
Measuring Distances Among Graphs En Route To
Graph Clustering

Ivan Kyosev∗, Iulia Paun∗, Yashar Moshfeghi†, Nikos Ntarmos∗

∗School of Computing Science, University of Glasgow, UK
Email: 2092065k@student.gla.ac.uk, {iulia.paun, nikos.ntarmos}@glasgow.ac.uk

†Department of Computer and Information Sciences, University of Strathclyde, UK
Email: yashar.moshfeghi@strath.ac.uk

Abstract—The graph data structure offers a highly expressive
way of representing many real-world constructs such as social
networks, chemical compounds, the world wide web, street maps,
etc. In essence, any collection of entities and the relationships
between them can be modelled using a graph, thus preserving
more information about the real-world objects than a simple
vector space model. An issue that arises when operating on
collections of graphs, however, is that most statistical analysis
and machine learning methods expect their input data to be in
the form of multidimensional vectors, where all items can be
compared with each other using well-understood metrics such
as Euclidean or Manhattan distance. This paper presents a
variety of approaches for computing distances between graphs
with known node correspondence, with the aim of applying those
measures alongside clustering algorithms to discover patterns in a
given dataset. The performance of each distance measure is then
evaluated through its ability to identify communities of graphs
with similar features. We show that because the considered
distance metrics highlight different structural properties, the
method that produces the highest quality result will depend on
the characteristics of the processed graph population.

Index Terms—Graph Distance, Graph Mining, Graph Cluster-
ing.

I. INTRODUCTION

In recent years, machine learning algorithms have become
essential components for the operation of a variety of systems
that users interact with on a daily basis. Such applications
continuously gather data from customer interactions, sensors,
network traffic, system logs, etc., to construct internal rep-
resentations for the relevant objects of interest. These repre-
sentations commonly take on the form of multidimensional
feature vectors, where the values found at each index are either
discrete – expressing some form of label or class associated
with the target objects – or continuous – denoting the intensity
of a particular feature [1]. Such models enable the embedding
of objects into Rn space as simple points, which can then be
processed using traditional statistical analysis techniques.

One of the main disadvantages of the vector space model
is that the values expressing the points’ positions in the
individual dimensions are assumed to be independent [2] –
i.e., there is no relationship among the expressed features. This
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may not be the case for the original objects, however. In that
case, the N -dimensional vector representation is insufficient
to portray the characteristics observed within the target ob-
jects accurately, e.g. information about the direct and indirect
correlations amongst an object’s features would be lost.

An alternative way of modelling real-world objects, along
with the relationships among their components, can be
achieved using graphs – a set of vertices, plus edges joining
vertex pairs. However, the main problem that emerges from
operating on a collection of graphs, is that common statistical
analysis methods can no longer be applied directly [3]. An
essential requirement for a large quantity of machine learning
and data mining methods is the ability to calculate a measure
of distance between the individual elements of an analysed
population. When the data being processed is in the form of
feature vectors, i.e. representing points in Rn space, then well-
known distance metrics such as Euclidean or Manhattan can
be used. If the data is not in the form of feature vectors but
rather in graph form, it is necessary to define a measurement
of the dissimilarity between the data items that takes their
unique properties into account.

Moreover, datasets consisting of graphs with known node
correspondence arise quite naturally in several use cases;
databases of graph-structured (user/item) profiles [4], collec-
tions of instances from a common ontology [5], flows through
network graphs [6], etc., are all examples of such datasets.
We have chosen to focus our research on this sub-space of the
general graph distance/clustering space. There are two reasons
for our decision. First, this is an area that hasn’t received
much attention in the relevant literature as it is usually deemed
”easy” (a statement refuted by this work). Second, it addresses
a pressing and fairly open problem in an era where graph
databases/processing proliferate.

This paper aims to survey existing methods for computing
distances between graphs with known node correspondence
(i.e. all graphs have an equal number of vertices with known
IDs, while only the connectivity changes), to propose new
methods based on recent graph mining techniques, and to
make a first step towards identifying the best fitted family of
methods for various types of graphs. The identified methods
are evaluated on their ability to discover logical communities
of graphs with similar features. The methods vary greatly in
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terms of their approach and also highlight different structural
properties – making the preferred choice dependent on the
specific characteristics of the examined graphs.

The contributions made by this paper are:
C1: A review of existing methods for measuring the distance

between graphs with known node correspondence (§ III).
C2: Novel algorithms for computing distances between graphs

with known node correspondence, based on recent graph
mining techniques (§ IV).

C3: A method for comparing the quality of cluster as-
signments produced using different distance functions
(§ V-C).

C4: An experimental evaluation of the considered graph dis-
tance metrics, both in terms of the quality of the produced
clustering over different datasets and their performance
when operating on larger input datasets (§ V-D).

