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Abstract 10 

The dynamic responses of slender cylinders with high aspect ratios undergoing vortex-induced vibrations (VIV) are studied. 11 

In detail, a three-dimensional model predicting the VIV responses in both the In-Line and Cross-Flow directions of slender 12 

cylinders is proposed based on the nonlinear equation governing the dynamic deformation and a wake oscillator. The tension 13 

in the cylinder is estimated according to the incoming stream velocities. To predict the VIV responses, the cylinder is 14 

discretized into finite segments, and the vibrations of each segment are estimated from solving the governing equation when 15 

the excitation forces are modelled using the Van Der Pol’s wake oscillator. Considering that the wake oscillator model 16 

estimates the excitation forces according to the dynamics of the cylinder, it reveals the interactions between the flow and the 17 

dynamics of the cylinder. In order to verify the model calculating the mean tension, the VIV responses, which has been 18 

experimentally tested, is numerically studied. The comparison between the numerically predicted and experimentally 19 

measured responses shows that, the approach, especially the novel tension model, proposed herein is reliable as the frequency 20 
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of vibrations, dominant mode number and vibration amplitude are all in good agreement with the experimental measurements 21 

and results from peer-reviewed publications.  22 

Key words: Vortex-induced vibration; Van der Pol; Tension; Combined inline-crossflow responses 23 

1. Introduction 24 

Cylinders with high aspect ratios are widely used in the field of ocean engineering, especially in the offshore structures 25 

installed in deep waters Wu et al. (2012). For example, the risers widely used in the oil and gas exploration in the ocean are 26 

considered as slender cylinders in their structural designs. Along with the exploration moving from nearshore areas to deep 27 

waters, the aspect ratio of the riser connecting the floating platform and subsea production system increases significantly. In 28 

addition, the slender cylinder is also widely used to model the tendons of the tension leg platform (TLP). Given the operation 29 

water depth of the TLP (300m~1500m), the aspect ratio of the tendon is normally with an order of 10000. It is commonly 30 

acknowledged that the fatigue of the riser and the TLP tendon is the major cause for their structural failure. Considering the 31 

cost for maintaining the offshore structures and the subsea systems, the structural failure of the riser or the tendon of the TLP 32 

could lead to huge economic losses. Consequently, the vibrations of cylinders with high aspect ratios are of primary concern 33 

for their structural designers. 34 

Instability of flow around cylinders induces regular vortex formation and asymmetric vortex shedding, which produces 35 

periodic fluctuations in lift forces acting on the cylinders (Bearman et al., 2001). Given fluctuating lift forces, the cylinder 36 

vibrates at the frequencies determined by the interaction between the flow and the dynamics of the cylinder. When the 37 

frequency Ωf of vortex shedding, which determines, to a large extent, the vibration frequency of the cylinder, approaches the 38 

natural frequency Ωs of the cylinder, vibration amplitude of the cylinder is enlarged and Ωf is locked onto Ωs for a range of 39 

stream velocities (Stansby, 1976). Due to the large resonance vibration amplitudes and the lock-in effect, the vibrations 40 

induced by the vortex shedding, which is referred to as Vortex-Induced Vibrations (VIV) hereafter, could bring serious 41 
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damages to the cylinder, and hence the offshore structure in which the slender cylinder is an essential piece. Even if the 42 

resonance is avoided, the long-term VIV leads to the fatigue of the riser, which ultimately damages the system. Therefore, 43 

VIV of slender cylinders has long been a focus for the academic investigations. 44 

Vortex shedding is a three-dimensional (3D) process, which makes cylinders vibrate in both in-line (IL) and cross-flow (CF) 45 

directions. The VIV of slender cylinders could be investigated through simulating the dynamics of elastically mounted short 46 

rigid cylinders (low aspect ratio) in experiments. In such experiments, only the vibration in the cross-flow direction is 47 

commonly investigated (Dahl et al., 2006). Recent studies, however, have found that long flexible cylinders acquire different 48 

dynamic responses from those found in the vibrations of short rigid cylinders. Firstly, long flexible cylinders usually vibrate 49 

at higher frequencies and in higher modes comparing to the short rigid ones (Trim et al., 2005). Secondly, both standing wave 50 

pattern and traveling wave pattern are observed for long flexible cylinders while only standing waves relate to the vibrations 51 

of short rigid cylinders. Because Vandiver et al. (2009) found that most of the VIV energy was concentrated in traveling waves, 52 

the difference in vibration patterns could lead to unrealistic estimates of VIV responses for the long flexible cylinder based 53 

on experimental results of short rigid cylinders. Thirdly, in the lock-in region, short rigid cylinders vibrate in only one mode 54 

because modal frequencies are well separated for the short rigid cylinders (Iwan and Jones, 1987), but vibrations with 55 

combined modes are frequently observed for long flexible cylinders. Fourthly, when the excitation frequency ratio (IL 56 

vibration frequency fe,IL to CF vibration frequency fe,CF) equals the natural frequency ratio (IL natural frequency Ωs,IL to CF 57 

natural frequency Ω s,CF), dual resonance is observed for the long flexible cylinders but not properly simulated in the 58 

experiments with short rigid cylinders (Dahl et al., 2006; Dahl et al., 2010). More importantly, some studies suggested that IL 59 

vibrations are as important as CF vibrations for long flexible structures. For example, Sarpkaya has found that the combination 60 

of IL and CF vibrations in a two degree-of-freedom (i.e. 2DOF) system could produce larger amplitude VIV responses 61 

