mentioned challenges, improved sub-structuring methods are needed to enhance the

computational performance for the calculation of dNNMs. Recently, an adaptive component mode synthesis

method was put forward by Yuan providing a significant computational improvement for large scale systems

with friction joints [35, 36, 37]. The method allows the set of static modes in classical CMS reduced basis

to update automatically according to the real-time contact conditions on the interface. It was achieved by

a rewritten equation of motion by combining the underling linearised system with a new adaptive internal

variable that accounts the non-linear effects from contact interface. This enables the following ROM to

remove a number of redundant static modes associated to sticking nodes in a self-adaptive way. Such an

adaptivity can lead to a considerably computational saving for the jointed structures with micro-slip motions.

This adaptive ROM can be conveniently integrated with the harmonic balance method (HBM) to obtain the

most interesting steady-state response. The original adaptive algorithm was further improved by introducing

an energy-based error estimator [37]. It can be effectively used as a monitoring indicator to update the set of

reduced basis through adding or removing associated static modes during the online computation. The error

estimator can help further increase the computational efficiency and improve the computational accuracy

by eliminating numerical noise. It provides a very promising and appealing approach for the computation

of dNNMs as well, which however has not been investigated yet.

This study aims to address above-mentioned industrial computational challenge on the calculation of

nonlinear modes for a large scale nonlinear system. The main contribution of this work is that the adaptive

ROM is introduced in the calculation of dNNMs for a large scale nonlinear system. The computing perfor-

mance between adaptive ROM and the classical sub-structuring methods are compared with an industrial

scale model. Furthermore, the use of nonlinear modal synthesis and energy balance method to interpret

the forced response is also demonstrated and compared. The paper is organized as follows: at first, the

formulation of the nonlinear mechanical system and adaptive reduced order model is presented; it is followed

by the introduction of damped nonlinar modal analysis and related computational techniques to interpret

the forced response; then, the implementation of adaptive ROM for the computation of dNNMs is described;

after that, an industrial-scale test case, namely, fan blade system with a dovetail joint in a jet engine, is

described; in the results section, the characteristic of dNNMs is firstly presented; it is then followed by a de-
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tailed presentation of accuracy and speedup of using adaptive ROM compared to the classical CB method;

the forced response prediction from dNNMs is finally predicted and validated by comparing against the

directly computed FRFs.

2. Mechanical system

2.1. Equation of Motion

For a mechanical system with friction interface, the equation of motion in a forced response is given as:

M ü(t) + C u̇(t) + Ku(t) + Fnl(u(t)) = Fe(γ, ϕ,Ω, t) (1)

where M, K and C are mass matrix, stiffness matrix and viscous damping matrix respectively. u(t) is the

physical displacement of the structure. Fe is the external periodical force. Fnl is the nonlinear force involved

in the system. Ω is the excitation frequency; γ is the excitation forcing level; ϕ is the absolute phase of the

excitation force. For an autonomous system, the external excitation force Fe in Eqn.1 would be set zero.

The damped nonlinear mode is considered as the solution of such an autonomous system.

3. Adaptive reduced order model

In this section, the contact model to predict friction force and the development of adaptive reduced order

model from the original system in Eqn.1 are described.

3.1. Contact Model

A 3D node-to-node contact model is used to simulate the friction force on the contact interface. As shown

in Fig.1a, this model contains two coupled 1D Jenkens elements in the tangential direction with a spring

in the normal direction. Two coupled tangential Jenkins elements are used to model a two dimensional in-

plane motion while a coupling normal spring is used to define the contact status. Normal contact conditions

are defined as two states, namely in-contact condition, and separation. If the predicted normal force FN

becomes negative, separation occurs between the two contact nodes and the normal contact force becomes

zero. Whereas if FN is positive, the contact pair is in contact and thus there are two types of tangential

contact states possible: (i) the sticking condition which will occur when the overall tangential contact force

FT is less than the Coulomb friction limit µFN ; (ii) the slipping condition which happens when the tangential

contact force FT is equal or above the Coulomb friction limit µFN . As a result, there are three general contact

conditions: separation, stick and slip for each 3D node pair that can occur at any point during a vibration

cycle. As shown in Fig.1a, the kn and kt are normal and tangential contact stiffness (N/mm3), which is

is actually the slope of the deformation at the sticking condition shown in hysteresis loop in Fig. 1b;µ is

friction coefficient; x(t), y(t) and z(t) are tangential and normal displacement in local coordinate system.

