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Abstract

The decarbonisation of heat and transport using heat pumps (HPs) and electric

vehicles (EVs) will require significant investment in low voltage (LV) networks

both in terms of network reinforcement and in the provision of flexibility to

avoid network upgrades where appropriate. In this paper, a heuristic method-

ology is presented to estimate headroom available for domestic EV charging

optimisation in LV networks at different penetrations of HPs and a novel zonal

approach is applied to EV optimisation. It was found that optimised charging

of EVs can allow for a significantly higher penetration of EVs for a given HP

penetration within the network, without the need for reinforcement. Significant

improvements in terms of network hosting capacity were realised: for example,

an increase from 34% EV and 50% HP penetration for dumb charging to 72%

EV and 57% HP penetration for optimised charging was available for one par-

ticular case study. The level of improvement in hosting capacity was found to

be strongly dependent on particular network topology and pre-existing demand;

this reinforces the need for further study in unlocking the potential synergies of

EV and HP uptake.
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optimisation

Nomenclature

Sets

N Networks, indexed by n

C Cases, indexed by c

Z Zones, indexed by z

D Loads, indexed by d

T Time horizon, indexed by t

E Electric vehicles (EVs), indexed by e

W Charging windows, indexed by w

Parameters

V base Base voltage

I lim
z Feeder head cable current rating at zone z supply point

P hp Heat pump power demand

Ehp Energy for heat pump

Edhw Energy for domestic hot water

cGt Cost of importing power in £/kwh in time period t

pmax
e Charge capacity of EV e

PVlim
z Voltage power flow limit in zone z

PTlim
z,t Thermal power flow limit in zone z in time period t

SoCS
e,w/SoCF

e,w Initial/final state of charge of an EV

η EV charging/discharging efficiency

γe Constant power charging limit of EV e

2



Variables

pGt Power required to charge all EVs in time period t

pCe,t, p
D
e,t Charging/discharging of an EV e in time period t

SoCe,t,w State of charge of EV e in time period t and time window w

Pz,t Power flow at zonal feeder head cable in zone z in time period t

Hz,t Headroom in zone z in time period t

Fz,t Footroom in zone z in time period t

H
(2)
z,t 2nd percentile headroom in zone z in time period t

F
(2)
z,t 2nd percentile footroom in zone z in time period t

V min
z,t Minimum voltage in zone z in time period t

nEV Number of EVs

Acronyms

LV Low voltage

EV Electric vehicle

ASHP Air-source hear pump

V2G Vehicle to grid

DNO Distribution network operator

HP Heat pump

OPF Optimal power flow

SM Smart meter demand data

NTS National Travel Survey
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1. Introduction

The hosting capacity of residential low voltage (LV) distribution networks

for passenger electric vehicles (EVs) and heat pumps (HPs) is a key factor in

achieving decarbonisation goals such as the United Kingdom (UK) Govern-

ment’s target to reach net zero carbon emissions by 2050 [1]. In Great Britain

(GB), the electricity system operator’s (ESO’s) latest long term electricity sys-

tem forecast, known as future energy scenarios (FES), predicts the number of

homes with air source HPs (ASHPs) in 2050 varies from 1.8 million to 18 mil-

lion, representing between 5.7 to 57% of GB households [2]. There are high

levels of uncertainty as to the mix of technologies that will replace natural gas

boilers which supplied around 80% of heat demand in 2019 [3]. While hydrogen

is being considered as a replacement for natural gas within the existing gas grid

infrastructure, the uptake in ASHPs is likely to increase significantly with the

phase out of gas boilers.

In terms of EVs, FES 2020 [2] provides a prediction of 30 million EVs between

the years 2032 and 2040 which represents the equivalent of the entire GB car

fleet based on an expected ban on the sale of new petrol and diesel cars. The

motivation for this paper is that the predicted levels of EVs and HPs could

require substantial upgrades to the UK electricity networks, estimated as costing

up to £36 billion between 2010 and 2050 in [4] and up to £48 billion by 2050 in

[5]. The potential reduction in these upgrade costs has been estimated as £20-25

billion using smart EV charging, HP control and voltage regulation in [4] and

by 30-40% using smart planning and active network management techniques in

[5].

There is a need for research into the hosting capacity of LV networks to

reduce the uncertainty around the requirement for network reinforcement, par-

ticularly considering the combined effects of HPs and EVs [6] and the extent to

which EV optimisation can reduce the impacts of HPs [7]. This paper makes an

important contribution to assessing the adequacy of LV networks to meet the

net zero challenge, by determining the hosting capacity of a set of existing LV
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networks for HPs and developing a methodology for optimising domestic EV

charging and vehicle to grid (V2G) to maximise EV and HP penetration.

The methodology developed in this paper includes a novel heuristic for three-

phase LV network congestion management which estimates network headroom

based on both thermal and voltage limits. This heuristic provides a more scal-

able approach than centralised three-phase optimal power flow (OPF) which is

the established approach to LV network congestion management in the litera-

ture [8, 9, 10]. Novel aspects of the proposed methodology are that the network

headroom calculation is separated from EV charging optimisation which is de-

centralised across LV network ‘zones’. These zones, defined as the combination

of feeder and phase to which customers are connected, allow congestion man-

agement to be separated into multiple sub-problems which lend themselves to

parallelisation thus offering improved solution speed over centralised approaches

such as three-phase OPF.

1.1. EV integration and V2G: literature and trials

The increasing electrification of transport has lead to research into the po-

tential for EV flexibility to reduce the need for costly network reinforcement,

particularly at LV feeder level. Optimisation strategies to reduce cost and emis-

sions have been proposed in [11] where it was found that 70% EV penetration

could be accommodated with no voltage violations if the fleet were evenly bal-

anced among phases. The addition of V2G to EV optimisation was studied in

[12] where it was shown to provide cost and emissions reductions.

In [13] the EV hosting capacity of three LV networks from the north west of

England was studied with distributed phase shifting control, and in one network

the maximum EV hosting capacity was increased from 23% to 46% with the

balancing of EVs across phases. While these results are valuable in providing

indications of EV hosting capacity of LV networks for uncoordinated ‘dumb’

charging, they do not include results for optimised charging. Furthermore, as is

the case in much of the literature, the work considers the effects of EVs alone;

they do not consider the combined effect of HPs and EVs or any complementarity
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between EV optimisation (including V2G) and reducing peak power demands

from HPs.

In the My Electric Avenue EV charging trial (2013-2015) [14], it was found

through the monitoring of charging events of 215 Nissan Leaf EVs (24 kWh)

that for dumb charging the After Diversity Maximum Demand (ADMD) could

be increased from the currently used ADMD of 1 kW, up to 2 kW and that 32%

of LV feeders across GB will require reinforcement if 40-70% of customers have

3.5 kW chargers. Given that most new domestic EV chargers are likely to be

7 kW1, there is clearly a need for smart charging to reduce peak demands and

network reinforcement costs. In Electric Nation [16], a more recent EV charg-

ing trial of 673 EVs with a mixture of 7 kW and 3.6 kW chargers and larger

batteries, optimised charging using a time of use (TOU) tariff was successful in

shifting the evening demand peak. However, a spike in demand was observed

at 10pm due to synchronised response from multiple EVs to the beginning of

the lower overnight electricity price. This highlights the need for smart charg-

ing to prevent synchronised actions from EV optimisation algorithms causing

undesirable network stress events.

A 2019 public study on V2G found that V2G charging could generate sig-

nificant revenues if located in a distribution network congestion management

zone [17]. However, an important factor often overlooked is consideration of

the combined effect of HPs and EVs on LV network congestion and the head-

room available for EV charging and the provision of V2G. Battery degradation

caused by V2G remains a subject of debate: while in [17] and [18] the cost to

the consumer of degradation due to V2G cycling is estimated to be between 3.2

- 8.95 p/kWh, in [19] it is suggested that smart control algorithms could reduce

battery degradation.

1In the UK, there is generally no difference in price between ‘slow’ (3.5 kW) and ‘fast’ (7

kW) home chargers. For example, the WallPod EV charger retails at £320 in the UK for

either 3.6 or 7.2 kW configuration [15] – thus it is likely that 7 kW chargers will soon become

the norm.
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1.2. HP and EV integration: literature and trials

The literature covering the integration of HPs in LV networks can be broadly

divided into works that model HPs as inflexible, and only controlled to provide

the buildings heating requirements, and those that consider them as flexible and

controllable in response to price or network capacity signals [20] while maintain-

ing a required dwelling comfort temperature.

HPs as inflexible demand. One of the most comprehensive works on assessing

the impacts of low carbon technologies (LCTs), including inflexible HPs, EVs

and PV, on LV networks is reported in [21] and [22] where a Monte-Carlo ap-

proach was used to produce probabilities of thermal and voltage violations on

models of 25 real LV networks in the North West of England [23]. The work

in [21] and [22] is valuable in providing probabilistic estimates of the hosting

capacity of real LV networks for LCTs when considered individually and this

paper builds on these works by considering the combined effects of LCTs and

the optimisation of EVs on a subset of five real LV networks models from [23].