(Sarpkaya, 1995) compared to the VIV considering only CF direction dynamics. Such findings are in agreement with the 62 

conclusion drawn by Moe and Wu (1990) and others that large CF amplitude occurred in a wider range of reduced velocities 63 
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due to energy transforming from IL motions to CF motions (Dahl et al., 2006). Trim et al. (2005) conducted a benchmark 64 

experiment investigating the IL and CF VIV responses under uniform and shear flow conditions and found comparable 65 

magnitude of fatigue damage in both CF and IL directions. Blevins and Coughran have found that a 2DOF model of the long 66 

flexible cylinders has larger velocity entrainment (sometimes referred to as the synchronization, lock-in or lock-on) band than 67 

the model containing only CF vibrations (Blevins and Coughran, 2009). That means 2DOF response is larger at constant 68 

reduced damping and mass ratio. Therefore, further investigations on the dynamics of the long flexible cylinders, with 69 

emphasis on the combined CF and IL vibrations, are necessary for predicting its VIV responses. 70 

There are generally two approaches to numerically predict VIV of slender cylinders, i.e. computational fluid dynamics (CFD) 71 

techniques and semi-empirical methods in which forces exerted on the oscillating cylinders are estimated via a semi-empirical 72 

model. While the CFD simulation explicitly produces all the details of the flow around the cylinder, which in turn yields 73 

reliable estimations of drag and lift forces exerted on the cylinder, the semi-empirical model estimates drag and lift forces 74 

according to the data measured in experiments (Wu et al., 2012). Although the CFD simulation produces more accurate and 75 

reliable estimations of drag and lift forces, it requires much more computational resources for the case with realistic Reynolds 76 

numbers when comparing to the semi-empirical method. In addition, the CFD simulation results are not realistic for predicting 77 

VIV for long flexible structures (Xu et al., 2008). Semi-empirical methods, on the other hand, include various wake oscillator 78 

models and predicting VIV using the data measured in forced vibration experiments. In general, a wake oscillator model 79 

contains a dynamical system to simulate vortex shedding. It therefore helps enhance the understanding of the physics of VIV 80 

as the model provides some insights into the physical mechanism governing the flow and vortex shedding. The commercial 81 

codes developed based on the semi-empirical methods (such as VIVA, VIVANA and SHEAR7), usually build hydrodynamic 82 

coefficient database using the measurements gathered in a series of experiments and predict the VIV using the coefficients 83 

kept in the database. It should be noted that the common semi-empirical model only consider the VIV at a limited number of 84 

discrete frequencies in the CF direction. Consequently, there is still room for the semi-empirical model to be improved in 85 
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terms of predicting the VIV response in both the IL and CF directions of slender cylinders. 86 

In the light of estimating the vibrations of cylinders under the excitations of the vortex shedding, Bishop and Hassan have 87 

suggested that the wake of the cylinder behaves as a conventional mechanical oscillator (Bishop and Hassan, 1964). Following 88 

their suggestion, Hartlen and Currie proposed a wake oscillator model, in which the fluctuating lift coefficient satisfies a Van 89 

Der Pol type equation (Hartlen and Currie, 1970). Based on the Hartlen-Currie model, Skop and Griffin devised a modified 90 

Van Der Pol equation and developed relations between empirical constants and physically meaningful parameters (Skop and 91 

Griffin, 1973). In addition, the work of Skop and Griffin (1973) contains a verification showing that the proposed model 92 

predictions are in quantitative agreement with experimental observations. Nayfeh et al. (2003) combined CFD simulation and 93 

wake oscillator assuming that drag is the function of lift as their first step in the development of a reduced order model. They 94 

found that Van Der Pol equation is suitable to model the lift compared to Rayleigh equation. Facchinetti et al. (2004) 95 

investigated three different schemes coupling motions of cylinder segments and the wake oscillator (displacement, velocity 96 

and acceleration coupling). It turned out that acceleration coupling yielded the best agreement with experimental 97 

measurements. Using the acceleration coupling scheme, Xu et al. (2008) proposed a model for high aspect ratio riser with 98 

nonlinear coupling between axial and the CF motions and compared the results with CFD results and experimental data. 99 

