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ABSTRACT With the growing application of undirected graphs for signal/image processing on graphs and
distributed machine learning, we demonstrate that the shift-enabled condition is as necessary for undirected
graphs as it is for directed graphs.It has recently been shown that, contrary to the widespread belief that a
shift-enabled condition (necessary for any shift-invariant filter to be representable by a graph shift matrix)
can be ignored because any non-shift-enabled matrix can be converted to a shift-enabled matrix, such a
conversion in general may not hold for a directed graph with non-symmetric shift matrix. This paper extends
this prior work, focusing on undirected graphs where the shift matrix is generally symmetric. We show that
while, in this case, the shift matrix can be converted to satisfy the original shift-enabled condition, the
converted matrix is not associated with the original graph, that is, it does not capture anymore the structure
of the graph signal. We show via examples, that a non-shift-enabled matrix cannot be converted to a shift-
enabled one and still maintain the topological structure of the underlying graph, which is necessary to
facilitate localized signal processing.

INDEX TERMS graph signal processing, shift-enabled graphs, shift-invariant filter, undirected graph

I. INTRODUCTION

GRAPH signal processing (GSP) extends
classical digital signal processing (DSP)

to signals on graphs, and provides a prospective
solution to numerous real-world problems that
involve signals defined on topologically compli-
cated domains, such as social networks, point

clouds, biological networks, environmental and
condition monitoring sensor networks [1]. How-
ever, there are several challenges in extending
classical DSP to signals on graphs, particularly
related to the design and application of graph
filters.

In classical, one-dimensional DSP, any lin-

VOLUME 4, 2016 1



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ear, time-invariant, or shift-invariant, a filter that
commutes with time-shift operator z−1 can be
represented as a polynomial of z−1 leading to
Z-transform of the filter. Conversely, if a linear
filter can be represented as a polynomial of z−1,
the filter is linear and shift-invariant. Unfortu-
nately, this concept does not simply generalize
to GSP, partly because the definition of a “shift”
for a graph is not obvious [2]. Commonly,
in the GSP literature, a graph is uniquely de-
scribed by a “shift matrix” or a “shift operator"1,
S [3]–[5], which has been extensively used for
time/vertex (or spatial)-domain filter design (see
[1], [2] and references therein for frequency-
domain and time/vertex-domain filtering). For
example, adjacency matrices, for general graphs,
and (normalized) Laplacian matrices, for undi-
rected graphs, are some popular choices for the
shift matrix. Though the GSP framework has
been developed for both directed graphs [6] and
undirected graphs, undirected graphs have found
wider applications for numerous image/signal
processing tasks [1], [2] and distributed machine
learning tasks [7], [8]. A graph is called an
undirected graph if all edges between the ver-
tices are bidirectional. This means that the ad-
jacency matrix is symmetric, which implies that
the combinatorial Laplacian matrix is symmet-
ric and positive semi-definite. Then a frequency
representation of graph signals can be developed
based on real and non-negative eigenvalues of
graph Laplacian.

Recently, various methods have been devel-
oped that apply computationally efficient graph
filtering on large graphs including frequency-
domain filtering via Fast Graph Fourier Trans-
forms [9], Wavelet Transform [10], and filter de-
terministic approximations for empirical spec-
tral statistics [11]. For example, Fast Graph
Fourier Transform (FGFT) is used in [9] to im-
plement a graph filter via sparse shift matrix de-
composition. While the sparsity constraint in [9]
helps reducing the implementation complexity,

1The term “shift” comes from the analogy with z−1

operator in Z−transform of classical DSP.

it does not impose any constraint on whether the
approximately decomposed shift matrix main-
tains the structure of the original graph.

In practice, for a large data set, distributed
computation, rather than centralized is needed
[5]. A graph node may only have access to
information collected by nodes near it, and in the
extreme case, only to signals in its immediate
neighbourhood. Even when the architecture is
not completely distributed, for a large graph
with millions or billions of vertices, a naive
implementation of the graph filter through direct
matrix multiplication will be computationally
intractable [6], [12].

FIGURE 1: x: graph signal; S: adjacency matrix
of path graph which is shift-enabled.

In order to make graph filtering feasible, even
for very large graphs, it is necessary to perform
the filtering locally [13], [14]. For example, con-
sider a sensor network represented by a graph,
where the edges and edge weights of the graph
depend on the distance between the sensors. In
this case, efficient filtering boils down to merely
mixing the signals acquired by a sensor with
those of the nearest sensors. Otherwise, if the
filter output at any graph vertex is a linear com-
bination of inputs at all vertices, filtering will
be practically infeasible for “big data” graphs
[5]. Therefore, in practice, we expect that a node
can only impose direct influence on an adjacent
node through the shift operator. For practical
design purposes, it is advantageous to be able
to decompose filters in a form of a polynomial
of such a shift matrix. An example is shown in
Fig.1, where x is a graph signal and S is a sparse
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FIGURE 2: H is a polynomial in S. Different colors represent different values in matrices.

matrix accounting for the local structure of the
path graph [15]. Just as shown in Fig.2, if the
filter H can be represented as the polynomial of
S, then the filter H can be computed locally at
the nodes of the graph. The importance of this
polynomial representation has been reiterated in
a recent survey paper (see Section II.F of [1]).