Some analysis on the potential impacts of inflexible HPs and EVs on dis-

tribution networks has been carried out by UK distribution network opera-

tors (DNOs): in a report by UK Power Networks (UKPN) it was found that

higher penetrations of HPs and EVs could increase network reinforcement re-

quirements, particularly at LV feeder level [24]. In the aforementioned work, a

limited HP data set (19 customers) was used to assess impacts, which does not

allow for full assessment of diversity of demand from a large number of HPs. In

a report by UKPN on the opportunities for optimisation of EVs and HPs [7],

consideration is given to smart EV charging using TOU tariffs and the manage-

ment of transformer power flows. This paper extends the work in [24] and [7] by

including: a larger HP data set; voltage and thermal limits over the entire LV

network; and vehicle-to-grid (V2G) from domestic EVs to mitigate the impacts

of peak HP demand on LV networks.

Further studies on inflexible HP demand include [25] where HP demand

profile analysis is carried out using 2-minutely metered HP data from 700 HPs.
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The ADMD of the HPs was calculated to be 1.7 kW per site which occurs in the

morning at around 8am and the GB peak demand is estimated to increase by

14% for 20% HP penetration. While the work in [25] provides useful insights into

the aggregated effect of HPs on peak demand, the effect of HPs on LV networks is

not studied. In [26], the Monte Carlo method was applied to assessing the impact

of flexible EVs and inflexible HPs on a single LV feeder based on synthesised

HP demand profiles and simplified EV modelling assumptions. A TOU tariff

was applied to EV charging which did not remove voltage violations but shifted

the period where voltage violations occurred. To resolve this issue, voltage

management techniques are recommended in [26] in conjunction with the TOU

tariff. This paper implements this recommendation by representing voltage and

thermal limits with an active power ‘headroom’ which is used as an input to

EV optimisation along with a TOU tariff.

In [6], an assessment of LV network capacity for coincident inflexible EV

and inflexible HP demand is carried out and it is concluded that urban LV

networks have a higher hosting capacity for such loads compared to suburban

or rural networks where voltage and transformer load violations can occur even

at low EV and HP penetrations. An impact assessment of inflexible HPs and

PV using a Monte Carlo approach to modelling LV networks is carried out in

[27] where again it was shown that rural feeders are more vulnerable to thermal

overloads or under-voltage. In [28], dynamic load modelling of HPs (modelled

as inflexible aside from the control of switching sequences) on a test distribution

network is carried out and it was found that 37.5% HP penetration could be

accommodated if the HPs were equally balanced and controlled to be switched

on simultaneously on each of the three phases. This paper extends the above

analysis of LV network hosting capacity of HPs and EVs by including the use of

EV optimisation and V2G to increase hosting capacities without the requirement

for reinforcement.

HPs as flexible demand. A comprehensive summary of the literature on HPs in

the context of smart grids can be found in [29] where the fields of application
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are categorised as grid, renewable energy and price focused. Several papers in-

clude modelling of flexible HP operation: in response to price signals [30]; for

peak shifting [31]; and for a combination of local voltage control and day-ahead

scheduling to avoid peak demand periods [32]. Further examples of flexible HP

operation in terms of demand response include: local optimisation of flexibil-

ity from HPs and residential battery storage in response to network capacity

limits and price signals [33], and aggregated HP demand response to manage

transmission level voltage [34].

Although HPs have the potential to provide flexibility, improvements to

building insulation or heat storage are required for significant time shifting of

thermal demand [26]. With the levels of insulation in existing UK housing

stock, it has been shown that HP operating times could only be shifted within

a 60-120 minute window without affecting the home-dwellers comfort, which

would have limited effect on flattening the morning and evening HP demand

pickups [20]. If combined with small-scale battery storage, there is significant

potential for peak shaving of HP demand, for example, in [35] it was found

that 100% HP penetration could be achieved without increasing the aggregated

peak demand of 100 households if 3 kWh of battery storage was installed per

household. In the future, with reduced costs of batteries and/or heat storage

and improvements in building thermal efficiency, HPs could be a valuable source

of flexibility. However, in [7] it is concluded that, based on modelling data from

their HP trials, ‘HPs are less suitable for smart optimisation’, whereas, ‘active

control of EVs could have benefits for distribution networks’. Thus, in this paper

HPs are considered as inflexible and instead the more accessible flexibility from

domestic EV charging is optimised, including the use of V2G to reduce the peak

demand from HPs.

1.3. Low voltage congestion management

In academic literature, a common solution to managing flexible assets to

solve congestion in electricity distribution networks is the use of OPF. There are

numerous examples of OPF being applied to distribution networks including [36]
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and [37], and more recently three-phase OPF has been developed [8, 9], including

open source software that has the capability to model LV network constraints as

part of multi-period market optimisation [10]. These methods can provide the

optimal solution in terms of maximising the use of flexibility at LV, however they

can be limited by their tractability in terms of the required computational power

and time required to solve non-linear AC OPF formulations. This is especially

the case when three-phase OPF, combined with a multi-period optimisation is

applied to LV networks with thousands of nodes.

Cloud computing and advances in OPF approaches, such as linearisation and

convex relaxations, could improve the tractability of three-phase multi-period

OPF [38]. However, it’s application conventionally relies on a centralised market

where the network constraints are known to the market operator. In practice,

the DNO may not be the market operator and it may be beneficial to separate

the network modelling and market optimisation activities. The optimisation

of flexibility could be carried out by a separate entity, in this paper the entity

is assumed to be an ‘aggregator’. As highlighted in the Electric Nation trial

[16], it is important to provide at least a proxy of network constraints to the

aggregator to prevent subsequent actions from causing network stress events.

Such an approach is presented in [39], where three-phase OPF is applied to

calculating a power ‘margin’, defined as the maximum power that can be drawn

by HPs and EVs at their specific network location within voltage and thermal

limits. In [39], the congestion management problem is separated into a two

stage optimisation: firstly the power margin calculation is carried out by the

DNO; and secondly the EV and HP flexibility optimisation is carried out by the

aggregator. In this paper, a similar approach is used in separating the network

modelling and EV flexibility optimisation activities, but the first optimisation

stage in [39] is replaced with a heuristic zonal headroom calculation to represent

3-phase network constraints. This allows the aggregator optimisation to be

parallelised by zone (a set of customers on a section of electrical network) which

can significantly improve the tractability compared to a 3-phase OPF method.
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1.4. Flexibility market principles

Existing flexibility market trading principles are reviewed in [40] where ca-

pacity based limitation services are recommended rather than baseline services

which involve a flexibility provider making an adjustment from their baseline po-

sition. The method in this paper applies a capacity based headroom limitation

to the aggregator which is based on maximising hosting capacity for HPs and

EVs while respecting 3-phase LV thermal and voltage constraints. While this

paper does not consider market mechanics in detail, a market structure could be

developed where an aggregator is rewarded for respecting headroom constraints

and in particular for delivering V2G when required. The Universal Smart En-

ergy Framework (USEF) [41], provides a detailed flexibility market framework,

which includes the application of congestion zones and congestion points. These

mechanisms are predominantly being developed to manage constraints at higher

voltages and there is less research in considering active constraint management

at LV. This paper compliments the USEF framework by determining congestion

zones on LV networks and providing a probabilistic headroom estimate in each

zone for use in EV optimisation.

1.5. Contributions

This paper makes significant contributions in terms of assessing the adequacy

of LV networks in the transition to net zero and in developing a methodology

to optimise EV flexibility to maximise LV hosting capacity for HPs and EVs.

Specifically this paper provides:

• a novel tractable ‘zonal’ approach to congestion management using offline

network power flow results to produce probabilistic headroom estimates.

• an alternative to optimal power flow where network EV optimisation can

be carried out respecting network constraints, but without a full network

model.

• an analysis of HP hosting capacity on a set of representative low voltage
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networks using HP demand data from a rich dataset of 700 HPs at 10-

minutely timesteps over an 88 day winter period.

• an estimate of combined optimised EV and HP hosting capacity on a set

of representative LV networks using EV flexibility to reduce peak demands

from HP loads.

This paper estimates the levels of electrification of heat and transport, in

terms of penetrations HPs and EVs, that can be achieved on a set of representa-

tive LV networks and then assesses the extent to which EV V2G can contribute

to increasing LV network hosting capacity for HPs by injecting at times of peak

HP demand. The remainder of the paper is as follows: Section 2 outlines the

methodology used to assess HP capacity and optimise EVs; Section 3 outlines

the HP penetration case studies and representative networks; Section 4 presents

the results and discussion; and Section 5 contains conclusions and recommen-

dations for future work.

2. Methodology

To assess the hosting capacity of LV networks for both HPs and EVs, firstly

the thermal and voltage effects of HP demand were modelled using the OpenDSS

load flow software [42] on a representative set of LV networks for a winter sea-

son. Energy demand for heating in winter can be up to five times that of the

electricity demand of homes in the UK [43] and the biggest challenge associated

with the electrification of heat is the peak demand increase during cold weather

[44]. Therefore, a winter season has been selected to assess the hosting capacity

of LV network for HPs and EVs during the ‘worst case’ period of maximum HP

demand. In this work, HP demand is not considered to be flexible and historic

HP demand data is used to determine limits for HPs-beyond which, thermal

and voltage limits are exceeded.

