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ABSTRACT 

This paper is inspired by a recent numerical study (Shoele 

and Zhu, 2012, “Leading edge strengthening and the 

propulsion performance of flexible ray fins,” Journal of Fluid 

Mechanics, Vol. 693, pp. 402-432), which shows that, for a 2D 

flexible ray replicating the pectoral fins of live fish, undergoing 

a flapping motion in a viscous fluid, the performance can be 

significantly improved via the flexibility distribution on the 

rays. In present study, we investigate the propulsion capability 

of a 3D caudal fin undergoing a flapping motion. The 

embedded rays are modeled as linear springs and the soft 

membrane is modeled as a flexible plate being able to deform 

in span-wise direction. A finite-volume method based Navier-

Stokes solver is used to solve the fluid-structure interaction 

problem. The present paper focuses on the effects of various 

distributions of the ray and the ray flexibilities, which can lead 

to different fin deformations. It is shown that the detailed ray 

distribution has significant influence on the propulsion 

performance. By distributing fin rays at the tips rather than the 

middle of fin, a less power expenditure is observed, leading to 

higher propulsion efficiency. However, larger thrust force is 

obtained through distributing the rays at the middle, which is 

attributed to larger effective flapping amplitude. Additionally, 

ray flexibilities also play a pivotal role in the thrust generation 

of the fin.  

INTRODUCTION 

Fishes rely on the undulation of their flexible bodies and/or 

the flapping of different fins for locomotion and maneuvering. 

For most bony fishes, the fins can be characterized as a soft and 

thin membrane reinforced by skeleton rays. The stiffness of the 

membrane is much smaller than the bony rays, i.e. the rigidity 

of the fin is mainly determined by the embedded fin rays. By 

individually actuating the muscles at the basal end of each ray, 

the fish fin can be actively controlled to achieve higher stability 

and maneuverability.  

Due to the potential applications in biomimetic 

engineering, the ray fins have attracted much attention. 

Experimentally, Tangorra et al. (2007, 2010) studied the 

hydrodynamic performance and fin ray flexibility effects by 

mechanically imitating the motion of the bluegill sunfish 

pectoral fin. Zhu and Shoele (2008) computationally examined 

a trapezoid caudal fin strengthened by a number of nonlinear 

beams which resembled the embedded rays. They found that 

deformability of caudal fins greatly enhanced the propulsion 

efficiency, and it also reduced the sensitivity of efficiency to the 

kinematic parameters. Shoele and Zhu (2009, 2010) 

numerically analyzed the performance of a skeleton-

strengthened pectoral fin by a potential flow assumption. They 

concluded that passive deformation of the ray fins could 

increase the thrust and propulsion efficiency and emphasized 

the influence of kinematic parameters and phase lag between 

rays. Considering the viscous effects, Shoele and Zhu (2012) 

studied a two-dimensional flexible ray fin with strengthened 

leading edge. In their model, the fin was modeled as a flexible 

but inextensible membrane, and the underlying rays were 

represented by springs. By comparing with the rigid rays, they 

found that both the thrust production and propulsion efficiency 

can be significantly improved via the flexibility distribution on 

the rays. 
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Fig. 1 (a) Schematic illustration of a typical caudal fin (Zhu and Shoele 2008). (b) Geometrically and structurally simplified 

rectangular fin used in present study. (c) Model representation of the fin ray. 

However, because a 2D study was conducted, in which the 

flow at a chord-wise cross section of a pectoral fin is 

considered, the model is too idealized to reflect the realistic fish 

fins, in which span-wise deformation is equally important . 

To investigate the effects of span-wise deformation on the 

performance of a caudal fin, the current study is based on a 3D 

passively span-wise deformable fin through a fully coupled 

fluid–structure interaction numerical modeling. Following 

Shoele and Zhu (2012), the fin is modeled as a flexural 

rectangular wing with small rigidity and the rays are 

represented by springs. The investigation is carried out using a 

finite volume based in-house CFD code coupled with a non-

linear beam model. The main objective of this study is to 

examine how the span-wise deformations influence the 

propulsion performance of caudal fin. 