II. GRAPH DISTANCE AND CLUSTERING

It is first necessary to provide a formal definition for a graph
as well as to outline the essential requirements for any graph
distance measure. A graph G may be written as G = (V,E),
where V is the vertex set and E is the edge set, such that
E ⊆ {(u, v) : u, v ∈ V }, i.e., each edge e ∈ E links two
vertices from V . An edge e = (u, v) may be directed, in
which case u denotes the source vertex and v the destination
vertex. Furthermore, an edge can be weighted or unweighted
– implicitly assuming unit weight. The graph representation
that we employ in this paper is the adjacency matrix A – an
n× n matrix, where n = |V | (the size of the vertex set). The
individual elements of A at position Aij are either 0, if there
is no edge from vertex i to vertex j, or equal to the weight
of the edge from i to j. We also consider the diagonal matrix
D – an n×n matrix of zeros, except for the values along the
diagonal Dii, denoting the number of edges for which i is a
source vertex – i.e., the out degree of vertex i.

When one requires a measure of the dissimilarity between a
pair of graphs, it is necessary to define a function d(G1, G2),
which provides a meaningful indication of the graphs’ struc-
tural differences. The following characteristics must hold true
for any such function d:

• Symmetry: d(G1, G2) = d(G2, G1)
• Identity: d(G1, G1) = 0
• Non-negativity: d(G1, G2) ≥ 0

Additionally, the distance measure would need to be efficient
to compute and scalable when being used as part of a machine
learning procedure, operating on a large data set.

A key constraint on the scope of this paper is that we will
only consider distance measures between graphs with known
node correspondence. In this scenario, all graphs within a
particular data set G = {G1, G2, ..., Gg} have an equal number
of nodes with known IDs - i.e., the vertex set V of all graphs in
G is identical. The result returned by d(G1, G2) can then more
precisely be interpreted as the difference in the connectivity
of the constant vertex set V found in both G1 and G2. This
model aims to emulate the set of graph representations for a

collection of objects with common features and varying rela-
tionships between those features. While there are algorithms
for measuring the similarity of graphs with general structures
(typically based on subgraph isomorphism [7] or finding a
maximum common subgraph [8]), the computational cost of
these methods makes them impractical for large data mining
tasks [9].

Four different approaches for measuring the distance be-
tween graphs with known node correspondence were identified
in the literature:

1) Methods based on edit distance (§ III-A), where one
graph is transformed into another through a series of op-
erations (insertion, deletion, substitution), each associated
with a cost. The aim is to find the sequence of operations
that minimise the cost of matching the graphs.

2) Node affinity methods (§ III-B and § IV-A), where two
nodes are considered to be similar if their neighbourhoods
are similar – the distances between the graphs can be
calculated by aggregating the difference between the
corresponding pairs of nodes.

3) Methods based on feature extraction (§ IV-B and
§ IV-C), where the corresponding pairs of nodes in
different graphs are compared on properties such as: node
in-/out-degree, number of edges in the nodes’ neighbour-
hood, etc.

4) Methods that rely on deep learning (§ IV-D) to produce
an embedding of a graph’s nodes into Rn space.

Representatives from each of those categories were selected
and applied alongside clustering algorithms to determine their
ability to differentiate between communities of graphs with
similar characteristics.

III. EXISTING DISTANCE MEASURES

This section discusses algorithms that directly address the
problem of computing a measure of distance between graphs
with known node correspondence.

A. Graph Edit Distance

The collective cost of performing a series of graph edit
operations that aim to transform one graph into another is
known as the Graph Edit Distance (GED) [10]. This method
of measuring the level of distortion between a pair of objects,
using a set of edit operations, was first proposed for string
representations [11] and was later extended to more general
data structures such as trees [12] and graphs.

Given two graphs, one of them being the source G1(V1, E1)
and the other is the target G2(V2, E2), GED aims to trans-
form G1 into G2 through a number of modifications. These
modifications typically consists of insertions, deletions and
substitutions of both vertices and edges. Then, an edit path
λ(G1, G2) = {e1, e2, ..., ek} is a set of k edit operations
that completely transform G1 into G2. For every such pair
of graphs there is an infinitely large set of possible edit paths
γ(G1, G2). To identify the best one, it is necessary to introduce
a cost c(e) for each edit operation, measuring the impact of
performing the transformation. Low and high costs would
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Algorithm 1 Graph Edit Distance

1: INPUT: edge files of G1(V,E1) and G2(V,E2)
2: A1 = getAdjacencyMatrix(G1)
3: A2 = getAdjacencyMatrix(G2)
4: S = A1 −A2

5: dist(G1, G2) =
∑
i

∑
j |Sij |

6: return dist

correspond to small and large modifications of the source
graph, respectively. The cost of an edit path is then calculated
as the sum of the cost of the edit operations it consists of, and
so the edit distance between G1 and G2 is equal to the lowest
cost edit path λ(G1, G2) in γ(G1, G2):

GED(G1, G2) = min
λ∈γ(G1,G2)

∑
ei∈λ

c(ei)

The cost functions c(e) for each of the possible edit oper-
ations need to follow a set of conditions to ensure that only
a finite set of edit paths need to be explored to compute the
GED. These include: non-negativity, where c(e) ≥ 0 for all
edge and vertex edit operations (only substitution/renaming
operations may have a cost of 0); triangle inequality, i.e.,
c(a → c) ≤ c(a → b) + c(b → c); and symmetry –
c(e) = c(e−1), where e−1 is the inverse operation of e. When
considering unlabeled graphs, it is sufficient to attribute unit
cost to any insertion or deletion of nodes or edges. If this is
not the case, the cost of these modifications is defined with
respect to the label alphabet.