The hosting capacity for EVs is then calculated by optimising EV charging

around the headroom remaining once the maximum allowable HP capacity is
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connected. Reducing the HP penetration can potentially allow a larger pene-

tration of EVs, therefore hosting capacity of EVs is also estimated for different

HP penetrations.

The headroom calculation and EV optimisation are carried out by ‘zone’–

customer groups or sections of electrical network behind a ‘pinch point’ or net-

work bottleneck. After initial load flow studies, it was found that the feeder

head cable is often a pinch point in terms of thermal rating, and on the same

feeder, phases should be treated separately due to differing customer numbers

on each phase causing unbalanced phases [45]. Therefore, a zone is defined as a

unique combination of feeder and phase, e.g., phase 1 feeder 3 is labelled zone

13.

The methodology can be split up into the following steps, each of which is

carried out per zone in a set of representative LV networks:

1. HP headroom assessment: determine the maximum penetration of HPs

allowable to respect LV network thermal and voltage limits along with

the remaining headroom available for EV optimisation at different HP

penetrations.

2. EV optimisation: EV charging is optimised using any remaining headroom

for different HP penetrations.

3. Validate results: validation of EV charging schedule to check that volt-

ages/currents are within network limits.

The subsequent sections provide more detail on each of the above steps

including the associated inputs and expected outputs.

2.1. HP headroom assessment

The methodology for the HP headroom assessment, detailed in Algorithm 1,

was to firstly assess the impacts of HP penetrations between 0 and 100% on five

selected test networks using the OpenDSS load flow software. Measured smart

meter (SM), solar PV and HP demand data is assigned to customers to create

realistic demand and generation profiles for an 88 day winter period.
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For the purposes of tractability in terms of network modelling time, while at

the same time preserving HP data granularity, 10 minute timesteps have been

chosen for both the network modelling and subsequent EV optimisation.

Algorithm 1 HP headroom Assessment
1: for each network, n, in N do

2: for each case, c, in C do

3: Assign SM, HP and PV profiles to customers based on % penetrations of

HP and PV in each case.

4: Run load flow for 88 winter days from 1st December 2013 to 26th February

2014.

5: for each zone, z, in Z do

6: Calculate PVlim
z from simple linear regression of Pz,t and V min

z,t for the

results of all cases.

7: for each c in C do

8: Calculate headroom Hz,t for each timestep t using (1a)

9: Calculate footroom Fz,t for each timestep t using (1b)

10: Determine the 2nd Percentile (P2) headroom and footroom profiles,H(2)
z,t

and F
(2)
z,t .

11: Set HP limit based on case with maximum HP penetration with positive

total P2 headroom (
∑

t∈T H
(2)
z,t )

12: Return P2 headroom and footroom profiles for HP limit case, H
(2)
z,t and

F
(2)
z,t , for use in EV optimisation

In Algorithm 1, N is a set of representative LV networks, C is a set of

cases of HP penetrations (0-100%), Z is a set of LV network zones (unique

combination of feeder and phase), V min
z,t is the minimum voltage within zone

z for each timestep t. Pz,t is the apparent power flow into zone z and PVlim
z

is the zonal apparent power flow limit to maintain the zonal minimum voltage

above 225 V (0.94 p.u. based on a nominal voltage of 240 V)2. The zonal power

2The 225 V limit is conservative to allow a margin of error above the UK statutory minimum

voltage of 216 V [46].
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flow limit is estimated using linear regression of Pz, t and V min
z,t for all cases. In

zones where instances of V min
z,t < 0.94 p.u occur, PVlim

z is set as the minimum

Pz,t at which V min
z,t = 0.94 p.u. For example, using the apparent power flow vs

minimum voltage plot in Figure 1, PVlim
z is set at 16.6 kVA.

Figure 1: Apparent power flow vs minimum voltage for an example zone

Zonal headroom calculation. The headroom (Hz,t) and footroom (Fz,t) are cal-

culated for every zone and timestep based on the power flow at the supply point

for the zone Pz,t, and the lesser of the thermal or voltage power flow limits,

PTlim
z,t and PVlim

z , respectively:

Hz,t = min(PTlim
z.t , PVlim

z )− Pz,t (1a)

Fz,t = min(PTlim
z,t , PVlim

z ) + Pz,t (1b)

where PTlim
z,t is based on the thermal rating of the feeder head of each zone. In

this work, footroom is the possible increase (or decrease) in injection (by V2G

or PV) within export limits which is estimated from the power flow plus the

rating3. For example, if the power flow is 10 kVA (import) and the power flow

limit is 10 kVA, the headroom is 0 kVA and the footroom is 20 kVA; if the power

3For export constrained cases (e.g., high PV penetrations in summer months), a more

accurate estimate of footroom could be obtained based on the maximum voltage constraint,
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flow is -5 kVA (export) with a 10 kVA power flow limit, then the headroom is 15

kVA and the footroom is 5 kVA. Commonly at LV, cable ratings are provided

in Amps, therefore these are converted into kVA ratings as follows:

PTlim
z,t =

I lim
z × Vz,t × V base

√
3

× 0.9 (2)

where Vz,t is the voltage at the zone supply node (in p.u), V base is the base

voltage (416 V phase to phase is converted to phase to line voltage) and I lim
z

is the zone feeder head cable current rating. The 0.9 factor is a safety margin

chosen to ensure sufficient headroom.

2.1.1. Zonal headroom outputs

Using the zonal headroom per timestep, Hz,t, the 2nd percentile (P2) zonal

headroom profile, H(2)
z,t , is determined to provide a worst case assessment of

network hosting capacity for each case of HP penetration. The P2 headroom

profile (H(2)
z,t ) is passed to the EV optimisation to prevent actions by the EV

aggregator (or entity carrying out the EV optimisation) from causing network

thermal or voltage violations. Likewise, the P2 zonal footroom profile is also

passed to the aggregator to set bounds on V2G injection to limit the potential

for high voltage or thermal violations.

To assess the effectiveness of EV V2G in reducing thermal and voltage vi-

olations from HPs, cases are considered where at peak times HP penetrations

cause negative headroom (i.e. cause thermal or voltage violations), as long as

there is a net positive headroom over the entire day.

2.1.2. Zonal headroom inputs

Heat pump data. The HP profiles have been taken from the UK government

Renewable Heat Premium Payment Scheme (RHPPS) [47] which contains 2-

minutely data for 700 HPs between October 2013 and March 2015. The data

i.e., the export power flow limit corresponding to the UK statutory maximum voltage of 1.1

p.u for a nominal voltage of 230 V [46]. In this work, the network is import constrained and

an approximation of footroom is adequate to limit V2G injections.
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has been filtered to include ASHPs and ground source HPs (GSHPs) and to

only include full datasets (HPs with data for >90% of timesteps) for 88 days of

winter modelled from 1st December 2013 to 26th February 20144 which reduces

the number of HPs to 106. Of the 106 HPs, 78 of them were ASHPs and 28

were GSHPs. Demand for space heating and water heating is combined and

converted from Wh/2min into kW using (3). The HP data has been resampled

from 2-minutely to 10-minutely timesteps by sampling the demand every 10

minutes.

P hp =
Ehp + Edhw

1000
× 2

60
(3)

where P hp - HP power demand (kW), Ehp - Energy for the HP unit (Wh/2min)

and Edhw - Energy for domestic hot water (Wh/2min).

In Figure 2, the HP profiles show the expected morning and early evening

pick-ups at around 06:30 and 16:00. In this paper, EV charging will be optimised

using the available headroom which will be limited during the morning and

evening peak HP demand. An important question addressed in this paper is to

what extent V2G can be used to reduce these peaks depending on the travel

diaries of EV customers (detailed in section 4.3.3).

4The period of 1st of December to 26th February was chosen as it includes the days with

the highest 10-minutely mean HP demand for the 106 HPs in the filtered HP data. HP data

from winter 2014 was available but not used as the number of HPs will full datasets (HPs

with data for >90% of timesteps) in winter 2014 was reduced to 67 and furthermore, the

10-minutely median and 95th percentile HP demand for the winter 2014 dataset was lower

than for 2013.
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Figure 2: Mean, Median (P50), 75th Percentile (P75) and 95th Percentile (P95) demand for

106 HPs from 12th December 2013 to 26th February 2014; data: [47].

The mean winter demand estimated from the 10-minutely sampled data is

20.7 kWh/day which is significantly higher than the mean daily demand of 13.96

kWh/day for January 2014 reported in another UK HP trial [48] for ASHPs only.

Within the 106 HPs used in this work there is a large variation in demand (both

in power and energy). Figure 3 shows that the mean daily demand is over 45

kWh/day for four of the HPs which is more than double the average. Two of

these HPs were domestic ASHPs with installed capacity of 16 kW, one was an

ASHP with 12 kW capacity, and one was a GSHP with 12 kW installed capacity.
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Figure 3: Histogram of mean daily HP demand; data: [47].