Violette et al. (2007), in addition, numerically solved the Partial Differential Equations (PDEs) governing the vibrations of 100 

the cylinder coupled with the Van Der Pol oscillator and compared the solution with Direct Numerical Simulation (DNS) 101 

results and experiment data. Based on the work of Nayfeh et al. (2003), Akhtar et al. (2009) developed the reduced order 102 

model (Van der Pol-Duffing model) for flow over elliptic cylinders with different eccentricities. They performed the CFD 103 

simulations first, then the CFD results was used to identify the coefficients in the reduced order model. Their model results 104 

agree well with the CFD data. Later, Srinil and Zanganeh (2012a) modelled CF and IL vibrations using double structural 105 

duffing equations-Van der Pol wake oscillators and introduced cubic and quadratic nonlinear terms to structural equations. 106 

Gu et al. (2012) applied the Generalized Integral Transform Technique to predict VIV of the slender cylinder via transforming 107 
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PDEs to Ordinary Differential Equations (ODEs). Stabile et al. (2018) proposed a novel reduced order model, which consists 108 

a forced Van der Pol oscillator and a linear state-space model to model the CF and IL forces. Their model matches the 109 

experimental results well. 110 

It is widely acknowledged that the tensions in the risers, or other structure members with high aspect ratio, influence their 111 

VIV responses. In fact, Srinil (2011) has shown that a realistic model estimating the tensions in the slender cylinder is critical 112 

for predicting its VIV behaviors. Generally, there are three branches in terms of modelling the tension associated with a 113 

slender cylinder. The most common approach is to model the tension as a constant determined purely based on the forces 114 

applied at the end of the riser (Mathelin and de Langre, 2005; Sanaati and Kato, 2012). Such an approach is useful in the case 115 

where the riser is pre-tensioned, but the variations induced by the deformation of the riser is neglected. In addition, the tension 116 

can be modelled as a function of the height (depth), as in the studies of Srinil and Chen, Li et al. (Chen et al., 2012; Srinil, 117 

2011) to account for the losses in tension due to the buoyance. Like the constant tension model, the models employing a 118 

vertically varying tension is infeasible to account for the axial deformation found in risers due to the VIV. To model the 119 

influence of tensions in risers in a more realistic way, Ge et al. (2009) and Gu et al. (2012) introduced a model calculating the 120 

tension according to the cylinder prolongation. More specifically, the axial deformation of the riser is calculated according to 121 

the motions of the riser segments. Given that tensions are calculated according to the length of the riser, the dynamic responses 122 

of long risers can be estimated in a more realistic manner, which showed different patterns from the vibrations of risers with 123 

constant or vertically varying tensions.  124 

Although the study of Gu et al. (2012) included a tension model employing the prolongation of the riser as the independent 125 

variable, it focused on the CF vibrations only. In addition, the work of Ge et al. (2009) didn’t evaluate the relation between 126 

the tension and flow velocity. Thus, more efforts are needed in terms of contributing a 3D model predicting for both the IL 127 

and CF vibrations with dynamically varying tensions.  128 

In the present study, a 3D VIV model is proposed, which includes a new formula calculating the tension of a long flexible 129 
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cylinder and considering combined IL and CF VIV responses. The formula is validated against the data presented in Trim et 130 

al.’s work (Trim et al., 2005) and the model results are compared to the numerical simulations performed by Ge et al. (2009) 131 

and Gu et al. (2012). After the introduction, Section 2 presents the proposed 3D model and the formula calculating the tension. 132 

Section 3 shows a case study in which the VIV in both IL and CF directions are predicted using the proposed model. Moreover, 133 

the results are compared to the experimental data to verify the proposed model in Section 3. The advantages and disadvantages 134 

of the proposed model are also discussed in Section 3 based on the similarities and differences between the numerical 135 

predictions and the experimental measurements. Conclusions are drawn in Section 4. 136 

2. Model description 137 

2.1 Nonlinear coupled structure and wake oscillator model 138 

The physical system considered herein is a flexible beam with simple supports, modelling a riser with diameter D subjected 139 

to a uniform flow with the stream velocity of U. The deflection of the beam is expressed by the Euler-Bernoulli beam equation. 140 

The riser is free to oscillate both in IL direction (x-axis) and CF direction (y-axis) as shown in Fig.1. The motion governing 141 

equation for x and y displacements at any time t＞0 and position 0＜z＜L along the riser’s length is expressed as 142 

2 2 2

2 2 2z

r r r r
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The meaning of the symbols appeared here and in the following equations can be found in APPENDIX: LIST of SYMBOLS 146 