The initial contact condition is defined by the pre-defined normal load N0 and gap. The local contact
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Figure 1: (a) 3D node to node element (b) Hysteresis loop [41]

stiffness for each contact element is computed from the normalised contact stiffness with a unit of N/mm3,

obtained by measurements [38] times the area of that contact element while the global contact stiffness is the

contact stiffness times the whole contact area. It is worth noting that the distribution of N0 on the contact

surface should be pre-identified from the experimental measurement or nonlinear static analysis as it has a

large influence on the nonlinear dynamics of jointed structures. Contact stiffness should be dependent on the

normal pressure. However, such a dependency is not considered in this paper due to insufficient experimental

data. The interested readers can also find the detailed formulation of this contact element in [39, 40].

Figure. 1b shows a typical experimental hysteresis loop in blue, which is identified from a 1D friction test

rig [38]. The tangential contact stiffness is determined experimentally by the slope of the sticking portion.

The friction coefficient is identified by the ratio of tangential force to the normal load in the macroslip region.

The numerical hysteresis loop obtained from a full mesh grid of 3D node-to-node contact elements shown

in dashed green is compared with the experiment loop. It is found that the microslip effect observed in

the experimentally measured loops, which occurs when a part of the interface is in sliding condition while

the rest is in sticking, can be also captured through a combination of contact elements in the dense spatial

discretization of the contact interface. This confirms that 3D contact elements are effective to represent the

contact friction behaviour including the sticking, macroslip and microslip.

3.2. Linearised system

To apply the adaptive ROM method, the mechanical system shown in Eqn.1 is firstly linearised on

the friction interface using the contact stiffness kt and kn. If the whole contact surface is in a sticking

condition, the tangential and normal contact forces are equal to the linearised contact forces. However, if

there is any contact pair in a slipping condition, the linearisation would not be accurate as there will be
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a remainder between the linearised contact force and nonlinear contact force induced by the slipping or

sepration. Therefore, an internal variable ∆p is introduced into the linearised system in order to take into

account the nonlinearities from the friction interface. The internal variable ∆p for ith contact pair can be

formulated as:

∆pi =

 (FiT − kt∆uTi )/kt Tangential direction

(FiN − kn∆uNi )/kn Normal direction
(2)

where FiT ,F
i
N is the tangential and normal force at ith contact node, which are evaluated for each contact

pair using the 3D contact element; ∆uTi ,∆u
N
i are the relative displacement at ith contact node. The size

of ∆p is only half number of interface DOFs as the amplitudes of nonlinear force are same on both contact

interfaces while only the sign is opposite. The Newton’s third law is therefore implicitly taken into account

in the following rewritten equation of motion. The rewritten equation of motion for adaptive ROM can be

expressed as [36]:

M 0

0 0


︸ ︷︷ ︸

MG

 ü

∆p̈

 +

C 0

0 0


︸ ︷︷ ︸

CG

 u̇

∆ṗ

 +

KL(kt, kn) BKJ

(BKJ)T KJ


︸ ︷︷ ︸

KG

 u

∆p

 =

 0

Fnl(u)


︸ ︷︷ ︸

FG
nl

+

Fe

0


︸ ︷︷ ︸
FG

e

(3)

where the KL(kt, kn) is the global linearised stiffness matrix on the contact interface, which is as a function

of local contact stiffnesses, kt, kn. The latter are the local tangential and normal contact stiffness of each

contact element as described in the previous section; KJ is the linear joint stiffness matrix associated to the

contact interface DOFs; B is the signed Boolean matrix to transform the joint matrix into the global system

matrix; KG,CG,MG are the linear stiffness, damping and mass matrix of the rewritten system; FG
nl,F

G
e

are the nonlinear contact friction and external force vector. More details of the transformation leading to

Eqn.3 can be referred to [36].

3.3. Reduced basis

The reduced subspace of the rewritten system in Eqn.3 can be constructed with vibration modes φ of the

linearised system and static modes ψ related to internal variables ∆p. The details to obtain these reduced

basis can be referred to [36, 35]. With such a set of reduced basis, the transformation from the full physical

coordinates to reduced subspace can be written as:

 u

∆p

 =

φ ψ

0 I

 η

∆p

 , (4)

where η is the modal participation factors of the selected dynamic modes; q is the reduced coordinates

in the subspace. Most importantly, a second reduction can be carried out from Eqn. 4. It is obvious

that the static modes associated to purely sticking contact nodes in ∆p can be removed from the reduced
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subspace because ∆p would be zero for those sticking nodes. It can be easily achieved by only retaining

the non-zero terms in ∆p in Eqn. 4. The transformation matrix for the second reduction can be expressed as:

 u

∆p

 =

φ ψ

0 I

I 0

0 Bp

 η

∆pR

 =

φ ψBp

0 Bp


︸ ︷︷ ︸

Φ

 η

∆pR

 , q =

 η

∆pR

 (5)

where ∆pR is the non-zero part of ∆p; Bp is the Boolean matrix that helps to abstract on the non-zero part

of ∆p;Φ is the adaptive transformation matrix of the second reduced order model. The size of final ROM

therefore can be related to the contact condition of the contact nodes. It is worth mentioning that such an

adaptive ROM performs well in particular for a large number of nodes that remain in sticking condition,

which is often the case for most jointed structures. Another advantage of adaptive ROM is that it can help

immediately detect the friction nonlinearities by only observing the size of the adaptive ROM. Using the

modal projection with Φ, the reduced mass, stiffness, force matrix can be written as:

MR = ΦTMGΦ,CR = ΦTCGΦ,KR = ΦTKGΦ (6)

FR
nl = ΦTFG

nl,F
R
e = ΦTFG

e (7)

In the following section, it will be shown this reduced order model is used in the calculation of damped

nonlinear modes, and also how the self-adaptive updating of this ROM is achieved with harmonic balance

method.

4. Damped Nonlinear Normal Mode Calculation

This section is to describe the numerical method to calculate dNNMs, and also show the adaptive ROM

is integrated into harmonic balance method for the computation of dNNMs.

4.1. Extended periodic motion concept

The concept of extended periodic motion, which is originally proposed in [17], is adopted here to evaluate

the dNNMs. Modal amplitude α is introduced to represent the modal energy in the nonlinear system as the

modal properties of dNNM is dependent on the level of energy within the system. The solution of dNNM

can be expressed as: q(α, t) = α · q0(α, t), where q0(α, t) is normalised solution at modal amplitude of α.

In addition, the absolute phase of the solution in an autonomous system is arbitrary. Therefore, a mass

normalisation and phase normalisation constraints are imposed in a similar way in [42]. The energy of the

system is not constant due to the energy dissipation on friction contact and linear damping. The solution

of dNNM is therefore not periodic. An artificial mass proportional modal damping is introduced into the

system to make the motion of the system periodic as shown in Eqn.8. The aim of this artificial modal
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damping is to balance the energy dissipated by frictional contact and the viscous damping within the linear

system. ωo(α) is the amplitude dependent resonant frequency. η(α) is the equivalent damping ratio. Then,

the equation to compute dNNMs using the adaptive reduced system can be rewritten as Eqn.9.

Ca = −2ωo(α)η(α)MR (8)

α(MR q̈0(α, t) + Ca q̇0(α, t) + CR q̇0(α, t) + KR q0(α, t)) + FRnl(Φ(αq0(α, t))) = 0 (9)

4.2. Steady state response approximation

Multi-harmonic balance method (HBM) is used to obtain the steady state reduced dynamic system from

Eqn.9. The non-linear displacement q(t) can be approximated by truncated Fourier series as:

q(t) = Q̃0 +

nh∑
i=1

(Q̃ci cosmiωot+ Q̃si sinmiωot) (10)

where Q̃c,si are cosine and sine harmonic coefficients for ith harmonic; Q̃0 is the zero harmonic coefficient;

nh is the number of harmonics; ωo is amplitude dependent resonant frequency. Using such an approximation,

the size of original unknown vector is then expanded by 2nh+1 times. The framework of HBM includes three

main components: Newton-Raphson solver, Alternating Frequency Time (AFT) procedure and continuation

technique [6, 36, 43]. AFT technique is used to calculate the nonlinear contact friction force in time domain

and transfer it to the frequency domain. The continuation technique is used to track the nonlinear dynamical

response with tracking parameters. The modal amplitude α would be used as the tracking parameter in

nonlinear modal analysis. The Secant method is used as the predictor and the arc-length method is for the

corrector.

4.3. Self updating algorithm

The algorithm to update the size of reduced order model for nonlinear modal analysis is described in

Algorithm 1. The classical continuation procedure within HBM framwork is kept unchanged. For each

solution, the size of reduced basis is fixed and updated only when moving to compute the next solution.

Before updating the reduced basis, contact friction force in an entire interface is evaluated for the current

converged solution Q̃i. The error estimator for each contact pair ei is then calculated in order to detect

contact conditions of all nodes and then update the Bi+1
p with the pre-setting tolerance ε [37]. Bi+1

p is used

to update the reduced basis for the next modal amplitude αi+1. It means, for each continuation step, the

reduced basis for the reduced system is updated by adding static modes related to slipping nodes to the

reduced basis or removing static modes from those contact nodes in a sticking condition. Once the reduced

basis is updated, the reduced basis will be used for the next continuation step and the size of the reduced

system will remain constant. All the assumed slipping nodes from the last converged solution can be either

in a sticking or slipping condition during a vibrational period. ε needs to be defined beforehand based on
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the allowable case-independent ratio of the energy dissipation level to the external energy level e.g. 10−10.

In this case, three tolerance levels for the chosen test case are studied.