Smart meter data. A subset of SM data was taken from the Low Carbon London

(LCL) Smart Meter data set [49] which contains half hourly data for 5,567

households between 2011 and 2014. The LCL SM data is classed by CACI

Acorn Group [50] and 300 of each of the ‘Adversity’, ‘Comfortable’ and ‘Affluent’

profiles have been sampled which have full data-sets for the 88 days modelled

in this work (1st Dec 2013 to 26th Feb 2014).

A minority of customers had a high overnight demand which is most likely

overnight storage heating. Figure 4 shows that there is a large jump in demand

at midnight for these customers, which suggests the action of a timer which is

consistent with storage heater overnight operation with an Economy tariff [51].

These customers have been removed from the SM sample set to prevent heat

demand being added twice when HP demand is added to the SM demand.
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Figure 4: Mean SM demand of four customers with high overnight demand for winter period

(1st Dec 2013 - 26th Feb 2014); data: [49].

With the high overnight demand customer profiles removed, in Figure 5, the

mean of the remaining 300 customer profiles of each Acorn class for the winter

period modelled are comparable to the 1997 Elexon winter weekday class 1

domestic electricity demand profiles from [52]. The Elexon class 2 profiles (also

from [52]) are for customers with the Economy 7 tariffs (usually with storage

heating) which display the same increase in demand after midnight as seen in

the high overnight demand customers.
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Figure 5: Mean SM demand of 300 customers of each Acorn Group for winter period (1st Dec

2013 - 26th Feb 2014) along with the Elexon winter weekday class 1 and 2 load profiles; data:

[49, 52].

PV Data. Although the focus of this paper is on LV network hosting capacity

for winter HP and EV demand, domestic PV generation is included as it is likely

to increase in uptake in line with HPs and EVs and may positively impact on

HP/EV hosting capacity [53].

The distribution of PV capacities has been calculated from domestic PV in-

stallations with feed in tariffs in the UK [54] as of December 2019. The resulting

histogram of PV capacity for 1000 customers sampled using this distribution is

shown in Figure 6.

PV output profiles are created from London Datastore metered PV data [55].

For the 88 days modelled, 4 of the 6 PV sites had a sufficiently complete set of

data over this period, the daily PV output profiles for these 4 sites are shown

in Figure 7. The PV data was resampled from hourly to 10-minutely resolution

using linear interpolation and normalised by dividing the output by the stated

capacity from [55]. The capacities of Alverston Close, Bancroft Close, Maple

Drive East, YMCA are 3, 3.5, 4, 0.45 kW respectively.

These normalised profiles were then assigned randomly to PV customers and
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capacities were assigned according to distribution in Figure 6.
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Figure 6: Histogram of PV capacities from domestic PV installations with feed in tariff;

data:[54].
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Figure 7: Daily PV profiles for four PV sites with median and mean output for 88 days from

1st Dec 2013 to 26th Feb 2014; data: [55].

2.2. EV capacity assessment

The methodology for EV capacity assessment, summarised in Algorithm 2,

involves firstly estimating EV numbers based on available headroom, then opti-

mising the charging of the EVs using charging schedules derived from real travel

diary data [56]. The optimisation is repeated 10 times5 for random samples of

EV schedules and the number of EVs is reduced until the EVs can all charge

within the available headroom. The resulting optimised charging profiles for

5The repetition of 10 times was chosen to ensure EV charging demand is satisfied for a

wide range of EV schedules.
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each customer are then validated on the LV networks using load flow to ensure

voltage and thermal limits are not exceeded.

Algorithm 2 EV capacity assessment
1: for each n in N do

2: for each z in Z do

3: Estimate number of EVs, nEV, per zone based on total daily P2 headroom

divided by 95th Percentile (P95) EV charge requirement.

4: while Optimisation Result = Fail do

5: for i ∈ R, 0 < i ≤ 10 do

6: Optimise EV charging for random sample of nEV charging schedules.

7: if All EV’s cannot be charged within P2 headroom then

8: Optimisation Result = Fail

9: nEV = nEV − 1

10: Validate EV charge profiles (for entire network) using OpenDSS load flow to

verify voltages and currents are within limits (including HP, SM and PV input

data).

2.2.1. EV charging schedules

EV charging schedules are derived using a heuristic methodology described

in [57, 58] from National Travel Survey (NTS) car-based travel diaries – making

up a dataset of over 3,000,000 trips recorded in Britain between 2002 and 2016

[56]. Travel diaries for each participant are recorded over the course of a week,

but the timing of that week is randomly distributed throughout the year. In

synthesising the car-based travel diaries for this work (Table 1), all travel di-

aries were synchronised such that they start on Monday and finish on Sunday.

While there are considerable seasonal effects in driving habits (such as weather

conditions affecting vehicle energy consumption and the effect of holidays dis-

rupting ordinary commuting patterns), these are not made explicit in the data,

nor is the time of year at which each travel diary was recorded. It is clear from

analysis of GB energy vectors that intra-seasonal variation in transport fuel de-

mand is minimal, compared to significant variation in gas demand for heating

[59]. Charging schedules were synthesised according to the assumption that –
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Table 1: Daily routine charging schedule for a subset of 5 EVs

EV ID Window Plug-in Plug-out 1 SoCS

(kWh)

SoCF

(kWh)

5694 1 2140 1150 59.3 60.0

8669 1 1540 1150 4.8 30.0

9602 1 1540 1700 58.5 60.0

9602 2 1710 0730 59.3 60.0

9602 3 1020 1150 51.9 56.5

1931 1 1740 0620 39.5 75.0

1417 1 1830 1150 23.9 30.0

1 Plug-out times before midday are the following morning (optimisation is car-

ried out for 24 hours from midday to midday the following day).

as charging at home is seen to carry negligible inconvenience – drivers will plug

in whenever they arrive home and will seek the maximum gain in SoC allowed

by the parking duration, battery capacity and charging power. The energy re-

quirement for each charge event is a function of the EV’s travel diary and other

charge events that they have undertaken.

For this study, a bank of 10,000 charging schedules (derived from 10,000

car-based NTS travel diaries) is randomly sampled from; these have a range of

common battery sizes (24, 30, 40, 60 and 75 kWh) and 7.4 kW chargers. For

more information on how the heuristic works, the reader is directed to [57, 58].

A subset of 5 travel diaries is shown in Table 1 for a single day from midday-

midday where SoCS is the initial SoC at plug-in time and SoCF is the final

SoC at plug-out time. EV 9602 has 3 charging ‘windows’ over which the EV is

plugged in within the 24h optimisation period.

95th percentile EV charging requirement. The charge requirement for the 95th

percentile of daily EV demands is used to make a first estimate of zonal EV
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hosting capacity based on daily headroom.

The 10,000 EV charge diaries were randomly sampled 1000 times in sets of

10 EVs with the average daily demand calculated for the 10 EVs each time. The

resulting histogram of average daily EV charge, Figure 8, shows an average of

8.9 kWh/day for a set of 10 EVs with a 95th percentile of 14.2 kWh/day. For

comparison, the previously mentioned Electric Nation trial recorded an average

daily charge of 25-35 miles’ worth of range [16]. At a typical EV fuel economy

of 15-20 kWh/100 km [60], this equates to an average energy usage of 6-11 kWh

per day. The P95 figure is used to ensure that the EV optimisation is successful

for 95% of possible EV samples sets if sufficient headroom is available for the

duration that EVs are plugged in.
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Figure 8: Histogram of Mean Daily EV charge for sets of 10 EVs.

2.2.2. EV optimisation

The objective function of the EV optimisation is to minimise the cost of

charging the EV fleet within the headroom available:

min
∑
t∈T

(
cGt p

G
t

)
(4)

where cGt is the grid cost of charging in £/kWh at timestep t and pGt is the total
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energy requirement of all EVs in kWh at timestep t. Subject to the following

constraints:

Total EV energy requirement.

pGt =
∑
e∈E

(
pCe,t − pDe,t

)
(5)

where pCe,t and pDe,t are the charge and discharge for an EV e during time t.

Zonal headroom and footroom constraints.

−F (2)
z,t ≤ pGt ≤ H

(2)
z,t (6)

where H(2)
z,t and F

(2)
z,t are the P2 headroom and footroom in zone z for time t

calculated in the HP capacity assessment.

EV SoC constraint.

SoCe,t,w = ηpCe,t −
1

η
pDe,t + SoCe,t−1,w (7)

where SoCe,t,w is the SoC of the EV e at timestep t in charging window w,

respectively. The SoC is the product of the state of the charge in the previous

timestep SoCe,t−1,w and any charge/discharge, pCe,t / pDe,t, during that timestep.

η is the charging/discharging efficiency which is assumed to be 0.88 as in [58]

and the same for both charging and discharging as in [18].

EV final and initial SoC constraints.

SoCe,ts,w = SoCS
e,w (8a)

SoCe,tf ,w = SoCF
e,w (8b)

where SoCe,tf ,w is the SoC of EV e at the final timestep, t = tf , for charging

window w which must equal the required final SoC, SoCF
e,w, specified in the

EV travel diaries. Likewise, SoCe,ts,w is the SoC of EV e at the first timestep,

t = ts, for charging window w which must equal the required initial SoC, SoCS
e,w,

specified in the EV travel diaries.
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Maximum charge power constraint.

pCe,t ≤


pmax
e , SoCe,t,w ≤ γe(
1− SoCe,t,w

1− γe

)
pmax
e , SoCe,t,w > γe

(9)

where pmax
e is the charger capacity for EV e and γe is 0.8 to represent the

constant-current constant-voltage charging power profile typical of EV charging

[61].