In Equations (1) and (2), displacement r and excitation force F are represented by complexes and i is the imaginary unit. x 147 

and y are the displacements in the IL and CF directions, respectively. And excitation force F is the fluid force exerted on the 148 
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riser, decomposing into Fx and Fy. The external force in the x direction Fx is the sum of the mean fD and fluctuating drag force 149 

fD’ as shown in  150 

'

x D DF f f  .                                                                                     (3) 151 

In Equation (1), the total mass M includes structural mass ms and added mass. ρ is the fluid density and D is the diameter of 152 

the riser. According to Song et al., the added mass coefficient Ca varies along the riser’s length significantly in both IL and 153 

CF directions (Song et al., 2016). In the present study, Ca is taken as a constant and its variation is neglected. Damping R is 154 

decomposed into structural damping Rs and added damping Rf as well. ξd is the damping ratio, γ is the empirical parameter 155 

and Ωf is the Strouhal frequency. The representative natural frequency Ωs will be the natural frequency in water due to low 156 

mass ratio of the riser (Bearman et al., 2001). Ωn is the natural frequency in air of the riser. E is the Young's modulus. The 157 

rigidity EI, on the other hand, is assumed as constant along the length of the cylinder.  158 

For the original structural motion equation (equation (1)), tension has been already included as a dedicated term (
∂

∂z
(𝑇

∂y

∂z
)). 159 

Considering the tension essentially influences the stiffness of the riser, the tension calculated according to the term in the 160 

equation would modify the dynamics of the riser, and eventually the resulting deformation of the riser. Consequently, directly 161 

involving the tension term as in the original equation leads to an iterative process in estimating the VIV at every time step. 162 

Understandably, iterations within a single time step is at high computational cost for a semi-empirical model to estimate the 163 

VIV. In order to make the simulation more efficient, tension is assumed to be a constant 

2

2





y
T

z  in various studies (Furnes and 164 

Sørensen, 2007; Gao et al., 2018; Gao et al., 2019; Ge et al., 2009; Ge et al., 2011). However, Gu et al. (2013) found that the 165 

prolongation, and also tension, increases with the increasing velocity, which agrees with the experimental results. In addition, 166 

Lee and Allen (2010) found that the increase of the vibration frequency with flow speeds is strongly related to the rise of the 167 

axial tension. Based on their studies, tension should not be simply modeled as a constant. In the present study, a new model 168 

calculating the tension according to the flow velocity is proposed, which will be elaborated in subsection 2.2. 169 

In estimating the external forces, Vandiver modified the empirical relation for predicting the total drag coefficient DC  as 170 
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 
0.65

0 /1+1.043 2D D RMS DC C Y 
 

, where CD0 is the mean drag coefficient of a stationary rigid cylinder and YRMS/D is the 171 

root mean square of the antinode displacement (Vandiver, 1983). Following the suggestion of Rosetti and Nishimoto et al., 172 

DC  is taken as  2

0 1DC Kq (Rosetti et al., 2009) where K is amplification factor and q is the cross flow variable which 173 

wille be discussed later. Thus, mean drag force is calculated as 174 

 2 2 2

0

1 1
1

2 2
D D Df C DU C Kq DU    .                                                           (4) 175 

The variables p and q, as shown in  176 

' 21

2
D Dif C DU ,                                                                                 (5) 177 

21

2
y LF C DU ,                                                                                 (6) 178 

0
2

Di Di

p
C C , 0

2
L L

q
C C ,                                                                         (7) 179 

are introduced to model the fluctuating nature of drag and lift forces. 180 

Here, CDi and CL are the vortex shedding drag and lift coefficients, CDi0 is the amplitude of vortex shedding drag coefficient 181 

and CL0 is the lift coefficient of a stationary rigid cylinder. The fluctuating drag and lift forces are periodic and self-limited, 182 

satisfying Van Der Pol nonlinear oscillator equations, which are expressed as 183 

2 2
2 2

2 2
2 ( 1) 4 x

x f f

Ap p x
p p

t t D t


  
     

  
,                                                          (8) 184 

2 2
2 2

2 2
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q q

t t D t


  
    
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,                                                             (9) 185 

where 2f t

U
S

D
  .                                                                             (10) 186 

Here, εx, εy, Ax and Ay are the empirical parameters which will be stunned by the experiments The acceleration coupling 187 

scheme is adopted in the present study to link structural motion equations and Van Der Pol oscillator as suggested by 188 

Facchinetti et al. (2004).  189 
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A number of studies (Kurushina et al., 2018; Ogink and Metrikine, 2010; Postnikov et al., 2016) indicated that hydrodynamic 190 

forces rely on the relative velocity between cylinder motion and free stream velocity and some studies (Ge et al., 2009; Ge et 191 

al., 2011; Srinil and Zanganeh, 2012b; Wang et al., 2003) considered force decomposition. In this study, force decomposition 192 

technique is adopted and the excitation forces are expressed as  193 

 ' 2 2 2

0 0 0

' 2

0 0

1 1 1
/ = 1 ,

2 2 2 2 2

1 1
/ ,

2 2 2 2

  