Although a nice, but loose, analogy between
S and z−1 can be established [1], unlike clas-
sical DSP, if a graph filter is shift-invariant (the
shift matrix commutes with the target filter), this
does not automatically imply that a polynomial
representation of the filter exists [16]. Ref. [3]
argues that, for any shift matrix S, there exists
a converted shift matrix S̃ such that graph filter
H is a polynomial in S̃. However, it is not
sufficient just to have H to be represented as
a polynomial of any arbitrary S̃. One should
also ensure that S̃ indeed describes the same
graph as S (see details in Definition 2), that
is, the converted graph shift should keep the
same topological structure as the original one.
It was shown in [3] that any filter commuting

with shift matrix S can be represented as a
polynomial in S provided that the characteris-
tic and minimal polynomial of the shift matrix
are equal (in the rest of this paper, as in [17],
we will refer to this condition as shift-enabled
condition, see also Definition 1). However, in
[3], this condition was immediately disregarded,
surmising that one may convert any shift matrix
that does not satisfy the shift-enabled condition
into one that does. Based on this conclusion,
most researchers currently assume that the shift-
enabled condition simply holds or ignore the
condition completely. However, it was proved
in [17], through a counterexample, that such a
conversion may not hold for a directed graph
with an asymmetric shift matrix.

A. CONTRIBUTION

Extending our previous work that looked at di-
rected graphs [17], in this paper, we focus on
undirected graphs, and illustrate with examples
that when the symmetric shift matrix of an undi-
rected graph is non-shift-enabled, the conversion
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suggested in [3] could lead to a very differ-
ent graph that does not necessarily capture the
structure of the original graph signal. Namely,
though the conversion would provide a shift-
enabled graph that facilitates the polynomial
representation of the shift-invariant filters, the
newly designed graph might no longer capture
the structure of the graph signal it was originally
designed to model2 However, [16] did not ex-
plicitly investigate the implication of the shift
matrix conversion as proposed in [3], and does
not facilitate localised filtering.

Referring to our wireless sensor network ex-
ample in the introduction, in the original graph
the output of the filtering at each vertex only
involves inputs of the vertex’s immediate neigh-
bourhoods. However, in the converted graph,
sensors that are far apart might be strongly con-
nected, that is, each output at a vertex could be
a linear combination of inputs at almost all ver-
tices, thus filtering in such converted graph will
be computationally unaffordable for “big data”
graphs in practice which further emphasizes the
importance of the shift-enabled condition [17].

In this manuscript we focus on the case when
the topology of the graph is given (for exam-
ple, by communication constraints due to sen-
sor placement and communication protocols ap-
plied). In some other applications, mainly re-
lated to information processing via graphs, there
is freedom to define the topology of the graph
(or learn it from the data), in which case the
shift matrix (and hence graph topology) can be
optimised [12].

The outline of the paper is as follows. Sec-
tion II describes the basic concepts and key
properties of a shift-enabled graph. Section III
provides examples to prove that the shift-
enabled condition is essential for the symmetric
graph. Section IV concludes the paper.

2Ref. [16] also reiterated the relationship among polyno-
mial representation, shift-invariant, and alias-free filter.

II. BASIC CONCEPTS AND PROPERTIES OF
SHIFT-ENABLED GRAPHS
In this section, we briefly review the concepts
of shift-enabled graphs and their properties rele-
vant to this paper. For more details, see [2]–[5].

Let G = (V,A) be a graph, where V =
{v0, v1, · · · , vn−1} is a set of vertices and A ∈
Cn×n is the adjacency matrix of the graph. Let
x = (x0, x1, · · · , xn−1)T be a graph signal,
where each sample xi ∈ x corresponds to a
vertex vi ∈ V .

In particular, if G is a directed circular graph,
then the corresponding adjacency matrix is

given by: A =

( 0 0 ··· 0 1
1 0 ··· 0 0
...

...
. . . . . .

...
0 0 ··· 1 0

)
. Then Ax =

(xn−1, x0, · · · , xn−2)T , that is, multiplication
byA shifts each signal sample to the next vertex.
Thus, A is often called shift operator or shift
matrix, which is similar to time-shift operator
z−1 in DSP. In practice, other matrices, which
reflect the structure of the graph, can be used
to define a graph shift, such as the Laplacian
matrix and the normalized Laplacian matrix for
undirected graphs, and the probability transition
matrix. Here, we use S to denote the general
shift matrix, whether it isA, (normalized) Lapla-
cian matrix, or the probability transition matrix.

In classical 1-D DSP, a shift-invariant filter F
has a Z-transform (polynomial representation in
z−1), defined as

F (z−1) =

+∞∑
k=−∞

fkz
−k,

where fk is a polynomial coefficient. Moreover,
from the shift-invariance property, it follows that
the filtered output of a shifted input is equal to
the shifted filtered output of the original input.
In other words, the shift operation and the fil-
ter commute. That is, Fz−1 = z−1F , which
directly follows from the above polynomial rep-
resentation (see, e.g., [16]).