PROBLEM STATEMENT 

Figure 1 (a) shows the caudal fin of a bluegill sunfish, 

which is geometrically composed of a soft membrane and 

several skeleton rays. Instead of investigating such a complex 

geometry, we study only a slice of this fin and further idealize it 

as a rectangular fin, as shown in Fig. 1 (b). This rectangular fin 

has a chord length of c and an aspect ratio of 6, and the 

thickness is h=0.05c, which is assumed to be uniform except 

for the tapering at all edges. The fin is modeled as a flexural 

but inextensible plate, which is geometrically three-

dimensional. However, the fin is only allowed to deform in y-z 

plane, which is essentially two-dimensional. Considering this, 

the deformation of the fin can be represented by the distortion 

of its leading edge, which can be modeled as a flexible but 

inextensible beam. The motion of the fin is controlled by N 

controlling points distributed along the beam which represent 

the actual positions of fin rays, as illustrated in Fig. 1 (c). For 

each controlling point, there is a corresponding reference point 

with prescribed motion, which depicts the trajectory of a ray if 

it is rigid. The flexibility of the ray is represented by a linear 

spring connecting each pair of controlling and reference points. 

The flapping motion of the fin is actuated by the heave 

motion of the reference points. For the ith reference point, the 

heaving motion can be prescribed as 0( ) sin( )i iy t a t   , 

where a0 is the heaving amplitude, ω is the frequency, φi is the 

phase and t is the time. The Strouhal number which 

characterizes the unsteady fluid dynamics is defined based on 

the peak-to-peak amplitude of the reference points 

as 0 02tS a f U , where 1 2f T    is the heaving 

frequency. The Reynolds number is defined based on chord 

length as 0Re U c  . In the present study, we select

a0=0.5c,  0,  1,i i N   , St=0.4 and Re=300. 

MATHEMATICAL FORMULATIONS AND NUMERICAL 
METHODS 

Fluid Dynamics Around the Flexible Fin 

The dynamics of Newtonian flow is governed by the 

conservation laws of mass, momentum and energy. Under the 

assumption of no internal heat or mass sources, and by 

neglecting body forces, the integral governing equations can be 

written as  

0,c ddV dS dS
t   


    

   W F n F n (1) 

where is the control volume and  is the closed boundary 

surface, and n is the surface unit normal vector. In Eq.(1), the 

conservative variable vector is defined as  
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T

W E   u (2) 

where  is the fluid density,  , ,u v wu is the velocity

vector in Cartesian coordinate system, and E is the total energy 

of the flow. In Eq.(1), 
c

F and
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F are flux tensors representing 

the convective and diffusive fluxes respectively. The 

convective fluxes expressed in terms of the contravariant 
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where ˆ ˆ ˆ ˆ( , , )
T

u v wu is the relative velocity which can be 

calculated as ˆ
g

 u u u , and ( , , )
T

g g g g
u v wu is the grid 

velocity vector. The diffusive fluxes caused by the viscous 

shear stresses and thermal conduction are 
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where the shear stress and heat flux are expressed as 
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where  is the laminar dynamic viscosity which can be 

evaluated using Sutherland‟s Formula, is the laminar thermal 

conductivity, and T is the temperature.  

Following Liu and Zheng (1996) and Liu and Ji (1996), a 

cell-centred finite volume method based on a multi-block 

structured grid is used. For each cell ( , , )i j k , the semi-discrete 

form of the governing equations can be rewritten as 

  
, ,, ,

0,
i j ki j k

V
t


  


W R   (6) 

where
, ,i j k

R is the residual, which arises from the discretised 

convective and diffusive terms. In present code, the convective 

term is discretised by the central JST scheme with artificial 

dissipation proposed by Jameson et al. (1981), and the first 

order derivatives are obtained using Green‟s theorem. 