 

     

   

x D D L D Di L

y L D L Di

p q
F f f f y U C Kq DU C DU C DUy

q p
F f f y U C DU C DUy

                     (11) 194 

where the dot represents the derivative of the time, i.e. y  is the velocity in the y direction. 195 

2.2 Determination for mean tension 196 

Lee and Allen have conducted a series of experiments and have found that for tension-dominated riser, top tension increases 197 

with the increasing stream velocity (Lee and Allen, 2010). In the subsection, mean tension force is derived as a function of 198 

the stream velocity.  199 

Mean tension force can be computed according to the Hooke’s law showing 200 

ini

L
T T EA

L


  ,                                                                                 (12) 201 

where L S L   .                                                                                (13) 202 

In Equations (12-13), the mean tension T is modelled proportional to the prolongation of the cylinder. Tini is the initial tension, 203 

A is the cross-sectional area, L is the initial length of the riser, S is the instantaneous length and △L is the prolongation of the 204 

riser. In the literature, the instantaneous length of the cylinder S is calculated as  205 

2 2

0

1 +

L
y x

S dz
z z

    
     

    
 .                                                                      (14) 206 

For a long flexible cylinder, the prolongation is resulted from the deflections forced by the drag and lift forces experienced 207 
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by the cylinder. Considering that the force is consist of the mean drag, fluctuating drag and lift, the deflection contains 208 

corresponding three parts. Among them, the deflection xmean induced by mean drag force is typically greater than the deflection 209 

resulted from fluctuating drag and lift forces. More importantly, in a long term simulation of VIV, the prolongation induced 210 

by deflections corresponding to fluctuating drag and lift does not have lasting influence. More specifically, the deflections 211 

corresponding to fluctuating drag and lift vary temporally and therefore has only impacts on limited temporal and spatial 212 

scales. So, 

2
y

z

 
 
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 in Equation (14) is neglected. In the case that xmean is sufficiently small and its derivative is assumed to 213 

be small, the instantaneous length S could be simplified as 214 

2

' '2
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1
1 = 1 1
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x
S dz x dz x dz

z

 
     

 
   ,                                              (15) 215 

where x’mean  represents the derivative of xmean with respect to z. 216 

Simplifying Equations (13-15) yields 217 

'2

0

1

2

L

meanL x dz   .                                                                               (16) 218 

For a pin-ended beam, an analytical solution to Equation (16) exists if the deflection shape is expressed as a sine function (Gu 219 

et al., 2012) showing, 220 

4 2

4 2

sinmean

P z
x

L
EI T

L L


 

 
  

 


,                                                                   (17) 221 

where P is the external force per unit length approximated as, 222 

21

2
DP DU C .                                                                                 (18) 223 

After some manipulations of Equations (12-13,16-18), the mean tension is obtained, 224 

2
2 3

2 2 216

D
ini

DU C LEA
T T

EI TL



 

 
   

 
.                                                                   (19) 225 

Based on the tension calculated according to Equation (19), the influence of tensions on the vibrations in both the CF and IL 226 
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directions are investigated in the present study. Then the formula, i.e. Equation (19), is verified. 227 

2.3 Boundary and initial conditions 228 

Since the long flexible cylinder is assumed to be pinned at the ends, the displacements and moments at the ends should hence 229 

be kept zero during vibrations: 230 

(0, ) ( , ) 0r t r L t                 (t＞0), 231 

2 2

2 2
(0, ) ( , ) 0

r r
t L t

z z

 
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            (t＞0). 232 

The initial conditions in solving for the displacements of the cylinder and the corresponding wake variables are, given as, 233 

( ,0) 0r z  ,           ( ,0) 0
r

z
t





,                         (0＜z＜L); 234 

( ,0)= ( ,0) 2p z q z  ,   ( ,0) ( ,0) 0
p q

z z
t t

 
 

 
,               (0＜z＜L). 235 

Given the boundary and initial conditions, the time history of displacements along the cylinder are then simulated through 236 

numerically solving the governing equations of cylinder dynamics. More specifically, the standard central finite difference 237 

scheme is employed to discretize the equations in both space and time domains. The cylinder is separated into N segments by 238 

N-1 points and by the distance h. Let the displacement r, at point i (3≤i≤N-2) be denoted as ri. The superscript refers to the 239 

time step. The approximations of Equations (1, 8-9) are  240 
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   
,                    (22) 243 
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as done by Ge et al. (2009) and Gosse and Barsdale (1969). 244 