Extending this concept to GSP, we also define
a shift-invariant filter H as the one that com-
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mutes with the shift matrix, i.e., HS = SH .
However, unlike in the classical DSP case, a
shift-invariant filter does not necessarily have a
polynomial representation in terms of the shift
operator S. Yet, H can be represented as a
polynomial in S if the shift matrix S satisfies the
following condition.
Definition 1 (Shift-enabled graph [17]): A graph
G is shift-enabled if its corresponding shift ma-
trix S satisfies pS(λ) = mS(λ), where pS(λ)
and mS(λ) are the minimum polynomial and
the characteristic polynomials of S, respectively.
We also say that S is shift-enabled when the
above condition is satisfied. Otherwise, S and
the corresponding graph, are non-shift-enabled.

For shift-enabled graphs, the following the-
orem is the basis of linear, shift-invariant filter
design.
Theorem 1: The shift matrix S is shift-enabled
if and only if every matrix H commuting with S
is a polynomial in S [3].

This theorem implies that as long as the shift
matrix S does not satisfy the shift-enabled con-
dition (i.e., mS(λ) 6= pS(λ)), there will always
be some shift-invariant filters (and thus some
filters) that cannot be represented as a polyno-
mial of S. Ref. [3] de-emphasized the shift-
enabled condition by suggesting that we may
work around it with the following theorem.
Theorem 2 (Theorem 2 in [3]): For any shift
matrix S, there exists a converted matrix S̃ and
matrix polynomial r(·), such that S = r(S̃) and
mS̃(λ) = pS̃(λ).

While the above theorem is correct, it does not
take into account that the target filter H may not
be shift-invariant with respect to the converted
shift matrix. In particular, for a directed graph,
in general, S is not symmetric, and thus not
jointly diagonalized with H . Consequently, one
can show that generally there exists no con-
verted shift-enabled S̃ that can maintain shift-
invariance with the target filter when the graph
is directed and S is asymmetric [17].

However, the conversion method suggested in
[3] does hold for undirected graphs when H
can be jointly diagonalized with S. Yet, as we

will show in the following, the converted S̃ may
not describe the same graph as the original S.
This makes the whole conversion process moot.
Hence, the shift-enabled condition is important
regardless of whether the graph is directed or not
(i.e., the shift matrix is asymmetric or not).

III. THE NECESSITY OF SHIFT-ENABLED
CONDITION FOR UNDIRECTED GRAPHS
In this section, we demonstrate the necessity of
shift-enabled condition for undirected graphs by
examples. Naturally, we focus on cases when
a shift-invariant filter H cannot be written as
a polynomial in S, which is not shift-enabled.
We follow the procedure of [3] to construct a
shift-enabled graph G̃ with shift matrix S̃, and
investigate if this “conversion" facilitates local
processing.

Before giving a concrete example, let us first
review the conversion process described in [3].
As mentioned earlier, even though the conver-
sion process does not hold for arbitrary shift
matrices, it can be applied to symmetric shift
matrices.

According to Lemma 2 in Appendix A, two
symmetric and commuting matrices S and H
are simultaneously diagonalizable. Thus, there
exists an invertible matrix T such that S =
TΛST

−1 and H = TΛHT
−1, where ΛS and

ΛH are composed of the eigenvalues of S and
H , respectively. Then, a new matrix Λperturb

with distinct diagonal elements can be generated
by slightly perturbing the values of ΛS . The new
shift matrix is calculated as S̃ = TΛperturbT

−1.
According to Lemma 1 and Lemma 2, the re-
structured shift matrix S̃ satisfies pS̃(λ) =
mS̃(λ) and HS̃ = S̃H . Hence, from Theo-
rem 1, H is a polynomial in S̃.

This simply demonstrates that, as advocated
in [3], for undirected graphs, it is always pos-
sible to find a shift-enabled matrix S̃ such that
H = h(S̃) exists. However, it is not sufficient
to have H represented as a polynomial of any
arbitrary S̃.

A natural and basic constraint is that the
converted S̃ should facilitate “local process-
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ing”, that is, it should describe topologically
the same graph, which is essential in virtually
all GSP applications, such as filter design [18],
sampling [19], denoising [20], and classifica-
tion [21], otherwise, the conversion will dra-
matically increase the calculation complexity.
To ensure that the converted graph facilitates
“local processing”, that is, an implementation of
an L-th order polynomial filter requires L data
exchanges between neighbouring nodes [16], we
introduce Definition 2. In fact, the definition
of a matrix describing a graph (see details in
Definition 2) is not new in spectral graph theory.
In particular, the matrix of “loose description” is
widely used in the context of an inverse eigen-
value problem and zero-forcing problem [22],
[23]. We introduce “strict description” since we
would like to accommodate graphs with self-
loops. In a nutshell, two shift matrices describe
the same graph if the conversion from one to an-
other preserves the graph topological structure,
implying that filtering under the converted graph
can be performed locally. The precise definition
is specified as follows.
Definition 2 ( [22]–[24]): Shift matrices S and
S̃ strictly describe the same graph if 1) Si,j 6= 0
if and only if S̃i,j 6= 0 for any i and j, and 2) S̃ is
symmetric if and only if S is symmetric. We will
say S and S̃ loosely describe the same graph if
the first condition is relaxed to 1’) Si,j 6= 0 if
and only if S̃i,j 6= 0 only for i 6= j. That is, we
allow some i where only Si,i or S̃i,i equal to 0.