The temporal term is discretised by an implicit backward 

difference scheme with second order accuracy, and by adopting 

the dual-time stepping algorithm proposed by Jameson (1991), 

Eq.(6) can be reformulated as a steady-state problem with a 

pseudo-time  
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The semi-discrete Eq.(7) is integrated using a hybrid 

multistage Runge-Kutta scheme. Besides, local time stepping, 

residual smoothing and multigrid techniques are adopted in 

order to increase the stability and accelerate the convergence of 

the solution. MPI is used for exchanging information between 

different CPUs in parallel computation. 

Structural Dynamics of the Flexible Fin 

The flexible fin is modelled as a two-dimensional thin 

plate with uniform thickness h and Young‟s modulus E. Using 

thin-body assumptions (h<<L) and employing variational 

analysis, the structural dynamics is governed by 
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where
s s

m h is the mass per unit length of the fin, 

3
12

b
K Eh  is the bending rigidity and 

h
K Eh  represents 

the stretching rigidity. In Eq.(9), the inertia, elastic bending and 

stretching effects are depicted by the first, second and third 

term on the left-hand side respectively. On the other side, 
f

F  

is the fluid loads which are calculated by evaluating the 

difference between the stress tensors (including pressure) at the 

top and bottom of the body. 
e

F  is the force imposed by the 

controlling points of the fin. It is evaluated as 

 
,1

N

e e i ii
s s


 F F , where 

i
s is the position of the ith 

controlling point. The connection between the ith reference 

point and the corresponding controlling point is modelled as a 

linear spring, so the connecting force can be evaluated as 

, , ,
( ), 1,

e i i r i c i
k i N  F x x , where ki is the spring stiffness, 

which represents the rigidity of the ray. 
,r i

x is the position of 

the ith reference point and 
,r i

x  is the position of the ith 

controlling point. To model the damping effect due to the 

internal friction, the Young‟s modulus E in Eq.(9) is replaced 

by E(1+G∂/∂t), where G denotes the energy dissipation 

magnitude. 

At both ends of the structural model, free boundary 

condition (zero-stress and zero-bending) is applied. It can be 

mathematically expressed as  
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The governing equation and the boundary condition 

equations are numerically discretised using a finite difference 

method. The resulting linear equations are solved by adopting a 

Newtonian iterative solver. 

Fluid-Structure Coupling 

Generally, the coupled fluid-structure system can be 

resolved either by monolithic or partitioned approaches. The 

monolithic method is both mathematically and computationally 

challenging, while in the partitioned approach, the flow and 

structural equations are solved separately, and the coupling 

between the two solvers are only limited to the fluid-structure 

interface. It is relatively simple to implement and less changes 

in the existing codes are needed. Therefore, a partitioned 
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approach referred as Conventional Serial Staggered (CSS) 

procedure (Farhat and Lesoinne 2000) is adopted in present 

work.  

Because the fluid equations and structural model are 

solved independently, the structural grid does not necessarily 

coincide with the body-fitted flow mesh. Thus, the 

interpolations of fluid forces and structural deformations must 

be performed between the two grid systems. The flow grid 

displacements
F

x can be expressed in terms of structural grid 

displacements
S

x using a transformation matrix P as 

 .
F S

  x P x   (11) 

Considering the requirement of conservativeness, the 

corresponding matrix for force transformation can be derived 

as  
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where 
S

F is the force vector imposed on the structural mesh 

and 
F

F represents the force vector imposed on the fluid mesh. 

The transformation matrix P is obtained using the Constant 

Volume Tetrahedron (CVT) method (Goura et al. 2001). 

Performance Evaluation 

To measure the performance of the caudal fin, the 

instantaneous input power is evaluated as 

 
, ,i

1

,
N

e i r

i

P


 F x   (13) 

Through integrating the fluid forces along –x direction, the 

thrust force generated by the fin can be calculated as 

 ( , ) ,
T x

F F s t ds

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where  denotes the contour of the fin and 
x

F is the x-

component of 
f

F . The corresponding power coefficient and 

thrust coefficient can be written as 
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where
0

S is the reference area. 