With the solution for the above equations, the displacements, as a function of the z coordinate and time, are obtained showing 245 

the vibrations of the cylinder. 246 

3. Case study 247 

In this section, the experimental test case conducted by Trim et al. (2005) is simulated using the proposed numerical model 248 

to validate that Equation (19) is reliable to model the mean top tension for a long flexible cylinder. Main parameters defining 249 

the cylinder are listed in Table 1. The free-stream velocity in the simulation varies from 0.3m/s to 2.4m/s with an increment 250 

of 0.1m/s. 251 

 252 

 253 

 254 

Table 1 Riser characteristics (Trim et al., 2005) 255 

Outer diameter D=0.027m Young’s modulus of elasticity E=36.2×109N/m2 

Inner diameter d=0.021m Axial tension Tini=4-6kN 

Wall thickness tw=0.003m Aspect ratio 1407 

Length L=38m Mass ratio 1.6 

Structure mass ms=0.939kg/m Density ρ=1025kg/m3 

In the present study, the environmental parameters are given (See Table 2) following the suggestions in the literature (Furnes 256 

and Sørensen, 2007; Ge et al., 2009; Rosetti et al., 2009). 257 

Table 2 Environmental parameters 258 
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Ca 1 St 0.17 

CD0 1.2 CDi0 0.1 

CL0 0.3 γ 0.45 

εx 0.3 εy 0.3 

Ax 12 Ay 12 

 259 

Figure 2 shows the variation of mean tension with stream velocity in the present simulation and in the simulation reported by 260 

Gu et al. (2012). In addition, the influence of mean tensions on the natural frequency of the cylinder, or the riser, is also 261 

presented in Figure 2. It is evident from the figure that the mean tension increases from 5kN at U=0.3m/s to 15.9kN at 262 

U=2.4m/s as predicted by Equation (19). In the simulation reported by Gu et al. (2012), on the other hand, the mean tension 263 

increases from 6kN to 10.6kN. Moreover, Figure 2 implies a linear relationship between the natural frequency and the square 264 

root of the mean tension as in experimental studies (Lee and Allen, 2010). In fact, Figure 2 substantiates that the natural 265 

frequency of the cylinder is not an inherent property of tensioned structural component but a variable reflecting the influence 266 

of external loads. The fact that the numerical simulation reported in the present study support a linear relationship between 267 

the natural frequency and the square root of the mean tension substantiates that the proposed numerical model is applicable 268 

to simulate the overall dynamics of the cylinder under the influence of tensions and environmental flows. 269 

Besides the illustrative comparisons shown in Figures 2, Figure 3 and Figure 4 present the comparison of dominant mode 270 

numbers and vibration frequencies obtained in the present simulation and extracted from the manuscripts of Ge et al. (2009), 271 

Gu et al. (2012) and Trim et al. (2005). More specifically, Figure 3 shows that the dominant mode number increases with the 272 

stream velocity, and the number corresponding to the IL vibration is almost twice as large as the number corresponding to the 273 

CF vibration. Comparisons presented in Figure 3 indicate that the CF dominant mode numbers obtained from the present 274 

study agree with the experimental measurements and numerical results reported by Ge et al. (2009) and Gu et al. (2012). The 275 
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maximum deviation of mode number, from the prediction of the proposed model to the experimental results, in the IL direction 276 

is 5, smaller than the value reported by Ge et al. (2009). The maximum deviation in the CF direction, in addition, is 2 277 

comparing to 3 as reported by Ge et al. (2009) and 4 as reported by and Gu et al. (2012). In the IL direction, Figure 3 shows 278 

that the proposed model is able to capture the vibration with high mode numbers in the high-speed streams. The predictions 279 

given by Ge et al. (2009), on the other hand, considerably deviate from the experimental data. It should be noted that the IL 280 

vibrations are not included in the simulation conducted by Gu et al. (2012), and therefore no data is available for the 281 

comparison. When the free-stream velocity is within the range of 1.7-2.2 m/s, the mode numbers predicted by both the 282 

proposed model and the model suggested by Ge et al. (2009) are lower than the experiment results reported by Trim et al. 283 

(2005). In the CF direction, both the proposed model and the model suggested by Gu et al. (2012) predict vibrations with a 284 

higher mode number, in contrast to the results reported by Ge et al. (2009), when the stream velocity is in the range of 2 to 285 

2.4m/s. When the flow velocity is 1.5-2m/s, the proposed model predicts a larger value of the mean tension than the model 286 

suggested by Gu et al. (2012), resulting in a higher mode number. Consequently, the dominant mode number predicted by the 287 

proposed model is in better agreement with the experimental data given by Trim et al. (2005). When the stream velocity is in 288 

the range of 1.5-2 m/s, the dominate mode number predicted by the proposed model is, however, lower than the Trim’s 289 

experimental (Trim et al., 2005) results in the IL direction, and higher than Trim’s results (Trim et al., 2005) in the CF direction. 290 