We have the following theorem that shows
that S̃ and S cannot describe the same graph
structure.
Theorem 3: Following the conversion procedure
of [3], it is impossible to guarantee the following
three conditions to be satisfied simultaneously:
• C1. S̃ is shift-enabled (i.e., pS̃(λ) =
mS̃(λ)).

• C2. H is shift-invariant on S̃ (i.e., HS̃ =
S̃H).

• C3. S̃ and S loosely3 describe the same

3Hence, it is also impossible for S̃ and S to strictly
describe the same graph if C3 is not satisfied.

(a) (b)

(c)

FIGURE 3: Graph topology used in the exam-
ples. (a) Original graph with shift matrix S.
(b) Converted shift matrix S̃ which loosely de-
scribes the same graph as S. (c) Cycle graph
with shift matrix S′.

graph.

We prove this theorem by two examples (Sec-
tions III-A and III-B)

A. EXAMPLE 1 THAT S̃ CAN LOOSELY BUT
NOT STRICTLY DESCRIBE THE ORIGINAL
GRAPH

For Example 1, original shift matrix S is shift-
invariant with respect to the filter matrix H (i.e.,
C2 hold). As C1 does not hold (i.e., pS(λ) 6=
mS(λ)), the transformed new S̃ strictly de-
scribes the same graph as S is non-shift-enabled.
However, if we relax the constraint on S̃, the
shift-enabled matrix S̃ that loosely describes the
graph can be found.

Let us start with a non-shift-enabled graph as
shown in Fig.3(a) which is a star graph 4. The

4The star graph of order n is a tree on n nodes with one
node having vertex degree n− 1 and the other n− 1 having
vertex degree 1 [25] .
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shift matrix 5 of the undirected graph is

S =

(
0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

)
. (1)

It is clear that pS (λ) = λ3 (λ− 2) (λ+ 2) 6=
λ (λ− 2) (λ+ 2) = mS(λ) and hence S is non-
shift-enabled.

Since shift-enabled condition is not just suf-
ficient but also necessary [17], there must ex-
ist a shift-invariant filter not representable as a
polynomial of S. Indeed, one example for such

a filter is H =

(
0 0 0 0 0
0 1 −1 0 0
0 −1 1 0 0
0 0 0 0 0
0 0 0 0 0

)
. It can be readily

verified that HS = 0 = SH and thus the filter
is shift-invariant, and it is impossible to find a
polynomial representation of H in terms of S.
Note that Sn

2,3 = Sn
2,4

6 for all n ∈ N. Thus for
any polynomial h(S), we must have h(S)2,3 =
h(S)2,4. But since H2,3 = −1 6= 0 = H2,4,
H 6= h (S) for any polynomial function h(·).

1) Extension of H to a class of filters
We can extend H to the following class of filters
that all cannot be represented as polynomials of
S:

H = {αH + q(S)|α ∈ R},

where q(S) is a polynomial of S.
Since apparently q(S)S = Sq(S) for any

polynomial q(S) and HS = SH as discussed
above, any filter αH + q(S) ∈ H commutes
with S as well. Thus any filter in H is shift-
invariant. However, since H is not representable
as a polynomial of S, as discussed above, so
does αH + q(S).

From the examples presented above, we note
that when the shift-enabled condition is violated,
we may find an infinite number of shift-invariant
filters that are not representable as polynomials
of S.

5Without loss of generality, we choose the adjacency
matrix as the shift matrix in the following examples.

6Sk
i,j denotes the (i, j)-element of matrix Sk .

2) Shift-enabled S̃ that strictly describes the
original graph does not exist
First, let us restrict the converted shift matrix S̃
to strictly describe the same graph as S. Thus S̃
could be written as

S̃ =


0 S̃1,2 S̃1,3 S̃1,4 S̃1,5

S̃1,2 0 0 0 0

S̃1,3 0 0 0 0

S̃1,4 0 0 0 0

S̃1,5 0 0 0 0

 (2)

with non-zeros S̃1,2, S̃1,3, S̃1,4, and S̃1,5. We can
readily verify that the characteristic polynomial
is pS̃(λ) = λ3(λ2 − S̃2

12 − S̃2
13 − S̃2

14 − S̃2
15)

and 0 is the triple eigenvalue of S̃. According
to Lemma 1, a shift-enabled real symmetric
shift matrix has to have unique eigenvalues and
thus S̃ is not shift-enabled. Therefore, all graphs
which have the same structure as Fig.3(a) are
non-shift-enabled.