Algorithm 1: Adaptive size updating in the numerical continuation

Result: [Q̃1, Q̃2, . . . , Q̃e], [α1, α2, . . . , αe]

Initial guess solution: Q̃0, α0,B0
p

Initialization: α1 = α0, Q̃1 = Q̃0,B1
p = B0

p;

while αs ≤ αi ≤ αe do
Classical continuation:

(1) Predict: (Q̃ip, α
i
p) = fpre(Q̃

i−1, αi);

(2) Correct: (Q̃ic, α
i
c) = fcor(Q̃

i
p, α

i
p,MR,KR,Φ,B

i
p);

Expand and save: (Q̃i, αi) = fexpand(Q̃
i
c, α

i
c,B

i
p);

Contact condition re-evaluation to update AROM:

(1) Call Fnl(Q̃
i,Φ) to calculate friction force of entire interface nodes;

(2) Evaluate the error estimator ei for each interface node i;

(3) Update ∆pi with ei for each contact node i;

(4) Obtain Bi+1
p for non-zero part in updated ∆p;

if Bi+1
p 6= Bi

p then

Update reduced system MR,KR,Φ with Bi+1
p (Eqn.5 and Eqn.6);

Update the size of the converged solution Q̃i with Bi+1
p ;

end

i=i+1;

end

5. Forced response interpolation from dNNMs

The calculation of steady state dNNMs using the adaptive ROM have now been described. This section

is to present the numerical methods for forced response reconstruction from the dNNMs. Two methods are

considered here: one is E-EBM to predict forced resonant response; the other is nonlinear mode synthesis

method to reconstruct the full FRFs.

5.1. Forced resonant response prediction

The dNNM is regarded as a collection of resonant solutions in the forced response. However, it is not

immediately clear to relate the dNNMs to resonant response at different excitation positions. The E-EBM

is applied to predict the resonance. The idea of this method consists in the fact that the total energy

transferred into a system within one period must be zero. The resonant solution of forced response is similar
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to that of the dNNM, for small enough forcing and damping, the solutions are assumed to be identical. It

means that when the excitation frequency Ω coincides with amplitude dependent resonant frequency ωo, the

resonant solutions in forced response qf are assumed to be same as the dNNM with a certain level of modal

amplitude q = α · q0(α). The solutions are named as ‘resonant shared solutions ’(χ).

χ = q ≈ qf ,when Ω = ωo(α) (11)

Ed =

∫ 2π/ωo(α)

0

(CR + 2ωo(α)η(α)MR) · χ̇ · χ̇dt (12)

Ef (γ, ϕ) =

∫ 2π/Ω

0

Fe(γ, ϕ,Ω, t) · χ̇dt (13)

The energy dissipation Ed can be then calculated by integrating the product of artificial damping force in

Eqn.8 and displacement over one vibration period 2π/ωo(α) as shown in Eqn.12. Similarly, the external

excitation energy Ef (γ, ϕ) can also be integrated, whereas Ef varies with forcing level γ and forcing phase

ϕ as shown in Eqn.13. To determine the value of γ and ϕ, a single intersection between the curve of Ef

(Ef against ϕ) and the constant Ed will occur at the maximum position. This process is applied to each

value of modal amplitude α and the corresponding force amplitude at the selected excitation position can

be constructed.

5.2. Full forced response reconstruction

The full nonlinear FRFs can also be reconstructed from the nonlinear modes using single nonlinear

resonant mode theory [20]. We assume that only the jth mode dominates the nonlinear vibration behavior

of the system while the remaining modes are linearised. However, the nonlinear mode can only accurately

reconstruct the forced response close to the resonant frequency. To increase the accuracy for the response

away from the resonance, the linear correction terms from other linear modes are needed. Therefore, the

forced frequency response can be synthesised between the nonlinear mode and other linearised modes as [21]:

u(t) = α(Ω)Ψj(α(Ω))(t) +
∑
i6=j

Φiηi(Ω, t) (14)

Where u(t) is the forced response of the system; Ω is the external excitation frequency; Ψ is denoted as the

dNNM from nonlinear modal analysis, which is namely qo(t) shown from Eqn.10; Φ includes the linearised

modes in reduced basis. The modal amplitudes ηi can be directly computed through the modal superposition

method by using the projected linearised systems. The modal amplitude of the nonlinear mode is determined

independently of the linear modes and by only considering the fundamental harmonic in nonlinear mode Ψj

in the multiharmonic expansion of the nonlinear mode. This method is referred as nonlinear modal synthesis

(NMS) in this paper.
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6. Test case

6.1. Fan blade system

Fan blade system is the largest bladed disc assembly in a modern turbofan engine that provides the over

60% thrust to propel the aircraft [44, 30]. This fan assembly consists of a number of blades and a disc on the

rotating shaft. They are commonly assembled through a disk via curved or straight dovetail roots. Such a

design ensures easy assembly and safe load distribution, and also provides essential damping to the system.

