

Behavioural dynamics of emotional self-regulation during the still-face paradigm: Differences at 9-months due to prematurity and effect on 2-year autistic traits

THE UNIVERSITY

Y. W. Chua¹, L. Ginnell², V. Ledsham², C. Tachtatzis¹, I. Andonovic¹, J. P. Boardman², P. Rowe¹, S. Fletcher-Watson², J. Delafield-Butt¹ ^{1.} University of Strathclyde ^{2.} University of Edinburgh

INTRODUCTION

- Infants born preterm are at risk of a triad of clinical and subclinical socioemotional difficulties related to Autism spectrum disorder (ASD), Attention-Deficit Hyperactivity Disorder and Anxiety¹.
- This includes an **8% prevalence of ASD²**.
- **Emotion self-regulation (ER)** is one of the earliest observable risk factors for later socioemotional difficulties in infants born preterm³. Early difficulties with emotion regulation are also common in autistic children⁴.
- **Dynamics** of emotion self-regulatory behaviours can indicate the extent it is flexible and adaptable⁵
- This could provide a novel perspective on how prematurity impacts system-level characteristics⁶ of emotion selfregulation, in ways that might increase risk for socioemotional difficulties, such as those seen in ASD.

METHODS

Sample: Term and Preterm infants (born at <33 weeks gestation age (GA)) recruited to Theirworld Edinburgh Cohort Study⁷

Inclusion criteria: Participated in still-face paradigm at 9-month follow-up (N=133) **Exclusion criteria:** Did not complete at least 1 still-face episode (N=4) no video of still-face (N=1) or camera angle obstructed coding of infant behaviours (N=12)

A.	

References

2min	Play	B. ²⁴⁰
2min	SF1	210 -
2min	Play	- ¹⁸⁰
2min	SF2	150 -
2min	Play	120 -

A. Still-face paradigm to elicit stress in infant: Three play episodes with caregiver, alternating with two still-face (SF) episodes (SF1 and SF2) where caregiver stops interacting and ignores infant.	D. 9 • F • L
 B. Second-by-second video-coding of states: ER : Common emotion regulation (ER) behaviours (categories: 1-self-soothing, 2-object distraction, 3-social-oriented, 4-repetitive movement, 5-escape) NER : Absence of ER behaviours (category 6) 	• 1 • E k E. 2 Qua
C. Chromatic Recurrence Quantification Analysis (ChrRQA) ⁸ to analyse dynamics of state changes by ER (orange) and NER (grey) states, i.e. quantifies features of a graphical plot of whether a state at time T previously occurred at earlier time points, or occurs at future time points.	F. St (1) [(2) [(3) [

research, 69(8), 11-18

2. Johnson, S., Hollis, C., Kochhar, P., Hennessy, E., Wolke, D., & Marlow, N. (2010). Autism spectrum disorders in extremely preterm children. The Journal of pediatrics, 156(4), 525-531. 3. Wolf, M. J., Koldewijn, K., Beelen, A., Smit, B., Hedlund, R., & De Groot, I. J. M. (2002). Neurobehavioral and developmental profile of very low birthweight preterm infants in early infancy. Acta Paediatrica, 91(8), 930-938.

Edinburgh Birth Cohort

9-month measures of ER behavioural dynamics⁶ **Recurrence rate (RR):** % of recurring ER states Laminarity (LAM): % of ER states recurring as part of a 2s or longer period

Frapping time (TT): Average time an ER state persists for **Entropy (ENTb):** Information entropy of rectangular blocks i.e. how unlikely you will find similar blocks

2-year autistic traits were measured using the antitative Checklist for Autism in Toddlers (Q-CHAT)

Statistical analyses

Linear Mixed-effects models for effect of preterm birth and still-face episode on each dynamic characteristic Descriptive analyses

Linear regression models for effect of 9-month dynamic characteristic on 2-year autistic traits

Evidence that infants born preterm show **lower**: **RR** (Effect=-4.15, CI: -7.98 to -0.34, p=0.033) and **ENTb** (Effect= -0.15, CI:-0.31 to -0.00, p=0.047)

RQ1: Differences in ER behavioural dynamics associated with prematurity relates to lower complexity (ENTb) but not measures relating to stability (TT and LAM)

RQ2: Insufficient power may explain why we did not find associations between ER behavioural dynamics at 9months and autistic traits at 2-years.

1. Johnson, S., & Marlow, N. (2011). Preterm birth and childhood psychiatric disorders. *Pediatric* 4. Mazefsky, C. A., & White, S. W. (2014). Emotion regulation: Concepts & practice in autism spectrum disorder. Child and adolescent psychiatric clinics of North America, 23(1). 5. Hollenstein, T. (2015). This time, it's real: Affective flexibility, time scales, feedback loops, and the regulation of emotion. *Emotion Review*, 7(4), 308-315. 6.. Webber Jr, C. L., & Zbilut, J. P. (2005). Recurrence quantification analysis of nonlinear dynamical systems. Tutorials in contemporary nonlinear methods for the behavioral sciences, 94(2005), 26-94.

RESEARCH QUESTIONS AND HYPOTHESES

RQ1. Are the dynamics of ER behaviours different between 9-month-old term and preterm infants? Hypothesis: Infants born preterm will show lower complexity of dynamic patterns (indicated by lower entropy), disrupted dynamic stability (indicated by longer trapping time and a difference in laminarity of behavioural states)

RQ2. What is the association between 9-month ER behavioural dynamics and autistic traits at 2-years? Hypothesis: Lower entropy, and longer trapping time, are associated with greater autistic traits

A. Analysis sample (N=118) GA Total Male Birthweight, g n n(%) mean (sd) mean (sd) 34 (52%) 3454 (471) 39.4 (1.3) Term 65 32 53 (60%) 1315 (370) 29.1 (1.9) Preterm

B. Linear mixed models (RQ1)

- No evidence of group differences in: • LAM (Effect: -0.31, CI: -1.89 to -1.27, p=0.639) or • TT (Effect = 0.09, CI=-0.61 to -0.79, p=0.703)
- No evidence of differences between SF1 and SF2 (effect of SF) in any outcome measure

C. Descriptive analyses.

Positive correlation of **birthweight** with: • RR (r=0.21, p=0.03), and ENTb (r=0.26, p=0.004)

RESULTS

DISCUSSION AND CONCLUSIONS

7.. Boardman, J. P., Hall, J., Thrippleton, M. J., Reynolds, R. M., Bogaert, D., Davidson, D. J., ... & Fletcher-Watson, S. (2020). Impact of preterm birth on brain development and long-term outcome: protocol for a cohort study in Scotland. BMJ open, 10(3), e035854. 8. Cox, R. F., van der Steen, S., Guevara, M., de Jonge-Hoekstra, L., & van Dijk, M. (2016). Chromatic and anisotropic cross-recurrence quantification analysis of interpersonal behavior. In Recurrence plots and their quantifications: expanding horizons (pp. 209-225). Springer, Cham.

Behavioural dynamics and autistic traits contain high within-group variation. Potential associations may be clarified when follow-up is complete

INSAR, May 2021 | <u>chua-yu-wei@strath.ac.uk</u>

Acknowledgements: We are grateful to the infants and families who participated in Theirworld Edinburgh Birth Cohort Study, and sincerely thank Prof Ralf Cox for his time to discuss our application of Chromatic-RQA.

Preterm brain injury and altered neural development potentially reduces behavioural complexity during social stress by impacting the coordination of neural systems for emotion regulation