3) Shift-enabled S̃ that loosely describes the
original graph exists
Next, let us relax S̃ so that it may just loosely
describe the original graph. In other words,
we allow the diagonal elements to be non-zero
which maintains most of the topological struc-
ture of the original graph. In applications where
diffusion or state transition matrices are treated
as shift matrices, the diagonal elements can be
interpreted as the returning probabilities of the
current state to itself. Thus, the converted shift
matrix S̃ can be written as

S̃ =


S̃1,1 S̃1,2 S̃1,3 S̃1,4 S̃1,5

S̃1,2 S̃2,2 0 0 0

S̃1,3 0 S̃3,3 0 0

S̃1,4 0 0 S̃4,4 0

S̃1,5 0 0 0 S̃5,5

 . (3)

Many solutions that satisfy shift-enabled and
shift-invariant conditions can be found. For in-
stance,

S̃ =

(
0 1 1 1 1
1 1 0 0 0
1 0 1 0 0
1 0 0 0 0
1 0 0 0 0

)
(4)

is one such solution, where the original graph
structure is only slightly modified as shown in
Fig.3(b). One can verify that the eigenvalues
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(−1.8136, 0, 0.4707, 1, 2.3429) of S̃ are distinct
and thus S̃ is shift-enabled. Moreover, one can
also readily verify that HS̃ = S̃H . By Theorem
1, the above two conditions ensure that H is a
polynomial in S̃.

B. EXAMPLE 2 WHEN THE CONVERTED
SHIFT MATRIX CAN NEITHER STRICTLY
NOR LOOSELY DESCRIBE THE ORIGINAL
GRAPH (PROOF OF THEOREM 3)

For Example 2, the original shift matrix S is
shift-invariant with respect to the filter matrix
H (i.e., HS = SH), but C1 does not hold
(i.e., pS(λ) 6= mS(λ)). The transformed new
S̃ cannot satisfy C1 and C3 simultaneously, that
is, any matrix that either strictly or loosely de-
scribes the original graph is non-shift-enabled.
This further emphasizes the importance of the
shift-enabled condition.

There are situations where no shift-enabled
S̃ exists even after we relax the graph structure
constraint as in the earlier example.

Consider shift matrix

S′ =

(
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

)
(5)

as shown in Fig.3(c).

It can easily be seen that the eigenvalues of
S′, (0, 0, 2,−2), are not unique. Thus S′ is non-
shift-enabled according to Lemma 1. So we do
expect that there exists shift-invariant filter not
representable by S′. Indeed, we can easily show

that filter H ′ =

( 0 0 −1 1
0 −1 1 0
−1 1 0 0
1 0 0 −1

)
is such a filter.

First, H ′S′ = S′H ′ and thus H ′ is shift-
invariant under S′. Furthermore, (S′)n1,2 =
(S′)n1,4 for all n ∈ N, and so h(S′)1,2 =
h(S′)1,4 for any polynomial h(S′). But since
H ′1,2 = 0 6= 1 = H ′1,4, H ′ 6= h (S′) for any
polynomial function h(·).

Let us prove that it is impossible to find a
converted shift matrix S̃′ which is shift-enabled
and commutes with H ′ by only changing the
weights of nonzero and diagonal elements.

Consider a general symmetric matrix

S̃′ =

 S̃′
1,1 S̃′

1,2 0 S̃′
1,4

S̃′
1,2 S̃′

2,2 S̃′
2,3 0

0 S̃′
2,3 S̃′

3,3 S̃′
3,4

S̃′
1,4 0 S̃′

3,4 S̃′
4,4

 (6)

which has arbitrary weights on nonzero and
diagonal elements. That is, S̃′ loosely describes
the same graph as S′.
H ′ = h(S̃′) clearly implies that H ′ com-

mutes with S̃′, namely,H ′S̃′ = S̃′H ′ is a neces-
sary condition for H ′ = h(S̃′). It follows from
H ′S̃′ = S̃′H ′ that S̃′1,1 = S̃′2,2 = S̃′3,3 =
S̃′4,4 and S̃′1,2 = S̃′1,4 = S̃′2,3 = S̃′3,4 , i.e.,

S̃′ =

 S̃′
1,1 S̃′

1,2 0 S̃′
1,2

S̃′
1,2 S̃′

1,1 S̃′
1,2 0

0 S̃′
1,2 S̃′

1,1 S̃′
1,2

S̃′
1,2 0 S̃′

1,2 S̃′
1,1

 . (7)

Following Cayley-Hamilton Theorem [26], if
H ′ is a polynomial in S̃′, then H ′ = h(S̃′) =

h0I + h1S̃′ + h2S̃′
2

+ h3S̃′
3
, where I as the

identity matrix. In fact, it is easy to prove that
(S̃′)k1,2 = (S̃′)k1,4, for k = 0, 1, 2, 3. Hence,
h(S̃′)1,2 = h(S̃′)1,4 which contradicts with
H ′1,2 6= H ′1,4. Thus, for this example, the filter
H ′ cannot be represented as a polynomial in the
converted shift matrix S̃′ which even just loosely
describes the original graph.