The state-of-the-art linear vibration analysis often leads to an over-design of the components by ignoring the

non-linearities from the dovetail joint due to the complex and strong nonlinear dynamic nature in the friction

joint. To further improve the fan blade root design, it is therefore necessary to take these non-linearities into

account for a better dynamic design [45]. However, performing non-linear dynamic analysis for a large-scale

system remains as an academic and industrial challenge partly due to the heavy computational expense. For

these reasons, this large-scale fan blade system is used as the test case in this paper.

6.2. Industrial-scale FE model

(a) (b) (c) (d)

Figure 2: (a) Fan system assembly (b) One fan sector (c) Dovetail joint (d) First bending mode

Figure.2a shows a full scale fan blade system in turbofan aero-engine that includes more than two dozens

of blades (in blue) and one disc (in red) connected via curved dovetails joints. The fan blade system is cyclic

symmetric, and one sector of the assembly is therefore considered for this study. Figure.2b shows a sector

of the bladed disc assembly where the deep blue part of the disc is the cyclic boundary. The blade has a

low slenderness aspect ratio of around 4 and an increasing twist from root to tip. This high fidelity finite

element model was built with the quadratic hexahedral element and each node has 3 DOFs. The model

of each sector consists of a blade of 27,707 nodes and a cyclic symmetric part of the disc of 13,826 nodes.

Figure.2c show the geometry of a blade with a curved root that connects the disc. The matching mesh (node

to node) is used on the contact interface that allows the use of 3D node to node contact element, which has
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Figure 3: 2D projection contact nodes in dovetail joint

been detailed in section 3.1. Figure.2d shows the first flapping mode of the fan blade sector, which would be

further studied for nonlinear modal analysis using adaptive ROM. Figure 3 shows a X-Y plane projection

of 208 contact node pairs in the curved contact interface with their numbering. There are in total 208 × 6

contact friction DOFs. For each of the contact pair, a local coordinate system will be created due to the

nature of curved contact interface.

7. Results

7.1. The property of dNNMs

The dNNMs are computed using the numerical methods explained above. Figure 4a shows the evolution

of resonant frequency ωo and damping ratio η against modal amplitude α . By looking at the red curve

in Fig.4a, the resonant frequency ωo is constant when modal amplitude is smaller than 0.015 and starts

to decrease when α ≥ 0.015. As for dissipated damping η, the similar turning point can be found. The

dissipated damping η is null for low modal amplitude (α < 0.015). A positive dissipated damping η can be

obtained when α is larger than 0.015. Such a linear behavior at low modal amplitudes is because all the

contact nodes remain in a sticking condition. The system can be regarded as an equivalent linearised system.

A further increase of modal amplitude would initiate the sliding contact status and a typical softening effect

can be seen due to the transition of contact status (from sticking to sliding). The sliding contact nodes

lead to an energy dissipation and a softening effect resulting in a decrease in resonant frequency. It is worth

noting that, although bladed disc systems have high modal density and many modes can appear in a narrow

frequency band, damped nonlinear modal analysis can be still applied and used as a effective tool to track
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Figure 4: (a) Resonant frequency and damping at different modal amplitudes (b) Steady state response of three cases on the

blade tip over a period (c) 3D invariant manifold

the resonance in the forced response, since most of the time only one mode dominates the response [42]. For

a mistuned system, the application of nonlinear modal analysis can be challenging, especially when there

is a nonlinear coupling between modes. Otherwise, the nonlinear modal analysis can still be applied as

demonstrated in [46].

To further demonstrate the nonlinear modes, three solutions at different modal amplitude (α = 0.0082,

0.0193 and 0.0276) are selected as demonstration cases A, B and C. Figure. 4b shows the steady state

response from the blade tip in these three cases over a period where the amplitude is normalized by the

linear case. As is shown in Fig.4a, case A is considered as a linear case where the equivalent damping ratio

η = 0 and normalized resonant frequency ωo = 1. The resonant amplitude of blade tip reaches maximum

among the three selected cases. Where as for Case B, the system starts to behave non-linearly with higher
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modal amplitude. η is increased to 0.005 and ωo drops to 0.996. It also leads to lower resonant response

amplitude to 0.42. With the increase of α to 0.0276, case C has a η of 0.016 and ωo of 0.955. The resonant

amplitude for case C is reduced further from 0.45 to 0.3. The case B and case C will be further investigated

later.

