Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

Ins(1,4,5)P3 receptor regulation during ‘quantal’ Ca2+ release in smooth muscle

McCarron, J.G. and Olson, M. and Rainbow, R. and MacMillan, D. and Chalmers, S. (2007) Ins(1,4,5)P3 receptor regulation during ‘quantal’ Ca2+ release in smooth muscle. Trends in Pharmacological Sciences, 28 (6). pp. 271-279. ISSN 0165-6147

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Smooth muscle is activated by plasma-membrane-acting agonists that induce inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] to release Ca2+ from the intracellular sarcoplasmic reticulum (SR) Ca2+ store. Increased concentrations of agonist evoke a concentration-dependent graded release of Ca2+ in a process called ‘quantal’ Ca2+ release. Such a graded release seems to be incompatible with both the finite capacity of the SR store and the positive-feedback Ca2+-induced Ca2+ release (CICR)-like process that is operative at Ins(1,4,5)P3 receptors, which – once activated – might be expected to deplete the entire store. Proposed explanations of quantal release include the existence of multiple stores, each with different sensitivities to Ins(1,4,5)P3, or Ins(1,4,5)P3 receptor opening being controlled by the Ca2+ concentration within the SR. Here, we suggest that the regulation of Ins(1,4,5)P3 receptors by the Ca2+ concentration within the SR explains the quantal Ca2+-release process and the apparent existence of multiple Ca2+ stores in smooth muscle.