C. DISCUSSION

1) Extend the conclusion to weighted graph

Equation (1) and (5) in this section can be
easily extended to symmetric weighted graphs.
Assume their shift matrices are Sweight = 0 S1,2 S1,3 S1,4 S1,5

S1,2 0 0 0 0
S1,3 0 0 0 0
S1,4 0 0 0 0
S1,5 0 0 0 0

 and S′weight =

 0 S′
1,2 0 S′

1,4

S′
1,2 0 S′

2,3 0

0 S′
2,3 0 S′

3,4

S′
1,4 0 S′

3,4 0

, respectively. In fact,

Sweight coincides with (2), and S′weight is a
special form of (6). According to the previous
discussion, conclusions in Section III still hold
for weighted graphs. That is, the shift-enabled
condition is also necessary for weight graph.
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2) Conversion from non-shift-enabled to
shift-enabled graph

When the filter matrix H is not a polynomial
of the shift matrix S, authors in [12] address
an optimized approximation of H for a fixed
S in Section III.B of [12]. This appears to be
a promising solution. But in practice, we are
of course more concerned about H than S. So
we should consider how we can adjust S (but
try to maintain the topological structure of S
as much as possible) so that we only need a
minimum change in H . Note that not changing
H at all in general is not always possible as
shown in Section III-B but at the same time the
example also does not rule out the possibility
that modifying S alone is sufficient. Authors in
[12] also suggest a way to design S for a fixed
H in Section III.C of [12]. But the method is
only limited to rank-1H . So while the idea from
Section III.C of [12] is interesting, it is quite
limiting in practice as well.

Consequently, when the shift-enabled condi-
tion for S andHS = SH are not simultaneously
satisfied, finding an appropriate representation
for H is really a rather complex and difficult
problem and we will leave it to future studies.

IV. CONCLUSIONS AND FUTURE WORK
For a non-shift-enabled graph, even if we can
easily “transform” the symmetric shift matrix
S into one that satisfies the shift-enabled con-
dition, the new S̃ may be irrelevant since it
describes a very different graph from S. That
is, the operator S̃ on a graph signal may involve
mixing inputs far beyond its neighbourhood and
become impractical for huge graphs. Combined
with the necessity of the shift-enabled condition
for directed graph [17], we demonstrated in this
paper that the shift-enabled condition is essential
for any graph structure. Good future directions
to this work are to explore a shift that “ap-
proximately" describes the original graph as the
conversion is quite different and analyze when it
is worth applying the new shift-enabled operator
according to additional communications costs or

constraints. In particular, if it is already known
that one such shift does not exist, one possi-
ble direction to explore shift “approximately”
describes the original graph instead (some non-
zero off-diagonal element may not correspond to
an actual edge). But we will leave this to future
study.

Note that even though we consider the adja-
cency matrix as the shift matrix in our examples,
the conclusion applies to other shift matrices. In
particular, one can readily verify that the conclu-
sion still holds if we use the Laplacian matrix as
the shift matrix in the example in Section III-B.

V. APPENDIX
A. LEMMAS
It is easily determined whether a graph is shift-
enabled by the following lemmas.
Lemma 1: If shift matrix S is a real symmetric
matrix, then S is shift-enabled, if and only if all
eigenvalues of S are distinct [1].

Lemma 1 indicates that an undirected graph is
shift-enabled if and only if its eigenvalues are all
distinct.

As both shift matrix S and filter matrix H are
symmetric, we can obtain the following lemma.
Lemma 2: If shift matrix S and filter matrix H
are diagonalizable (this condition always holds
for symmetric matrix) then S andH are simulta-
neously diagonalizable (by an invertible matrix)
if and only if HS = SH (see Theorem 1.3.12 in
[27]).

B. EXTENSION OF STAR GRAPH IN
SECTION III-A
The example from Section III-A can be extended
to a star graph with more than five vertices.
In this case, the shift matrix of a star graph

with N vertices is SN =

( 0 1 ··· 1
1 0 ··· 0
...

...
. . .

...
1 0 ··· 0

)
. Let

a filter be HN =


0 0 0 0 ··· 0
0 1 −1 0 ··· 0
0 −1 1 0 ··· 0
0 0 0 0 ··· 0
...

...
...

...
. . .

...
0 0 0 0 ··· 0

 and ac-

cording to (2), shift operator that strictly de-
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scribes the original graph satisfies S̃N(strict) =
0 S̃1,2 S̃1,3 ··· S̃1,N

S̃1,2 0 0 ··· 0

S̃1,3 0 0 ··· 0

...
...

...
. . .

...
S̃1,N 0 0 ··· 0

 .

Repeating the similar argument as before, we
can readily verify that the following five con-
clusions still hold simultaneously: (i) SN is not
shift-enabled for pSN

(λ) = λN−2(λ2 − (N −
1)). (ii) HN is shift-invariant, i.e., HNSN =
0 = SNHN . (iii) HN 6= h(SN ) for any poly-
nomial function hN (·). (iv)HN can be extended
to the following class of filters that none can be
represented as polynomials of SN :

HN = {αHN +q(SN )|α ∈ R},

where q(SN ) is a polynomial of SN . (v) Shift-
enabled S̃N(strict) can not strictly describes the
original graph.
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P. Vandergheynst, “Graph signal processing: Overview,
challenges, and applications,” Proceedings of the IEEE,
vol. 106, no. 5, pp. 808–828, 2018.