Such a finding implies that the proposed model still needs improvements. 291 

Figure 4 shows that frequencies of cylinder vibrations increase with stream velocities. In addition, Figure 4 reveals that the 292 

frequencies corresponding to the IL vibration is twice as large as the frequencies of the vibrations in the CF direction. For the 293 

sake of being illustrative, the vortex shedding frequency calculated according to the Strouhal relation and the doubled 294 

shedding frequency are plotted in Figure 4. It is well reported in the previous investigations that the measured/simulated 295 

frequencies of the cylinder vibration are different from the vortex shedding frequency of the fixed cylinder (Trim et al., 2005). 296 

Such differences are also observed in Figure 4. In fact, Figure 4 indicated that the vibration frequencies predicted by the 297 
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proposed model are in better agreement with the experimental data when comparing the numerical results given by Ge et al. 298 

(2009). The root mean square (RMS) of deviation is 2.10 in the IL direction compared to 2.45 reported by Ge et al. (2009) 299 

while it is 1.13 in the CF direction compared to 1.43 and 1.15 reported by Ge et al. (2009) and Gu et al. (2012), respectively. 300 

As the dynamic responses of the cylinder are in associations with the stiffness of the structure, which is in turn influenced by 301 

the tension, the agreement presented in Figure 5 validates the proposed model in modelling the mean tension and its influence 302 

on the dynamics of the cylinder (Equation 19).  303 

As introduced in Section 2.3, both IL and CF displacements are the function of space and time. In the verification, the 304 

maximum of displacement standard deviation  , which is defined as in Equation (23), is used to quantitatively assess the 305 

deviation of the prediction from the proposed model to the experimental data. 306 

 

  
( ( )) 1

max ,  ,  1
1

t

i i

i
i i

r r
std r t

S S i N
D D Nt





    



,                                       (23) 307 

where N and Nt are total numbers of nodes and time steps, respectively, Si represents displacement standard deviation at node 308 

i and ir  is mean value of displacements at node i. It should be noted that data is taken after the simulation is stable, i.e. 309 

periodic vibration with almost constant amplitude. Figure 5 shows the maximum of displacement standard deviation   in 310 

CF and IL directions varying with the stream velocity. It is shown in the figure that   for CF and IL directions are around 311 

0.9D and 0.2D, respectively. In addition, Figure 6 implies that the amplitude predicted by the proposed model for CF 312 

vibrations is larger than the experimental data, which makes the predictions conservative in the assessment of the safety of 313 

the cylinder as a riser. Moreover, Figure 5 substantiates that the predictions of the proposed model in IL direction are close to 314 

Trim’s experimental results (Trim et al., 2005). The mean squared deviation of the displacements from the proposed model to 315 

the experiment data is 0.11 for the IL direction and 1.26 for the CF direction.  316 

The inaccuracy in predicting   is mainly attributed to the inaccuracy of the damping model, including the estimation of the 317 
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hydrodynamic damping coefficient λ and structural damping ratio ξD. λ usually takes the value of 0.8 as reported in the 318 

literature, but the simulation results suggest that the value of λ should be around 0.45 for the prediction of the proposed 319 

model to better match the experimental data.  320 

In order to directly illustrate the cylinder vibrations simulated by the proposed model, the RMS of displacements in both IL 321 

and CF directions at U=1m/s are presented in Figures 6. It is apparent that the 13th and 7th modes are predominant for the IL 322 

and CF vibrations of the cylinder, respectively. Such findings are in line with the numerical and experimental investigations 323 

on the vibrations of the long flexible cylinders. In fact, the predominant mode number shown in Figures 6 indicates that the 324 

IL vibrations are with the frequency twice as large as the frequency of the CF vibrations. The same mode number is obtained 325 

as that from Gu et al. (2012) except the difference between the amplitudes. In addition, the IL vibrations are not included in 326 

the simulation conducted by Gu et al. (2012), and therefore not shown in Figure 6. 327 

Figure 7 gives the time histories of non-dimensional displacements of y/D and x/D at different locations, with z/L equal to 328 

0.84, 0.67, 0.5, 0.33 and 0.16 at U=1m/s, and corresponding response spectra. It is evident that the displacement follows a 329 

precisely periodic trend and the segment at different elevations vibrates at the same frequency. With a specific case shown in 330 

Figure 7, the cylinder vibration frequencies, regardless of the location along its length, in CF and IL directions are 6.29Hz 331 

and 12.5Hz, respectively. As reported in Vandiver et al.’s study (Vandiver et al., 2009), there are two harmonic components 332 

in IL or CF vibrations and their intensities are different at different locations. More specifically, the harmonic component with 333 

higher frequencies weakens approaching to the end of the cylinder. The reason why only a harmonic vibration with a single 334 

frequency is produced in the numerical simulation reported in the present and similar investigations could be the variation in 335 

structural properties of the cylinder. More specifically, the experiment employs a cylinder that unavoidably contains flaws in 336 

the manufacturing, which results in variations in structural properties along the length of the cylinder.  337 