Fig.4c shows a 3d invariant manifold of the system with modal coordinates q1-q̇1-q2, where q1 is the

modal coordinate of the first linearised mode; q̇1 is the velocity of the q1 and q2 is that of the second

linearised mode. This 3D invariant manifold is part of the first nonlinear mode of fan blade systems. This

hypersurface as a part of invariant manifold is constructed using a collection of damped periodic solutions

from the calculated dNNMs over a period. The periodic solutions for above-mentioned three demonstrated

cases (A, B and C) are also highlighted in different colors. At low modal amplitudes, the system behave

linearly where the periodic motions stay in the flat plane in the center of the manifold where q2 stays at

zero for all the points. It means that there is not any contribution from the second mode, e.g. linear Case

(A). When the modal amplitude reaches 0.019, e.g. Case (B), the flat plane cannot be held anymore and it

starts to be twisted which means the second mode starts to couple with the first mode due to the contact

friction non-linearities. With a further increase of modal amplitude as Case (C), the phase surface is further

twisted, and one can clearly see the surface bends inward and outward. The modal amplitude of the second

mode increases to 0.05%. It means the coupling between first two modes becomes stronger however the first

mode still dominates the dynamic response.

7.2. Comparison of AROM and CB method

This section is to compare the dNNMs computed from AROM and classical CB method. The property

of resonant frequency and damping ratio between these two methods is firstly compared; then, we present

the comparison of the contact condition and energy dissipation on the contact interface; it is then followed

by a comparsion of computational cost.

7.2.1. Resonant frequency and Damping

Figure.5 shows a comparison of resonant frequency and dissipated damping ratio. The solid lines are

the results from CB method while the dashed lines are from the adaptive ROM. For the adaptive ROM,

the results are computed using 3 different tolerance levels defined in error estimator to automatically select

static modes from contact interface, which are 1e − 20, 1e − 10 and 1e − 2. One can clearly see that, when

the tolerance equals to 1e − 20, the resonant frequency and damping ratio from adaptive ROM completely

overlays the results from classical CB method. When the tolerance increases to 1e − 10, the discrepancies

of resonant frequency and damping ratio can be clearly observed when the modal amplitude is larger than

0.024. As expected, the difference between AROM and CB becomes larger (up to 5%) when the modal

amplitude increases further. The results from the tolerance of 1e− 2 do not show much difference compared

to that with tolerance of 1e− 10. The difference however appears early from modal amplitude around 0.02.
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Figure 5: Comparison of nonlinear modal properties between adaptive ROM and CB method

7.2.2. Contact status and energy dissipation
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Figure 6: Contact status with (a) Adaptive ROM method (b) CB method

Figure.6 shows a comparison of the contact conditions for each interface nodes at different modal ampli-

tudes between adaptive ROM (Tol=1e-20) and CB method. The contact node number in Y axis is consistent

with the node numbering shown in Fig.3. The blue color represents the stick-slip condition on that node

while the red color means the contact-separation condition. It shows that the contact condition of dNNM

computed by adaptive ROM is almost same as that computed by CB method. The slipping and separation

condition of both dNNMs start at the same modal amplitude around 1.15e− 2 and 2.60e− 2. The slipping
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and separating nodes from CB method appear a bit early than that from adaptive ROM. For example, at the

modal amplitude of 1.15e− 2, the number of stick-slip nodes from CB method is 8 while that from adaptive

ROM is 7. At the modal amplitude of 2.60e − 2, the number of contact/separation node from CB method

is 1 while that from adaptive ROM is 0.

(a) (b)

(c) (d)

Figure 7: Case (B): (a,b) Contact status; (c,d) Dissipated energy; (a,c) AROM method; (b,d) CB ROM method

To give more insights into dNNMs computed from adaptive ROM (Tol=1e-20) and CB method, Figure.7

and 8 show the distribution of the contact condition and also dissipated energy on the 2D projected contact

interface at different modal amplitudes. Figure.7 compares these nonlinear properties at modal amplitude

of 0.019 (namely Case B) while Fig.8 at modal amplitude of 0.028 (namely Case C). At modal amplitude of

0.019, the contact nodes start to slip from the edges in the bottom contact interface while from the center

in the top contact interface. They then propagate to the centre of bottom interface and to the edges of

top interface at a high amplitude. The separation condition only appears at a high amplitude. The energy

dissipation follows the same propagation trend as the slipping contact nodes. It can be clearly seen that

both Case B and Case C generally show a very good agreement on the distribution of contact conditions and

dissipated energy between adaptive ROM and CB method. There is a slight difference (around 1%) in the

energy dissipation levels in Case B and Case C. This further validates the accuracy of the adaptive ROM

for the computation of dNNMs.
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(c) (d)

Figure 8: Case (C): (a,b) Contact status; (c,d) Dissipated energy; (a,c) AROM method; (b,d) CB ROM method

7.2.3. Computation cost
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Figure 9: Comparison of system size between AROM and CB ROM