[2] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal process-
ing on graphs: Extending high-dimensional data analysis
to networks and other irregular domains,” IEEE Signal
Proc. Magazine, vol. 30, no. 3, pp. 83–98, 2013.

[3] A. Sandryhaila and J. M. Moura, “Discrete signal process-
ing on graphs,” IEEE Trans. Signal Processing, vol. 61,
no. 7, pp. 1644–1656, 2013.

[4] ——, “Discrete signal processing on graphs: Frequency
analysis.” IEEE Trans. Signal Processing, vol. 62, no. 12,
pp. 3042–3054, 2014.

[5] ——, “Big data analysis with signal processing on graphs:
Representation and processing of massive data sets with
irregular structure,” IEEE Signal Processing Magazine,
vol. 31, no. 5, pp. 80–90, 2014.

[6] M. Coutino, E. Isufi, and G. Leus, “Advances in dis-
tributed graph filtering,” IEEE Transactions on Signal
Processing, vol. 67, no. 9, pp. 2320–2333, 2019.

[7] X. Dong, D. Thanou, L. Toni, M. Bronstein, and
P. Frossard, “Graph signal processing for machine learn-
ing: A review and new perspectives,” IEEE Signal
Processing Magazine, vol. 37, no. 6, pp. 117–127, 2020.

[8] R. Nassif, S. Vlaski, C. Richard, J. Chen, and A. H.
Sayed, “Multitask learning over graphs: An approach for
distributed, streaming machine learning,” IEEE Signal
Processing Magazine, vol. 37, no. 3, pp. 14–25, 2020.

[9] L. Le Magoarou, R. Gribonval, and N. Tremblay, “Ap-
proximate fast graph fourier transforms via multilayer
sparse approximations,” IEEE transactions on Signal and
Information Processing over Networks, vol. 4, no. 2, pp.
407–420, 2017.

[10] D. K. Hammond, P. Vandergheynst, and R. Gribonval,
“Wavelets on graphs via spectral graph theory,” Applied
and Computational Harmonic Analysis, vol. 30, no. 2, pp.
129–150, 2011.

[11] S. Kruzick and J. M. Moura, “Graph signal processing:
Filter design and spectral statistics,” in 2017 IEEE 7th
International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing (CAMSAP). IEEE,
2017, pp. 1–5.

[12] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal
graph-filter design and applications to distributed lin-
ear network operators,” IEEE Transactions on Signal
Processing, vol. 65, no. 15, pp. 4117–4131, 2017.

[13] A. Loukas, A. Simonetto, and G. Leus, “Distributed au-
toregressive moving average graph filters,” IEEE Signal
Processing Letters, vol. 22, no. 11, pp. 1931–1935, 2015.

[14] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Filter-
ing random graph processes over random time-varying
graphs,” IEEE Transactions on Signal Processing, vol. 65,
no. 16, pp. 4406–4421, 2017.

[15] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sta-
tionary graph processes and spectral estimation,” IEEE
Transactions on Signal Processing, vol. 65, no. 22, pp.
5911–5926, 2017.

[16] O. Teke and P. Vaidyanathan, “Linear systems on
graphs,” in 2016 IEEE Global Conference on Signal and
Information Processing (GlobalSIP). IEEE, 2016, pp.
385–389.

[17] L. Chen, S. Cheng, V. Stankovic, and L. Stankovic, “Shift-
enabled graphs: Graphs where shift-invariant filters are
representable as polynomials of shift operations,” IEEE
Signal Processing Letters, vol. 25, no. 9, pp. 1305–1309,
2018.

[18] D. K. Hammond, P. Vandergheynst, and R. Gribonval,
“Wavelets on graphs via spectral graph theory,” Applied
and Computational Harmonic Analysis, vol. 30, no. 2, pp.
129–150, 2011.

[19] A. Gadde, A. Anis, and A. Ortega, “Active semi-
supervised learning using sampling theory for graph sig-
nals,” in Proc. 20th ACM SIGKDD Intl. Conf. Knowledge
Discovery & Data Mining, 2014, pp. 492–501.

[20] C. Yang, G. Cheung, and V. Stankovic, “Estimating heart
rate and rhythm via 3d motion tracking in depth video,”
IEEE Transactions on Multimedia, vol. 19, no. 7, pp.
1625–1636, 2017.

[21] K. He, L. Stankovic, J. Liao, and V. Stankovic, “Non-
intrusive load disaggregation using graph signal process-
ing,” IEEE Transactions on Smart Grid, vol. 9, no. 3, pp.
1739–1747, 2018.

[22] L. Hogben, “Spectral graph theory and the inverse eigen-

10 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

value problem of a graph,” Electronic Journal of Linear
Algebra, vol. 14, no. 1, p. 3, 2005.

[23] M. Trefois and J.-C. Delvenne, “Zero forcing number,
constrained matchings and strong structural controllabil-
ity,” Linear Algebra and its Applications, vol. 484, pp.
199–218, 2015.