Maximum discharge power constraint.

pDe,t <= pmax
e (10)

The optimisation formulation can be written as a Linear Programming (LP)

problem that is solved using the cplex [62] solver within OATS [63] optimisation

software.

Grid charging price. The grid charging price (cGt ) includes distribution network

related components of the electricity price including the distribution use of sys-

tem (DUoS) price for LV network domestic customers for 2019/2020 from [64].

The DUoS price has been modified to include a morning ‘red time band’ (the

most expensive time period for the DUoS charge), from 06:00 to 08:30 to account

for the morning peak HP demand. An example grid price profile is shown in

Figure 9, which also includes a constant battery degradation cost of 3.2 p/kWh

from [17] and a V2G price which is set at 17.5 p/kWh based on the utilisation

cost of flexibility (secure service) in Western Power Distribution ‘Flexible Power’

trial [65]. The V2G price is only applied during periods of negative headroom

calculated in the HP headroom assessment, H(2)
z,t , which in the example shown in

Figure 9 occurs from 17:00-18:00 and 07:00-08:00. The main purpose of V2G in

this work is to reduce thermal and voltage issues caused by peak power demand

from HPs, which is indicated by the negative headroom.
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Figure 9: Example grid price profile; data: [64, 17, 65]

The purpose of including a constant battery degradation price is to pre-

vent the EV optimisation (formulated in (4)-(10))6 from carrying out V2G at

any other time than the highest DUoS price and/or periods of V2G request.

Without the battery degradation cost, the EV optimisation carries out V2G

during periods of the mid-range DUoS price (2.1p/kWh) as it can cost effec-

tively make up this lost charge by charging during periods of the lowest DUoS

price (0.8 p/kWh) despite round trip efficiency losses of 22.6%. Given that the

cost of battery degradation from providing V2G has been estimated as 3.2 -

8.95 p/kWh [18], V2G should not be carried out for such a small price margin

and the inclusion of the battery degradation cost prevents this from happening.

6The objective of the EV optimisation is to minimise the cost of charging a fleet of EVs

and it is not aimed at estimating real-world costs to consumers for charging individual EVs

or providing V2G. The same price is assumed to be paid for export or import to the grid:

in practice this would be unlikely to be the case, however, the symmetric price is adequate

for minimising EV charging during times of peak HP demand and encouraging V2G dispatch

when negative headroom occurs.
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3. Case Studies

Case studies are carried out on representative LV networks to assess HP

hosting capacity and EV optimisation using the remaining headroom. On each

network the following cases are run:

1. 0% HP penetration. 0% PV penetration.

2. 25% HP penetration. 0% PV penetration.

3. 50% HP penetration. 25% PV penetration.

4. 75% HP penetration. 25% PV penetration.

5. 100% HP penetration. 50% PV penetration.

The LV networks utilised in this work are taken from the Low Voltage Net-

work Solutions (LVNS) project [23] which published the largest set of publicly

available validated LV network models available in the UK. The LVNS models

are of areas in the North West of England and are representative of a range of

operational network topologies observed by network operators.

There are 25 LVNS network models with a total of 7539 customers (also

referred to as loads) and 128 feeders. The histogram of customer numbers per

zone (unique feeder and phase combination), Figure 10, shows that 75% of zones

have fewer than 26 customers, the median number of customers per zone is 13.5,

and 5% of zones have more than 54 customers.
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Figure 10: Histogram of number of customers per zone of 128 LVNS feeders; data: [23].

In this work, a subset of five networks has been selected to represent the

range of customer numbers per zone in the 25 LVNS networks as customer

number is a significant factor in LCT hosting capacity [21]. The subset of five

networks (with a total of 34 feeders) are summarised in Table 2 including key

network parameters which influence network loading and LCT hosting capacity.

Table 2: Summary of subset of representative LVNS networks selected for modelling

Network Total

loads

Total

zones

Median

loads/zone

Max

loads/zone

Transformer

rating (kVA)

Network 1 200 12 14.5 28 750

Network 5 335 24 9.5 55 500

Network 10 64 18 3 8 1000

Network 17 883 21 41 78 1000

Network 18 328 27 11 23 750

These networks can be generalised and related to other LV networks by com-

paring key network parameters, particularly the number of customers (loads),

customers per zone, and the transformer rating. The chosen networks provide
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a wide range of customer numbers and customers per zone and are aimed at

covering the extremes of network LCT hosting capacity for the models available.

Further detail on the reasoning behind selecting the subset of five networks is

outlined in the following.

Network 1 (Figure 11) has a median customer number per zone close to

the median of all LVNS feeders (13.5 customers per zone). However, there is

a significant difference in customer numbers between zones and two zones have

>26 customers putting them in the highest 25% of customer numbers for all

LVNS zones.

Feeder
1
2
3
4

Legend
Secondary 
Substation

Figure 11: LVNS Network 1

Network 5 (Figure 12) displays extreme variation between zones: 18 of 24

zones have less customers than the LVNS median but three zones have more

than 40 customers putting them in highest 10% of zones in the LVNS networks

in terms of customer number.
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Figure 12: LVNS Network 5

Network 10 (Figure 13) has a small number of customers (64) and is not

expected to have any issues with hosting 100% LCTs. In [21], 50% of feeders

did not display any issues for up to 100% LCTs and the zones in network 10 all

have customer numbers in the lowest 25% of LVNS zones.
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Figure 13: LVNS Network 10

Network 17 (Figure 14) has the most customers of all the LVNS networks

(883) and 16 zones have above 26 customers (the 75th percentile of customer

number in all LVNS zones) and 5 zones have customer numbers in the highest

5% of all the LVNS feeders. This network is expected to have the lowest hosting
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capacity for HPs and EVs of all those modelled.

Figure 14: LVNS Network 17

Network 18 (Figure 15) is an example of a network with an average total

number of customers (328 compared to the mean of 302 for all LVNS networks)

spread fairly evenly across 9 feeders. The median number of loads per zone is

lower than the median of all LVNS networks and all zones in network 18 have

customer numbers in the lowest 25% of all LVNS networks.
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Figure 15: LVNS Network 18

The LVNS OpenDSS networks supplied by [23] are produced from GIS data

and often have a large number of redundant branches and nodes that do not

enhance electrical representation of the network. In this paper, condensed net-

work models are used from [66] which have been validated as producing results

for voltage with a relative error of no more than 3 × 10−11 . Each network is

modelled from a 11/0.416 kV secondary transformer with thermal ratings shown

in Table 2. The voltage source is set at 1 p.u. and the three phase and single

phase short circuit currents (ISC3 and ISC1) are set at the LVNS network de-

fault values of 3000 A and 2500 A respectively. SM and HP loads are modelled

as having a 0.95 power factor (lagging)7 and PV generators have a unity power

factor. EV charging is modelled as having a 0.98 power factor (lagging) which

was found to be the typical EV charging power factor in a trial of 221 residential

EVs [68].

7HPs could have a power factor lower than 0.95 due to the effect of a booster heating

switch [67], however, as HP power factor and reactive power data was unavailable, HPs are

assumed to have a power factor of 0.95.
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4. Results and Discussion

The hosting capacity for HPs and EVs on five LV networks have been esti-

mated based on the HP headroom assessment and EV optimisation methodolo-

gies for 88 days of winter 2013. Results are presented for the following cases:

HPs in the absence of EVs, HPs and EVs with dumb charging, and finally HPs

and EVs with optimised charging.

4.1. Heat pump hosting capacity

In this work, hosting capacity is determined by the maximum penetration

(from the cases modelled), that can be accommodated before voltage and ther-

mal violations occur. Results of low voltage and current violations, along with

HP hosting capacity are firstly presented in the absence of EVs. This provides

an insight into the requirement for network upgrades to achieve high penetra-

tions of HPs, the headroom available for EVs and the opportunity for V2G to

reduce the requirement for network upgrades.

Low voltage violations:. Low voltage violations with customer number for 100%

HP penetration are presented for all networks (except network 10)8 in Figure

16. For zones with customer numbers below 21, there were very few instances of

low voltage problems for any penetration of HPs. For 50%, 75% and 100% HP

penetrations, the maximum % of timesteps with low voltage observed in any

zone with fewer than 21 customers was 0.02%, 0.48% and 1.28% respectively.

For reference, a zone with 21 customers is equivalent to a balanced feeder with

63 customers, however as most of the 128 LVNS feeders are not balanced, it is

useful to consider hosting capacity by zone rather than feeder.

8Network 10 is omitted as no low voltage issues occurred at any HP penetration due to

network 10 having fewer than 8 customers in any zone.
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Figure 16: Low voltage (<216 V) frequency (as % of 12,673 timesteps) for winter 2013 per

zone for all networks (network 10 has been omitted as no violations occurred) against customer

number for 100% HP penetration.