The efficiency is defined as 

 ,T

P

C

C
    (16) 

where
T

C and
P

C are the time-averaged values of
T

C and
P

C  

respectively.  

VALIDATIONS 

The flow solver used in present study has been extensively 

validated in previous publications of our group (Xiao and Liao 

2010; Xiao et al., 2012; Liu et al. 2013, 2016). In present work, 

the flow solver and the coupling with a nonlinear beam model 

will be further validated.  

Flow induced vibrations a flexible cantilever 

This case has been widely used for the validation of fluid-

structure interaction solvers by previous researchers (Matthies 

and Steindorf 2003; Dettmer and Peric 2006; Wood et al. 2010; 

Kassiotis et al. 2011; Habchi et al. 2013) as a benchmark. As 

shown in Fig. 2, a thin elastic cantilever is placed in the wake 

of a fixed rigid square cylinder. The diameter of the square 

cylinder is D, and the length and thickness of the cantilever is 

L=4D and e=0.06D respectively. The top and bottom 

boundaries are considered as symmetry planes. At the inlet and 

outlet, the far-field boundary conditions are applied. Since the 

compressible Navier-Stokes equations are solved in present 

solver, the computational domain as well as inlet and outlet 

boundary conditions are different from referred literatures. The 

Reynolds number based on D is Re=333. 

 

 

 
Fig. 2 Diagram of a flexible cantilever attached behind a 

square cylinder 

Fig. 3 Tip displacement as a function of non-dimensional time 
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Fig. 4 Flow vorticity when tip is at extreme positions 

 
Fig. 5 Flow vorticity at t=3T/4, St=0.16, experiment (a, c), 

present simulation (b, d), flexible case (a, b), highly flexible 

case (c, d). 
 

Table 1 Comparison of present results with those in 

literatures 

Author f* d*
max 

Matthies et al., 2003 0.192 1.18 

Dettmer et al., 2006 0.185 1.25 

Wood et al., 2010 0.179 1.15 

Kassiotis et al., 2011 0.182 1.05 

Habchi et al., 2013 0.201 1.02 

Present study 0.213 1.08 

 

Figure 3 demonstrates the time history of cantilever tip 

displacement. The non-dimensional time t and the non-

dimensional displacement *d are defined as t tU D  and 

*d d D respectively. The vibration of the cantilever becomes 

periodic after a transient region. Fig. 4 represents vorticity 

contours at extreme positions. It can be observed that flow 

separates at the leading corners and a clockwise vortex forms at 

the upper region while its counterpart forms at the lower 

region. These vortices travel along the vibrating cantilever and 

impinge with the vortices formed at the trailing edge and then 

dissipate in the wake. A closer observation also reveals that a 

clockwise vortex forms at the trailing edge during the upward 

motion of the cantilever while the counter-clockwise one forms 

when the cantilever moves downwards. The vortices at the 

trailing edge are shed into the wake forming the famous Von 

Karman vortex street. The reduced frequency ( *f fD U ) 

and the dimensionless maximal tip displacement ( *

maxd ) are 

summarised in Table 1. Obviously, the predicted results in 

present study agree very well with previous results. The 

reduced frequency from present simulation is slightly higher 

than the results from referred literatures, but it still lie in a 

reasonable region. The maximal tip displacement obtained here 

*

maxd =1.08 is close to those obtained using different FSI 

solvers, which ranges from 1.02 to 1.25. 