[24] S. M. Fallat and L. Hogben, “The minimum rank of sym-
metric matrices described by a graph: a survey,” Linear
Algebra and its Applications, vol. 426, no. 2-3, pp. 558–
582, 2007.

[25] S. Pemmaraju and S. Skiena, “Cycles, stars, and wheels,”
Computational Discrete Mathematics Combinatiorics and
Graph Theory in Mathematica, pp. 284–249, 2003.

[26] P. Lancaster and M. Tismenetsky, The theory of matrices:
with applications. Elsevier, 1985.

[27] R. A. Horn and C. R. Johnson, Matrix analysis. Cam-
bridge University Press, 2012.

LIYAN CHEN received the B.S.
degree in mathematics and applied
mathematics from Wenzhou Nor-
mal University, China, in 2002 and
the M.S. degree in basic math-
ematics from Hangzhou Normal
University, China, in 2005. She is
currently pursuing the Ph.D. de-
gree in computer science at Tongji
University.

Since 2005, she has been with the School of Information
Engineering, Zhejiang Ocean University in China, where she
is currently a lecturer. Her research interests include graph
signal processing and graph theory.

SAMUEL CHENG (S’00–M’04–
SM’12) received the B.S. degree
in electrical and electronic engi-
neering from the University of
Hong Kong, the M.Phil. degree in
physics from the Hong Kong Uni-
versity of Science and Technology,
the M.S. degree in electrical en-
gineering from the University of
Hawaii, Honolulu, and the Ph.D.

degree in electrical engineering from Texas A&M Univer-
sity, in 2004.

He was with Microsoft Asia, China, and Panasonic Tech-
nologies Company, NJ, in the areas of texture compression
and digital watermarking in the summers of 2000 and 2001.
In 2004, he joined Advanced Digital Imaging Research, a
research company-based near Houston, TX, as a Research
Engineer to perform biomedical imaging research, and was
promoted to Senior Research Engineer in 2005. Since 2006,
he has been with the School of Electrical and Computer
Engineering, University of Oklahoma, where he is currently
an Associate Professor. He visited Tongji University, Shang-
hai, as a Professor in 2015. He holds six U.S. patents
in miscellaneous areas of signal processing. His research
interests include machine learning, image/signal processing,
and pattern recognition. He is a member of ACM.

KANGHANG HE received the
M.Eng. degree and the Ph.D. de-
gree in electronic and electrical
engineering from the University
of Strathclyde, Glasgow, U.K., in
2015 and 2020. His research in-
terests in graph signal processing
applications includes power disag-
gregation, eye trackers, and elec-
troencephalography.

VOLUME 4, 2016 11



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

VLADIMIR STANKOVIC (M’03–
SM’10) received the Dr.Ing.
(Ph.D.) degree from the University
of Leipzig, Leipzig, Germany, in
2003.

From 2003 to 2006, he was with
Texas A&M University, College
Station, first as a Research As-
sociate and then as a Research
Assistant Professor. From 2006 to

2007, he was with Lancaster University. Since 2007, he
has been with the Department Of Electronic and Electrical
Engineering, University of Strathclyde, Glasgow, where he
is currently a Reader. He has co-authored four book chapters
and over 160 peer-reviewed research papers, and holds five
U.S. patents in signal processing. His research interests
include multimedia processing for health monitoring, user-
experience driven image processing, and communications
and energy disaggregation. He was an IET TPN Vision and
Imaging Executive Team Member, an Associate Editor of
the IEEE COMMUNICATIONS LETTERS, a member of
the IEEE Communications Review Board, and a Technical
Program Committee Co-Chair of EUSIPCO in 2012. He
was an Associate Editor of the IEEE TRANSACTIONS
ON IMAGE PROCESSING, and is currently an Associate
Editor of the IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS FOR VIDEO TECHNOLOGY, Editor-at-Large
of the IEEE TRANSACTIONS ON COMMUNICATIONS,
and Area Editor of Elsevier Signal Processing: Image Com-
munication.

LINA STANKOVIC (M’03–SM’12)
received the B.Eng. (Hons.) de-
gree in electronic communications
engineering and the Ph.D. degree
from Lancaster University, in 1999
and 2003, respectively. Her Ph.D.
was sponsored by QinetiQ on de-
veloping an RF receiver, including
coding, equalization, and synchro-
nization for combat radio.

She is currently a Lecturer/Assistant Professor with the
University of Strathclyde, Glasgow. Before joining Strath-
clyde in 2007, she was with Lancaster University as a
Research Associate and then has been a Lecturer since 2006.
She has been with BT Labs, Martlesham Heath, on digital
video streaming, and Philips Research Eindhoven, on signal
acquisition and processing from 2-D optical discs. She has
authored four book chapters and 107 peer-reviewed research
articles. Her main research areas lie in smart monitoring
from sensor network platforms and meaningful information
extraction that is user-centric as opposed to technology-
centric. Her key focus areas are signal and image processing
of biomedical data for motion assessment and understanding
human behavior, and algorithmic analysis of energy data to
understand how people use appliances in the home.

12 VOLUME 4, 2016