Figure 8 and 9 show the trajectories of the vibration of cylinder segments at different elevations at U=1m/s and evolutions of 338 

the non-dimensional displacement at U=1.5m/s. In Figure 8, the trajectories shifted back and forth between the traditional 339 
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“figure 8” and the typical “crescent” shapes. It is argued that many factors could impact trajectory patterns, such as the cylinder 340 

scale, the ratio of IL natural frequency to CF natural frequency, mass ratio and the IL and CF frequencies (Kang et al., 2016). 341 

The trajectories shown in Figure 8 are the evidences that IL and CF waves are not phase locked. Such feature, i.e. the figure-342 

of-eight trajectory, is also observed by Srinil and Zanganeh (2012b). In Figure 9, a traveling wave is observed as reported in 343 

the literature and its propagation direction is arbitrary (Violette et al., 2007). Compared to Ge et al.’s results (Ge et al., 2009), 344 

the predicted amplitudes of the proposed model are higher, and closer to Trim’s experimental results (Trim et al., 2005). In 345 

addition, the same dominant mode numbers for the vibrations in both IL and CF directions are observed. The similarities and 346 

differences in amplitude and dominant mode numbers are consistent with the findings shown in Figure 2 and 4 for the two 347 

numerical models. With the increase in flow velocities, dominant wave pattern shifted from standing wave to traveling wave. 348 

Conclusions 349 

A three-dimensional model predicting the VIV in both the IL and CF directions, coupled with a set of modified Van Der Pol 350 

equations, is presented. Fluid forces, including the lift and drag forces, due to the vortex-shedding are modelled by the flow 351 

variables the same as that in other semi-empirical models which contain a wake oscillator. A new tension formula is proposed 352 

to account for the variations in tensions due to the prolongations occurring in the cylinder. The proposed model (especially 353 

the tension formula) is validated by comparing to the available experimental data and numerical results. The comparison 354 

shows that the present model is capable of simulating VIV of long flexible cylinders in both the CF and IL directions under 355 

the influence of uniform incoming flow. Since the tension is modelled as a function of the stream velocity, the dynamics of 356 

cylinder VIV is more realistically simulated in this study. In fact, it is found that the proposed model outperforms the model 357 

proposed by Ge et al. (2009) and Gu et al. (2012) in predicting the variations for the vibration amplitudes and frequencies and 358 

dominant mode number with the stream velocity. Most importantly, this is the first attempt, to the best of the author’s 359 

knowledge, to propose a model containing dynamically determined tension to predict VIV in both the CF and IL directions. 360 
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Some aspects of long slender cylinders undergoing VIV can be reproduced qualitatively and quantitatively, such as dominant 361 

mode number, vibration frequency, amplitude and traveling wave phenomenon. Future research will be focused on the 362 

physical meaning of the model parameters. 363 
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APPENDIX: LIST OF SYMBOLS 459 

M    the sum of structure mass ms and added fluid mass per unit length 460 

F     hydrodynamic force per unit length, with components Fx and Fy 461 

r     the deflection, a vector, with components x and y 462 

EI    bending stiffness 463 

E     Young’s modulus 464 

T     axial tension 465 

Ca    added mass coefficient 466 

ρ     density of seawater 467 

D     diameter of the riser 468 

R     damping coefficient due to hydrodynamic damping and structural damping 469 

Rf     damping coefficient due to hydrodynamic force 470 

Rs     damping coefficient due to structure force 471 

γ      parameter determined through experiments 472 

Ωf     vortex shedding frequency  473 

Ωn     natural frequency of the riser in air 474 

Ωs     natural frequency of the riser in water 475 

ξD       damping ratio 476 

Tini    tension force before deflection 477 

A     cross section area of the riser 478 

L     length of the riser 479 

△L   prolongation of the riser 480 
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Fx    external force exerted perpendicularly on the model in the x direction 481 

Fy    external force exerted perpendicularly on the model in the y direction 482 

fD     mean drag force per unit length 483 

fD’    fluatuating drag force per unit length 484 

fL     lift force per unit length 485 

DC    total drag coefficient during vortex-shedding 486 

CD0   mean drag coefficient of a stationary rigid cylinder 487 

/RMS DY  the amplitude of vibration in the CF direction 488 

CDi    vortex shedding drag coefficient 489 

CDi0   the amplitude of vortex shedding drag coefficient  490 

CL0   lift coefficient of a stationary rigid cylinder 491 

CL    lift coefficient 492 

p     in line variable 493 

q     cross flow variable 494 

εx, εy, Ax, Ay non-dimensional parameters estimated through experiments 495 

St     Strouhal number 496 