Plunging foil with a flexible trailing edge 

Present FSI solver is further validated by simulating a 

plunging foil with an elastic trailing edge. The computed 

results are compared with the experimental data by Cleaver et 

al. (2014). Fig. 5 demonstrates flow vorticity contours when the 

foil is in the middle and moving upwards. As we can observe 

that for all cases the flow vorticity contour are qualitatively 

similar to the conclusion drawn by Cleaver et al. (2014). In 

fact, a counter-clockwise TEV forms when the foil moves 

downward and its clockwise counterpart forms during the 

upward motion. All these TEVs convect into the wake and form 

the well-known reversed Von Karman vortex sheet. Fig. 6 

shows the amplitude ratio as a function of Strouhal number 

based on chord length. The numerical results and experimental 

data are in good agreement for both optimal and post-optimal 

cases. 

 
Fig. 6 Amplitude ratio as a function of Strouhal number 
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Fig. 7 Diagrams of three different distributions of fin rays. 

 

Table 2. Summary of mean thrust, power input coefficients and efficiency 

 fin I fin II fin III 

 flexible highly flexible flexible highly flexible flexible highly flexible 

TC  0.0606 0.0672 0.0274 0.0336 0.0483 -0.0003 

PC  0.4044 0.4644 0.1416 0.1517 0.3853 0.1984 

  0.1498 0.1447 0.1936 0.2217 0.1253 -0.0015 

 

 

(A) 

(C) (D) 

(B) 

 
Fig. 8 Instantaneous thrust (CT) and power input coefficient (CP) for fin I (red solid line), fin II (pink dash-dot line) and fin III 

(blue dash line), and for flexible cases (a, c) and highly flexible cases (b, d). 
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RESULTS 

In present study, we focus on the effects of different 

deformations on the propulsion performance of the caudal fin. 

Thus, we examined three different cases, as shown in Fig. 7. In 

the first case (referred as fin I), all springs are in the middle of 

the fin, while in the second case (referred as fin II), the springs 

are distributed at the tips. In the third case (referred as fin III), 

the springs are distributed asymmetrically. In order to measure 

the rigidity of the ray and fin, we further define three 

parameters: mass ratio M*=ρsh/ρfL (L is the span-wise length of 

the fin), dimensionless fin rigidity KB=EI/ρfU0
2L3, and 

dimensionless ray stiffness KS=K/ρfU0
2 (K is the spring 

stiffness). In present work, we choose M*=0.01, KB= 0.5 in 

order to obtain desired deformations. Two different spring 

stiffness values are used, denoted as flexible (KS=2 104) and 

highly flexible (KS=5 103) respectively. 

Table 2 summarizes the mean thrust coefficient, power 

input coefficient and efficiency of three fins. It can be seen that 

the performance of the fin is highly affected by the distribution 

and flexibility of the fin rays. Fin I has the highest mean thrust 

and mean power input among all fins in both flexible and 

highly flexible cases. By increasing the ray‟s flexibility, both CT 

and CP increase slightly, while the efficiency has a small 

decrease. For fin II, it has the highest efficiency due to the 

lowest power expenditure and relatively high thrust forces. 

Besides, both the thrust and efficiency rise with the increase of 

ray‟s flexibility. In terms of fin III, the thrust force as well as 

power input is both high, leading to a moderate efficiency. It is 

interesting to note that when the flexibility of the ray increases 

to a certain value, the fin generates no thrust, causing a 

negative efficiency. 

Figure 8 demonstrates the time history of the thrust and 

power input coefficients for three fins with different ray 

rigidities. It can be seen that both CT and CP vary periodically 

and have two peaks within one period. For both flexible and 

highly flexible cases, fin I not only generates the highest peaks 

in CT, but also needs the most power input, leading to moderate 

propulsion efficiency. This can be explained by its deformation 

and the fluid field, which will be shown later on. It is seen that 

for flexible case, fin II and fin III have similar peaks in CT, but 

fin II has lower and wider trough, which leads to lower thrust 

force. Compared with the other two fins, fin II has the lowest 

and narrowest peak in CP, which explains the reason why it has 

the highest propulsion efficiency. When the rays become more 

flexible, the peaks in CT of fin I become slightly higher but 

narrower, resulting in little increase in thrust generation, 

whereas an obvious ascent is observed in CP of fin I, which 

causes the reduction of efficiency as shown in Table 2. Similar 

trend is observed for fin II that both the peaks in CT and CP 

have a tiny increase, but resulting in higher propulsion 

efficiency. On contrary, both thrust and power expenditure drop 

rapidly for fin III, and it generates more drag rather than thrust, 

leading to negative propulsion efficiency. 