Beyond 21 customers, low voltage problems become more prevalent for 25%

HP penetrations and upwards, generally increasing in frequency with increasing

customer number and HP penetration (see Figure 17). For 0% HPs, with SM

demand only, there were four zones which encountered voltage problems, three

in network 17 and one in network 5. These zones had 0.02%, 0.02%, 0.12%

and 22.4% of timesteps with low voltage violations corresponding to customer

numbers of 35, 55, 74 and 46 respectively.
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Figure 17: Low voltage, cable and transformer thermal violations (as % of 12,673 timesteps)

with HP penetration for each network (network 10 has been omitted as no violations occurred

for any HP penetration). In each plot, the y-axis is a symmetric log scale which is linear

between 0 and 1 (to allow values of zero and close to zero to be plotted).

The relationship between customer number and low voltage violation per-

centage is not linear, and in the case of 0% HPs, the zone with the most vi-

olations (22.4% of timesteps) does not have the largest number of customers.

Customer number alone can only provide a crude prediction of the likelihood of

low voltage violations, namely a low likelihood below 21 customers and higher

likelihood above 21 customers.

Thermal violations. Figure 18 shows that, as with voltage problems, instances of

cable overcurrent were seen in zones with 21 customers and above. Furthermore,

it was found that the cable thermal overloads were more probable than the

transformer rating being exceeded for all networks. Figure 17 shows that for 25%
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HP penetration and below, the transformer limit is exceeded only for network

17. At 50% HP penetration and above, the transformer limits become more of

a bottleneck for networks 5, 17 and to a lesser extent network 18.
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Figure 18: Cable thermal violations (as % of 12,673 timesteps) for winter 2013 per zone for

all networks (network 10 has been omitted as no violations occurred for any HP penetration)

against customer number for 100% HP penetration .

Overcurrent issues were observed most frequently for lines with ratings below

400 A. In [24], a 400 A current limit has been assumed for all lines, due to an

assumed 400 A LV feeder fuse rating and in [21] thermal loading was only

considered for the head of the feeder. In this work, ratings are assigned to all

cables using cable data from [69] and linecodes from the LVNS OpenDSS model

data. Intuitively, the most commonly overloaded lines are the feeder head cables,

and on this basis the feeder head were classed as ‘pinch points’ which were used

to calculate headroom (along with the voltage power flow limits) for use in the

EV optimisation.
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HP Hosting Capacity. In terms of overall network hosting capacity for HPs, in

the five LV networks modelled, 24.2% HP penetration can be achieved before

any thermal or voltage violations occur (see Table 3). If voltage or thermal

violations were acceptable for up to 0.5% of timesteps then this figure would

be increased to 27.1%. It is important to note that these figures are based on

modelling of HP penetrations in increments of 25% (as per the cases modelled).

The HP capacity estimates in this work are conservative and to gain a more

accurate estimate, smaller increments of HP penetrations could be modelled.

For example, in the case of network 17, transformer thermal violations occurred

in 4.8% of timesteps at 25% HPs, which reduced the HP hosting capacity to

0%, however the maximum penetration of HPs in network 17 would be between

0 and 25%.

As previously highlighted, the capacity in an individual zone is affected by

the number of customers, and networks with predominantly fewer than 21 loads

per zone, in this example networks 10 and 18, can host 100% and 68.9% HPs

respectively. However, networks 1,5 and particularly 17, have zones with larger

numbers of customers per zone, and especially in the case of network 17, this

severely restricts the possible penetration of HPs.

Table 3: Hosting capacity for HPs with zero tolerance of voltage and

thermal violations and tolerance of up to 0.5% of timesteps (in brack-

ets). Based on modelling of 25% increments of HP penetration.

Network HPs % Total Customers

Network 1 107 (133) 53.5 (66.5) 200

Network 5 42 (59) 12.5 (17.6) 335

Network 10 64 (64) 100 (100) 64

Network 17 0 (0) 0 (0) 883

Network 18 226 (235) 68.9 (71.6) 328

Total 439 (491) 24.2 (27.1) 1810
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Network Upgrade Requirement. For the 34 feeders studied, 75% of the network

zones have 21 customers or less (see Figure 19) and of the 128 LVNS feeders,

66% of zones fewer than 21 customers. In practice, upgrades will be required at

feeder level, rather than on an individual phase, and 55% of LVNS feeders have

a maximum of 21 customers in any zone, which indicates that the majority of

LVNS feeders would not require upgrade for up to 100% HP capacity.
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Figure 19: Customers by zone for the five networks with 34 feeders and 102 zones (each feeder

has 3 zones)

4.2. Heat pump and dumb EV charging hosting capacity

To provide a baseline for comparing the performance of the headroom and

optimised EV charging methodology, results are included for dumb EV charging

for each network at different penetrations of HP and EV. As in the HP case,

hosting capacity is determined from the maximum penetrations (from those

modelled) of EV and HP without thermal or voltage violations.

Dumb EV charge profiles. The dumb EV charging profiles have been calculated

from the same travel dairies used in the EV optimisation, using (9) and assuming

EVs charge at full power (pce,t) from the moment they are plugged in until they
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are fully charged. Using this method, 10,000 daily EV charging profiles were

produced, from which a unique profile was used for every EV and every day

simulated to capture diversity of charging behaviour. The median and mean of

the 10,000 profiles (see Figure 20) show that the peak charge demand occurs

around 6:40pm and there is a significant overlap of the period of the highest

mean EV charge and evening HP demand (see Figure 2), between 4pm and

9pm. The larger morning HP demand peak does not coincide with significant

EV demand, however thermal and voltage violations will be likely to occur

during the evening peak.
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Figure 20: Median and mean daily EV dumb charging profiles from 10,000 daily travel diaries

Voltage and Thermal violations. Using the dumb charging profiles, voltage and

thermal impacts were assessed for HP penetrations of 0-50% in 25% increments

and EV penetrations from 0-40% in 10% increments for December 2013 which

corresponds to 4321 10-minute timesteps.

With the addition of EVs, thermal violations become more frequent and

cable thermal violations occur on all networks (except network 10) beyond 30%

EVs for 25% HPs (see Figure 21). Network 17 is unable to accommodate even

20% EVs without the transformer being overloaded with 0% HPs and similarly
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transformer violations occur with 20% EVs at 0% HPs on network 5.
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Figure 21: Low voltage, thermal cable and transformer violations (as % of 4,321 timesteps)

with EV penetration at 25% HP penetration for each network (network 10 has been omitted

as no violations occurred for these HP and EV penetrations). In each plot, the y-axis is a

symmetric log scale which is linear between 0 and 1 (to allow values of zero and close to zero

to be plotted).

Low voltage violations become slightly more frequent below 21 customers

per zone for 25% HPs with 40% EVs (see Figure 22) compared to 100% HPs

and no EVs (see Figure 16). This is the case in all networks except network 10,

which has no voltage issues at any HP or EV penetration due to having fewer

than 8 customers in any zone.
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Figure 22: 25% HP and 40% EV penetration (dumb charging) - Low voltage (<216 V) (as %

of 4321 timesteps) for December 2013 per zone for all networks (network 10 has been omitted

as no violations occurred for these HP and EV penetrations) against customer number.

Overcurrent becomes more prevalent than low voltage below 21 customers

per zone with the addition of EVs and in the case of 25% HPs and 40% EVs

(see Figure 23), overcurrent increases close to linearly with increasing customer

number, particularly steeply for network 1 from 13 customers.
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Figure 23: 25% HP and 40% EV penetration (dumb charging) - Cable thermal violations (as

% of 4321 timesteps) for December 2013 per zone for all networks against customer number.

HP and dumb EV hosting capacity. The estimated hosting capacity for HPs and

EVs with dumb charging is shown in Table 4. HP penetrations above 50% were

only modelled for network 10 as in the other networks the EV hosting capacity

was below 33.5% at 50% HP penetration and there was little extra benefit to

modelling up to 100% HP penetration.
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Table 4: Hosting capacity for EVs with dumb charging at different HP penetrations with zero

tolerance of voltage, 0.5% tolerance of cable current and 0.5% tolerance of transformer thermal

violations1 (as a % of timesteps). Based on modelling of 25% increments of HP penetration and

10% increments of EV penetration over 4321 10-minute timesteps of December 2013.

Network 0% HP 25% HP 50% HP 75% HP 100% HP Total

1 62 (31%) 43 (21.5%) 31 (15.5%) n/a n/a 200

5 43 (12.8%) 25 (7.5%) 0 (0%) n/a n/a 335

10 64 (100%) 64 (100%) 64 (100%) 64 (100%) 64 (100%) 64

17 56 (6.3%) 0 (0%) 0 (0%) n/a n/a 883

18 157 (47.9%) 152 (46.3%) 110 (33.5%) n/a n/a 328

Total 382 (21.1%) 284 (15.7%) 205 (11.3%) 1810

1 It is assumed thermal violations are acceptable in <0.5% of timesteps without causing damage

to cables and transformers, however, voltage violations are not tolerated due to the minimum

voltage of 216 V being a statutory requirement [70].