18



Total time Number of evaluations Time/evaluation
0

20

40

60

80

100

120

140

Figure 10: Compuational speedup of AROM against CB ROM

Figure.9 compares the size of adaptive ROM and classical CB method during the computation of dNNMs

at different modal amplitudes. The red line is the size of CB model, which remains constant for all the

modal amplitude. The dashed blue line is the maximum size of adaptive ROM, which would occur when

all the contact nodes are in the slipping condition. The maximum size of adaptive ROM is around the half

of CB model as size of the full internal variable is half number of the static modes used in CB model. The

size of adaptive ROM with three tolerance levels (1e − 20, 1e − 10, 1e − 2) are plotted as bars in Fig.9. As

expected, the size of adaptive ROM keeps minimum in the linear region when the modal amplitude is less

than 1.0e− 2. The minimum size of adaptive ROM is 100 (the number of linearised modes) times 2 ∗ nh + 1

where nh is the number of harmonics (nh=3 in this case). After that, the size of adaptive ROM slowly

increases with the growth of the modal amplitude. The adaptive ROM with lowest tolerance (Tol=1e− 20)

can firstly detect the slipping nodes but has the largest size compared to the other two adaptive ROM with

lower levels of tolerance at high modal amplitudes. As expected, the size of the system increases with the

modal amplitude as the number of slipping nodes increases for both tolerance levels (Tol=1e-20 and 1e-2).

However, for Tol=1e-10, there is a slight decrease in the reduced system size around α = 2.1e − 2. The

main reason for this change in size is the numerical noise. In the transition period between micro-slip and

macro-slip when the energy dissipation of stick-slip nodes is close to the pre-setting tolerance level the system

is very perceptive to noise, while once elements are slipping, this noise dependence drops, and hence the

system size increases somewhat less. From the case study, it is clear that the adaptive approach is more

efficient when a large number of nodes remain in a sticking condition. The proposed approach therefore is

particularly useful for jointed structures where most of contact nodes are normally in a sticking condition.

However, it does not mean that the accuracy of the proposed method would be reduced when the interface
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is in a marcoslip condition as shown in the case study at a high modal amplitude. The accuracy of adaptive

ROM would remain same as CB method even when only a small portion of nodes is coupled.

Figure.10 shows the speed up of using adaptive ROM at different tolerance levels for the computation of

dNNMs against counterpart of CB method. It also includes the number of evaluations and average speed

up of adaptive ROMs with these three tolerance levels. Consistent with the system size shown in Fig.9,

the adaptive ROM with a high tolerance level always leads to an overall high computational speedup. The

speed up increase from 32 to 120 when the tolerance level grows from 1e-20 to 1e-2. It is worth noting here,

even with a lowest tolerance level of 1e− 20, the adaptive ROM can achieve a speedup of 32 while the loss

of the accuracy is almost null as shown in Fig.5. Obviously, high speed up would compromise the accurate

prediction of dNNMs. The use of tolerance of 1e−2 in adaptive ROM underestimates the resonant frequency

by around 5-10% as discussed in Fig.5. In terms of number of evaluations, the first two adaptive ROMs with

low tolerance level remains similar size while the third one has slight higher number of nonlinear evaluations.

The average speed up per evaluation for three adaptive ROM are 3.32, 7.29 and 8.95.

7.3. Prediction of forced response using dNNMs

This section is to show the forced response predictions from dNNMs that are previously obtained from

the adaptive ROM. Energy balance method and nonlinear modal synthesis are used to predict resonant

response and also full FRFs separately. These predictions are then compared with directly computed FRFs

using CB method. The accuracy and computational time from these predictions will be demonstrated.

7.3.1. Forced resonant response interpolation

Using the E-EBM as described in 5.1, the excitation forcing level can be predicted for each solution along

dNNMs at each modal amplitude. The solution from dNNM can be considered as resonant solution in a

forced response with the predicted excitation forcing level. In Fig.11a, the evolution of excitation forcing

level F is plotted against the forced resonant amplitude from the blade tip. To validate the predicted

excitation forcing level, six nonlinear forced responses are computed for different values of excitation forcing

level (F = 1 N , 3 N , 5 N , 8 N , 10 N and 12 N). Using amplitude-force curve, for given excitation forcing

level, the corresponding vibration amplitude are marked by different colors on the left hand side of Fig.11a.

Whereas on right hand side of Fig.11a, the actual resonant amplitude from nonlinear forced responses are

compared with the predicted amplitude on the left.