The deformation patterns of the flexible fins and the y-

displacements of reference and controlling points are shown in 

Fig. 9. It can be seen that various ray distributions generate 

their specific fin deformations. The deformations of fin I and 

fin II are quite similar to each other, both of which have „cup‟ 

shapes. Besides, they are symmetric due to the symmetry of 

ray‟s distribution. However, apparent difference is also noted. 

For example, for fin I, the central part of the fin leads the tips 

while the tips lead the middle part for fin II, which is supposed 

to have effects on the formation of both tip vortices and the 

wake. Additionally, fin I has much larger effective flapping 

amplitude than fin II, which is regarded as the reason that fin I 

generates larger thrust force. As for fin III, instead of having a 

symmetric „cup‟ shape, it deforms asymmetrically due to the 

asymmetry of ray‟s distribution.  

 

 

(A2) (A3) (A1) 

 
Fig. 9 The fin deformation patterns of fin I (A1), fin II (A2) and fin III (A3), flexible case. The red dash-dot-dot lines and blue solid 

lines represent fin deformations when the reference points are moving to right and left respectively.  



 8 Copyright © 2017 by ASME 

 

(A) 

(C) (D) 

(B) 

fin I 

fin II 

fin III 

Moving 

direction 

 
Fig. 10 Flow z-vorticity of fin I (A), fin II (B), fin III (C) at representative slices and schematic illustration of corresponding fin 

deformations (D), t=0, flexible case. 

 

Figure 10 shows the flow vorticity at five different slices 

as well as the diagram of fin deformations. It can be seen that 

the vorticity patterns generated by three fins are quite similar. 

The vortices generated at the tips are weaker than those in the 

middle. However, the leading edge vortices (LEVs) of fin I are 

much stronger than those of fin II, which is attributed to the 

larger effective amplitude as illustrated in Fig. 9. Stronger 

LEVs induce larger lateral force which is one reason that fin I 

has higher power expenditure. Another reason is that the rays 

are distributed in the central region of the fin, where stronger 

vortices are generated. In contrary, the rays of fin II are 

distributed at tips where much smaller lateral forces are 

experienced by the fin, thus leading to higher propulsion 

efficiency. A closer inspection on the trailing edge vortices 

(TEVs) reveals that the TEVs of fin I are much stronger than 

those of fin II, which is responsible for higher thrust generation 

of fin I. As for fin III, it is observed that the vorticity pattern is 

asymmetric due to the asymmetrically distributed fin rays. It is 

seen that the vortices generated at the upper part of the fin are 

much weaker than those in the lower part, which is responsible 

for the relatively smaller thrust. 

CONCLUSIONS 

This paper investigates the propulsion performance of a 

three-dimensional flexible caudal fin which is deformable only 

in span-wise direction. By representing the fin rays via linear 

springs, the effects of fin deformation on the performance of 

the fin using two different spring stiffness are studied. The 

different fin deformations are achieved by various distributions 

of fin rays. It is found that both the distribution and flexibility 

of the fin ray have significant impact on the performance of the 

caudal fin. Under the parameters studied in this paper, the fin I 

obtains the highest thrust which can be attributed to larger 

effective heaving amplitude, which leads to a larger effective 

Strouhal number. Due to smaller lateral forces and ray 

distribution at tips, fin II consumes the lowest power 

expenditure, resulting in the highest propulsion efficiency. 

Because only two ray rigidities have been studied at 

present, the details on how the flexibility of the ray affects the 

propulsion performance still remain unclear. More studies are 

necessary in order to clarify its effect.  
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