The limiting factor in EV penetration in most cases is either cable current

or transformer overloads. The EV hosting capacity within network 18 is limited

by cable overloads beyond 30% EV penetration at 25% HPs (see Figure 21) due

to the large evening peak caused by dumb charging. Network 18 was able to

host a high percentage of HPs without EVs (68.9%), however it can only host

47.9% EVs without HPs. Network 17 has transformer overloads with even 20%

EV penetration and 0% HP penetration. Note: 20% penetration in network

17 equates to 176 customers which is more than double the total number of

customers in network 10, hence why network 17 would need upgrading for even

low HP and EV penetrations (and EV optimisation would not be able to change

this significantly).

4.3. HP and Optimised EV capacity

The stages in estimating the HP and optimised EV hosting capacity, as

outlined in Algorithms 1 and 2 were to calculate zonal power flow limits; estimate

headroom from the zonal power flow limits; assign HP and EV capacities based
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on the headroom; carry out EV optimisation, and finally validate the results.

As these steps were carried out for multiple zones across five networks, the

results of each step are presented for a single zone to illustrate the results of the

methodology.

4.3.1. Zonal power flow limit

The zonal power flow limit, PVlim
z , for each network is calculated from the

minimum power flow that resulted in a minimum voltage of 0.94 p.u9. An

example of the estimation of PVlim
z for network 1, zone 11 is shown below in

Figure 24, where PVlim
11 =26.6 kVA. The points on Figure 24 correspond to the

12,673 timesteps of each HP penetration case combined (from 0 to 100% HP

penetration in increments of 25%).

Figure 24: Network 1, Zone 11: Power flow vs Minimum Voltage

Table 5 shows the voltage power flow limit PVlim
z for each zone in network

1. The feeder head thermal limit, PTlim
z,t , is set by the feeder head line rating of

185 A converted to kVA using (2). PTlim
z,t varies by a small amount by timestep

9The 0.94 p.u limit is conservative and corresponds to a phase to neutral voltage of 225 V

for the base voltage of 240 V used in this work. This is to allow a margin of error to prevent

additional EV load from causing voltages to drop below 216 V (the UK statutory minimum

voltage [46]) which corresponds to 0.94 p.u for a nominal voltage of 230 V.
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depending on the supply point voltage, which for network 1, ranges from 0.974

p.u to 1 p.u in the cases modelled. In general, the voltage power flow limit is

significantly lower than the thermal limit.

Table 5: Network 1: zonal voltage

power flow limit, PVlim
z , kVA

Phase

Feeder 1 2 3

1 26.6 23.9 31.5

2 23.2 20.8 25.9

3 17.1 25.4 18.1

4 21.1 21.6 17.1

4.3.2. Headroom calculation

From (1a) and (1b), the headroom and footroom was calculated for each

network, case, zone and timestep. The example of a P2 headroom profile for

network 1, zone 11 (Figure 25) shows that there are times where the headroom

is negative, which indicates the possibility of voltage or current violations. It

should be noted that these P2 headroom profiles are conservative as they are

based on a 225 V low voltage threshold, however this safety margin is required to

prevent voltages below the statutory limit of 216 V once EV demand is added.
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Figure 25: Network 1, Zone 11: P2 headroom for each case

4.3.3. HP and EV capacity assignation

Using the P2 headroom for all zones, achievable HP and EV hosting capac-

ities are estimated per zone. The HP hosting capacity is defined as the highest

HP capacity with a net positive P2 headroom profile above a threshold of 120

kVAh over a 24 hour period10. For example in zone 11 (Figure 25), 50% HP

penetration has a net positive P2 headroom of 91 kVAh which is below the de-

fined 120 kVAh threshold. For 25% HP penetration, the sum of P2 headroom

is 200 kVAh which is acceptable as it is above the 120 kVAh threshold. The

EV hosting capacity is calculated from the total P2 headroom for the accepted

HP capacity case. In the zone 11 example, the total daily P2 headroom for the

25% HP accepted case is converted to 196 kWh assuming a power factor of 0.98.

By dividing this sum of daily P2 headroom by the maximum daily EV charge

calculated in section (14.2 kWh/day), an initial estimate of 13 EVs is obtained.

10This threshold can be tuned to ensure that in the case of headroom profiles with periods

of negative headroom, enough headroom is available for a sufficient number of EVs (approxi-

mately 8 in this case) to both charge and provide enough V2G to prevent thermal and voltage

violations caused by peak HP demand.
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By replicating this approach for all zones, a total HP hosting capacity of 30

HPs has been estimated for network 1 with an initial estimate of 124 EVs. The

number of EVs must now be refined based on the ability to optimise the charging

of this numbers of EVs using the zonal P2 headroom profiles and realistic EV

travel diaries.

4.3.4. EV Optimisation

Using the zonal P2 headroom for assigned HP capacities, and an initial esti-

mate of EV numbers, the EV optimisation is carried out for randomly sampled

EV travel diaries. As described in Algorithm 2, the number of EVs is reduced

until 10 consecutive successful optimisation results is achieved for a given num-

ber of EVs. This gives a more realistic estimate of the number of EVs that can

be charged based on real travel diaries rather than solely based on total head-

room available. On this basis for network 1 the total number of EVs is revised

to 88 (44% of customers).

An example of a successful optimisation result for network 1, zone 14 is

shown in Figure 26 for 9 EVs with a negative P2 headroom period between

16:00 and 21:00. There is no hard constraint on the optimisation to provide

V2G at times of negative headroom, however, the price signal of an added 17.5

p/kWh for V2G results in injection where the EV schedule and headroom allows.

For the EV optimisation result of a random sample of 9 EV travel diaries shown

in Figure 26, there is some V2G provided between 16:00 and 21:00, however

not the full amount requested. This is because there is insufficient headroom to

provide any further V2G while still respecting the hard constraint of achieving

the required final SoC for each EV.
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Figure 26: Network 1, Zone 14: Results of EV Optimisation Schedule

If there was more headroom available, fewer EVs to free up headroom, or a

relaxation of the requirement to fully charge EVs, then the EVs could provide

more V2G. This is illustrated in Figure 27 where the number of EVs has been

reduced to 6 and the final state of charge requirement has been relaxed to

achieving 97% of the SoC specified in the travel diary.
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Figure 27: Network 1, Zone 14: Results of EV Optimisation Schedule for 6 EVs

Although in some cases V2G is not fully provided, for most cases the majority

of requested V2G was provided and in network 1, for 33 HPs and 82 EVs, an

average of 79.1% of V2G requested was provided per zone.

4.3.5. HP and optimised EV hosting capacity validation

From the HP headroom assessment and EV optimisation, the total HP and

EV hosting capacity has been estimated for each of the networks. The optimised

EV dispatch along with the assigned HP capacity has been validated for each

network by carrying out OpenDSS load flow modelling for a subset of worst

case sample days. The sample days have been selected as those with the lowest

total headroom per zone from the 88 days of winter 2013 modelled during the

HP headroom analysis. For example, for network 1 which has 12 zones, the

validation would be carried out for the 12 days with the lowest total headroom

in the 12 zones.

For a given zone, the EV optimisation is carried out using the same headroom

profile each day, but with a different sample of EV travel diaries to capture a
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range of possible EV charging behaviour (and availability to provide V2G).

The validated HP and optimised EV hosting capacities, shown in Table 6,

are significantly higher than for dumb EV charging in three of the five networks

assuming current violations in up to 0.5% of timesteps are tolerable. The number

of transformer thermal violations is zero for all networks except network 5 which

has violations in 0.5% of timesteps.

Table 6: Summary of HP and optimised EV hosting capacity

Network HPs EVs
Current

Violations 1

Voltage

Violations 1

V2G

Delivered

(%)

1 30 (15%) 88 (44.0%) 0 0 79.1

5 88 (26.3%) 110 (32.8%) 0.3 0 81.9

10 64 (100%) 64 (100%) 0.1 0 n/a

17 8 (0.9%) 41 (4.6%) 0.3 0 75.8

18 190 (57.1%) 235 (71.6%) 0.3 0 78

Total 380 (21.0%) 538 (29.7%)

1 Violations are in % of timesteps modelled

In total, for the five networks studied, it was possible to host 21% HP

and 29.7% EV penetrations without the requirement for additional network

upgrades. The total EV hosting capacity is close to double the 15.7% EV pen-

etration that was possible with dumb charging with 25% HPs. In the case of

network 17, which has 883 of the 1810 customers in the five networks studied,

there was simply not enough headroom to host a significant penetration of HPs

or EVs (beyond 4.6%). In networks with such high customer numbers per zone

and a large number of total customers, network upgrades will be required to

host significant penetrations of HPs and EVs and EV optimisation can only

provide very limited gains.

The biggest gains from this method came in network 18, which was limited

to 33.5% EV penetration at 50% HP capacity for dumb charging. Using the
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headroom optimisation method it was possible to increase EV and HP pene-

trations to 71.6% and 57.1% respectively. The method was also successful in

facilitating EV hosting capacities 1.4 times and 2.6 times higher in networks 1

and 5 respectively than the dumb charging case with 0% HPs. These EV capac-

ities were realised with HP penetrations of 15% and 26.3% in networks 1 and

5 respectively. The levels of V2G delivered were above 75% of requested out-

put for networks 1,5 and 18 which, in the case of several zones, allowed higher

HP penetrations by injecting power at times with negative headroom where HP

demand could otherwise have caused current or voltage violations.