Figure.11b also shows the 3D view of interpreted dNNM and nonlinear forced response are provided in a

ω-F -Amplitude space. The predicted resonances by E-EBM have a good agreement with the actual resonance

from nonlinear forced response. This means that the forced resonant response from any excitation location

in the structure can be directly and accurately interpolated from the dNNM with almost null computational

cost. The time-consuming forced frequency response simulations can be saved.
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Figure 11: (a) 2D Nonlinear modes and FRFs (b) 3D Nonlinear modes and FRFs

7.3.2. Full synthesised forced response

The nonlinear forced response can be also reconstructed using nonlinear mode synthesis as shown in

Eqn.14. Fig.12 shows the comparison between reconstructed forced response (black dashed) from dNNMs

and numerically computed forced responses at different excitation levels. In general, the reconstructed

forced response can well capture the forced frequency response. At low excitation forcing levels (F =

1 N , 3 N and 5 N), the reconstructed forced response overlay on the actual forced response without any

visible differences. Whereas, for large excitation forcing level, there are some discrepancies between the

reconstructed forced response and the actual one near resonance. Such a discrepancy becomes large when

the excitation level increases from 8N to 12N. This is mainly because only the fundamental harmonic is

used to obtain corresponding modal amplitude for the nonlinear mode while the influence of higher order

harmonics on the dynamics are ignored, leading to some errors in the resonant response. The other reason

for an overestimation in reconstructed FRFs is that the contributions of other linearised modes to the

resonant response is doubled accounted in Eqn.14. The forced response from the single nonlinear mode

itself includes contributions from other modes near the resonance. However, the linear correction terms from

modal superposition also added the contribution from other linear modes close to the resonant frequency.

Therefore, the reconstructed forced responses have been found less accurate for large excitation forcing level

near resonance.

7.3.3. Computational time

Table 1 shows a comparison of CPU time between interpolated forced response from dNNMs and the

forced response from direct computations. As it is shown in Table 1, once the dNNMs is computed, the

computational cost for resonant response prediction using E-EBM is almost null for all the excitation levels.

The computational time for a whole FRF reconstruction (for a frequency between 0.72 and 1.27) remains

almost constant around 22s, even at very high excitation levels. It is because, with the help of single resonant
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Figure 12: Reconstructed FRFs from dNNMs

mode theory, the nonlinear system is converted into a linear system through the change of coordinates in

the phase space as shown in Fig.4c. In comparison, the computational cost from the direct force response

increases significantly when the excitation levels become large. For example, at the excitation of 12N, the

computing of direct FRF simulation is 100 times higher than that from interpolated forced response (given

that dNNMs has been computed). Certainly, the forced response interpolation requires a off-line computation

of dNNMs while direct forced response does not need to. However, the computation of dNNMs is one off

and it can be used to interpolate any forced response wherever the excitation location is and however large

the excitation amplitude is. If we only look at the total computation time of these 6 FRFs, the speedup of

interpolated method against the dircet FRF simulation is around 2.

Table 1: Comparison of computational time between interpolated forced response and directly computed ones

Method Type dNNM calculation F=1N F=3N F=5N F=8N F=10N F=12N Total time

Predicted from dNNMs
E-EBM: Resonance 2540s ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s 2540s

NMS: Full FRFs 2540s 24s 21s 23s 21s 23s 24s 2676s

Directly computed Full FRFs Not needed 182s 185s 222s 409s 2012s 2218s 5228s

8. Conclusions

The main objective of this work was to improve the computation of dNNMs in a large scale nonlinear

system with friction joints. It was achieved by employing an advanced adaptive ROM technique leading to a

significant size reduction of the model using classical ROMs. This study described a detailed implementation

of this adaptive ROM for the calculation of damped nonlinear modes using multi-harmonic balance method.
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The accuracy and computational merits of the dNNMs computed by the adaptive ROM is benchmarked by

classical Craig Bampton method.

An industrial-scale fan blade system with a large size of contact interface was used as a test case.

The dNNMs based on the concept of extended periodic motion was successfully computed using a frequency

domain solver. Compared to classical CB method, the resonant frequencies and modal damping from adaptive

ROM method are very accurate in a wide range of modal amplitude. It can also make the computation of

damped nonlinear modes at least 20 times faster than the reference CB method. The sensitivity study of

tolerance levels also showed the computing speedup from the adaptive ROM can be further increased to 120

with a loss of accuracy only 5%.

The other contribution of this paper is that it proved that the dNNMs can be effectively used to predict

the forced response for a large scale system through nonlinear modal synthesis and energy balance method.

The study showed both forced resonance responses and whole FRFs at different excitation levels can be

effectively interpolated from the dNNMs. In comparison to directly computed FRFs from CB method, the

maximum relative error of interpolated forced response in the resonance is less than 1%. It further validated

the accuracy of the dNNMs computed by the adaptive ROM. We also found that the computational cost

of nonlinear modal synthesis was very tiny and remain almost constant for all forcing levels. For example,

the synthesized FRF at the force level of 12N is 100 times faster than that computed from direct FRF

simulations. Such a cheap computation cost would be much appreciated when a large number of FRFs are

needed to compare with experimental results.

Overall, the study confirms that the novel adaptive ROM can be effectively used for the fast computation

of dNNMs in a large scale system with friction joints. It can significantly reduce the computational cost to

a readable level while maintain high accuracy of resulting modal properties.
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