Sensitivity study: modified headroom. A sensitivity case is presented to demon-

strate the potential for tuning the headroom calculation and the effect this has

on violations and HP and EV numbers. Table 7 shows the HP and EV hosting

capacity results when the 5th percentile (P5) headroom is used rather than the

P2 headroom.

Table 7: Summary of HP and optimised EV hosting capacity: P5 headroom

Network HPs EVs
Current

Violations 1

Voltage

Violations 1

Transformer

Violations 1

1 38 (19.0%) 95 (47.5%) 0% 0% 0%

5 99 (29.6%) 117 (34.9%) 0.6% 0% 1.6%

10 64 (100.0%) 64 (100.0%) 0.1% 0% 0%

17 8 (0.9%) 83 (9.4%) 1.2% 0.2% 0%

18 200 (61%) 242 (73.8%) 0.1% 0% 0.1%

Total 409 (22.6%) 601 (33.2%)

1 Violations are in % of timesteps modelled

Using this modified method it was possible to slightly increase the total

HP penetration to 22.6% (an increase of 1.6%) but at the expense of voltage

violations of up to 0.2%, transformer violations of up to 1.6% and cable cur-

rent violations up to 1.2% (in terms of % of timesteps modelled in each case).

The headroom available for EV optimisation was higher than the base case and
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the number of EVs increased by 63 (3.4%) across all networks. These results

demonstrate some flexibility in the method for prioritising between maximising

HP and EV capacity and minimising voltage and thermal violations. The volt-

age, thermal and transformer violations could be reduced by further tuning of

the headroom calculation.

EV optimisation and transformer power flow. The optimisation of EVs has the

potential to have a significant impact on the power flows to and from LV sec-

ondary substations. In Figure 28 the maximum transformer power flow per 10

minute timestep is shown for network 18 based on the results of all three cases

considered: HP only, HP and dumb EV, and HP and optimised EV. Although

the penetrations of HP and EV for the cases in Figure 28 are different, it is still

useful to compare the timings of peak power flows for each case.
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Figure 28: Network 18 maximum transformer flow for optimised EV charging, Dumb EV

charging and HP only cases

The EV optimisation is very effective at reducing the peak power flows at

the times of the highest DUoS price: for the optimised EV case there is a

rapid increase in EV demand after 19:00 and after 09:00 when the DUoS price

drops and EV charging increases. The DUoS price signal used in this work

could be improved by extending the high price DUoS charge until after the HP

peak subsides at 22:00. The example in Figure 28 highlights the importance in

choosing the right price signals and limits for EV optimisation. In this example,

the headroom limit successfully prevented the post 19:00 and 09:00 spikes in

EV charging from causing transformer limits from being exceeded. Using price

signals alone, EV optimised dispatch could cause network stress events including
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violation of voltage, line current and thermal limits, especially when multiple

EVs across multiple zones and networks are responding the same price signals

[16].

4.3.6. Computation times

The major advantages of the proposed headroom optimisation method when

compared to 3-phase multi-period OPF are that network modelling and EV

optimisation activities are separated, and that computational times are vastly

reduced. For example, the average time taken to optimise a day’s EV dispatch at

10-minutely resolution (144 timesteps) for a zone in network 18 with an average

of 10 EVs is 2.7 s using a 3.3 GHz i5 processor with 8 GB RAM. By optimising

zones in parallel (using multiple processors), a day’s EV scheduling for 242 EVs

in network 18 across 662 nodes in 27 zones, was carried out in under 20s using a

quad core processor. For comparison, using the same 3.3 GHz processor, it took

2 hours to optimise a day’s dispatch of 80 EVs at 30-minutely resolution (48

timesteps) by carrying out 3-phase multi-period OPF on the IEEE 13 node test

network using the PICOS solver [71] in the OPEN platform [10]. The 3-phase

power flow model in OPEN is linear, giving an approximate solution, and the

2 hour computational time is with voltage constraints relaxed. With increasing

network size, multi-period OPF can become intractable: for example, for an LV

network with 163 nodes and 15 EVs, using the same 3.3 GHz processor as in the

previous examples, it was found that for many EV and demand configurations,

the optimisation of a day’s EV dispatch does not converge (after iterating for

several hours) at 10-minutely resolution for single-phase multi-period OPF using

the Ipopt[72] non-linear solver within the OATS platform [63].

When considering multiple LV networks which could number into the thou-

sands on a regional level [73], the method proposed in this paper could offer

significant improvement in tractability compared to 3-phase multi-period OPF.

The offline headroom calculation requires more computational effort depending

on the number of timesteps analysed, therefore generalised headroom profiles

could be developed based on parameters such as customer number, feeder head
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line rating or electrical distance rather than calculating a headroom profile afresh

for every zone in every network.

4.4. Wider context of this work

Net zero emissions trajectories for the UK [2, 74] all rely on the parallel

electrification of heat and transport and the decarbonisation of electricity sup-

ply. As variable renewables replace traditional thermal power stations, there

is increasing value placed in electricity system flexibility to i) utilise renewable

electricity [75] – thereby providing an ‘anchor load’ incentive for further invest-

ment in low carbon generation and ii) minimise the cost of the technological

transition [4]. Unlocking the synergies of EVs and HPs will bring further ben-

efits for the environment (such as a reduction in urban air pollution) [76], the

economy (the promotion of novel technologies with the potential of high value

added manufacturing jobs) [77] and society (the reduction of energy costs) [78].

The method provided in this paper to maximise the use of domestic EV

charging flexibility has been shown to increase LV network capacity for domes-

tic HPs and EVs. Smart control methods, such as the EV optimisation strategy

proposed in this work, can significantly reduce the required expenditure on net-

work upgrades for the decarbonisation of heat and transport [4]. By considering

a range of realistic LV networks, the results of the case studies in this paper

provide an indication of networks with the most to gain from EV flexibility in

terms of increased HP and EV hosting capacity, and those that have little to

gain, which helps to inform DNOs in directing further investment in network

reinforcement and flexibility.

The results of this work can be considered to be conservative in the assess-

ment of LV network hosting capacity compared to other works in the literature.

Firstly, the subset of RHPPS HP demand profiles used in this work have a

higher ADMD than those used in other works [48, 24], and secondly, this work

models 7 kW home EV chargers rather than 3-3.6 kW chargers which have been

assumed in other works [21, 13].

In the RHPPS HP dataset there is a high proportion of social housing and for
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this reason in [25] it is concluded that it should not be considered representative

of current GB HP installations. In other works such as [78], improved building

insulation levels have been assumed, resulting in reduced mean and peak HP

demand profiles compared to those used in this work. The results in this work

can therefore be considered indicative of the levels of HPs with relatively high

demand that can be hosted on a range of LV networks.

There is potential for significant increases in HP hosting capacities of LV

networks with improvements in home energy efficiency. Consider that in [20] it is

estimated that insulating a typical detached dwelling to passive house standards

could reduce HP energy consumption by 76%. However, it is expensive and

challenging to retrofit homes with the required energy efficiency improvements

and homeowners are unlikely to do so without government policy incentives

[79]. Balancing the cost of improved building insulation and reduced electricity

supply costs (including network capacity) due to reduced HP demand, should

therefore be prioritised by policymakers to minimise the cost of achieving net

zero ambitions.

5. Conclusions and future work

This paper makes a contribution to the literature on the decarbonisation of

heat and transport by providing a novel method to maximise domestic HP and

EV penetration on LV networks using EV optimisation and V2G. New findings

are provided on the hosting capacity a set of realistic three-phase LV networks for

HPs and optimised EVs. The number of customers per zone, defined as a unique

combination of feeder and phase, was identified as an important parameter in

assessing the capacity for HPs. Beyond 21 customers per zone, thermal and

voltage violations are much more prevalent and HP and EV hosting capacity

will be limited without network reinforcement.

The networks studied provided two extremes in terms of customer numbers:

EV optimisation was either unnecessary for the smallest network (64 customers)

or unable to enable significant HP and EV penetrations in the largest network
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(883 customers). In the networks with customer numbers between 200 and 335

which were analysed, it was found that EV hosting capacity could be more than

doubled using EV optimisation compared to dumb charging with comparable

HP capacities, without the need for additional reinforcement. In these cases,

it was found that EV optimisation could enable between 15% - 57% HPs and

33% - 72% EVs without the need for additional reinforcement. These networks

have a median customer number of between 9.5 and 14.5 per zone and have

sufficient headroom for EV optimisation to provide significant benefit in terms

of smoothing peak demand and maximising EV and HP hosting capacity.

The methodology applied in this paper is conservative in that a ‘worst case’

headroom is used and applied to all days, in future work this could be enhanced

by the use of a day-ahead forecasted headroom linked to temperature for exam-

ple. The optimisation of EVs during the summer could also be studied using

the same methodology and alternative travel diaries could be included to reflect

changing travel habits such as increased home working. Finally, an important

development of the headroom methodology would be in producing generalised

headroom profiles linked to key network parameters to save re-calculating the

headroom for every zone.
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