In the scenario where GED is being used to compute the
distance between a pair of graphs with an equal number of
vertices and a known correspondence between them, it is only
necessary to calculate the cost of equating the two edge sets.
The optimal edit path from G1 to G2 would therefore consist
of the deletion of all edges in G1, not present in G2, and the
insertion of all edges in G2, not present in G1. This can be
modelled by subtracting the adjacency matrix of G1 from that
of G2 and taking the sum of the absolute values of all entries
in the resulting matrix (alg. 1).

B. DeltaCon

In the field of graph mining, there is a plethora of algorithms
which focus on calculating node affinities – i.e., one or more
metrics per node computed using the connectivity of the anal-
ysed graph. Examples include the popular PageRank algorithm
[13], Hyperlink-Induced Topic Search (hubs and authorities)
[14], SimRank [15], and others. Their intended purpose is to
compare the individual nodes within a graph and to discover
key structural points. This general approach of computing a
series of values per node can also be adapted to calculating the
distance between graphs with known node correspondence by
measuring the differences between the relevant pairs of nodes.

DeltaCon (DC) [16] presents an example application of this
technique. As its name suggests, it is a measure of the change
in connectivity between two graphs with an identical vertex

set. DeltaCon functions by first processing each graph individ-
ually and computing the pair-wise affinities for its nodes using
Fast Belief Propagation (FaBP) [17] – a technique similar to
personalised Random Walks with Restarts (RWR) [18]. The
output of FaBP is an n × n affinity matrix (n = |V |), where
each entry sij of the matrix indicates how much influence
node i has on node j - this value will be large if there are
many, short, heavily weighted paths from i to j. FaBP’s main
advantages are its low computation cost and that it provides
intuitive results for each node, taking into account not only
direct neighbours but also 2-, 3-, and k-step away neighbours,
with decreasing weights. The following formula is used to
derive the n× n affinity matrix of a graph G using FaBP:

S = [I + ε2D − εA]−1

where I is the identity matrix, A and D are the adjacency and
diagonal matrices of G, an ε is a positive constant, such that
ε = 1/(1 +maxi(dii)).

Once the affinity matrices S1 and S2 have been computed
for a pair of graphs G1 and G2, DeltaCon uses the Root
Euclidean distance (RootED) to produce a single scalar value,
indicating the dissimilarity of the two graphs:

d = RootED(S1, S2) =

√√√√ n∑
i=1

n∑
j=1

(
√
s1,ij −

√
s2,ij)

2

Koutra et al. [16] chose this measure over regular Euclidean
distance, as RootED boosts the node affinities (their values
range from 0 to 1), allowing the algorithm to detect even small
changes in the graphs – using ED results in low distance values
even if the graphs differ substantially.

Because DeltaCon is presented as a means of computing
the similarity of two graphs, the algorithm’s last stage involves
converting the calculated distance value d into a score, ranging
from 0 to 1, using the formula: sim = 1

1+d . A similarity score
of 1 would, therefore, indicate that the graphs are identical,
while a score of 0 would occur when the first graph is a clique,
the second graph has an empty edge set, and the size of the
common vertex set approaches infinity. For this paper, when
referring to DeltaCon as a measure of distance, this final step
is omitted.

IV. GRAPH MINING ALGORITHMS

This section presents a series of graph mining algorithms,
which analyse the structural properties of a graph and produce
an embedding of its nodes into Rn space.

A. SimRank

SimRank (SR) [15] is another node affinity-based method,
which aims to compute the similarity between all possible
pairs of nodes within a graph. It is based on the principle
that “two objects are similar if they are referenced by similar
objects”. Unlike Fast Belief Propagation [17], which assigns
high affinity scores for a pair of nodes a and b if there
are multiple, short, heavily weighted paths between a and b,
SimRank will return a high similarity value for the pair, if
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both nodes have incoming edges from many identical nodes
– i.e., creating a path of directed edges from a to b will not
increase their similarity.

For any pair of nodes a and b, SimRank denotes their
similarity by s(a, b) ∈ [0, 1]. As a base case, the similarity of a
node to itself is considered to be one: s(a, a) = 1. Otherwise,
the following recursive equation is used:

s(a, b) =
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s(Ii(a), Ij(b))

where I(a) is the set of in-neighbour nodes for node a, Ii(a)
denotes an individual in-neighbour of a, where 1 ≤ i ≤ |I(a)|,
and C is a constant between 0 and 1. In the scenario where
either a or b do not have any in neighbours, their similarity is
set to zero: I(a) = ∅ or I(b) = ∅ =⇒ s(a, b) = 0.

The SimRank equation is invoked for each pair of nodes,
resulting in a set of n2 operations for a graph with n nodes.
The similarity for any two nodes a and b is therefore equal
to the sum of similarities of every possible pair of their
in-neighbours, normalised by |I(a)||I(b)|. From the above
equation it is also clear that SimRank scores are symmetric,
i.e., s(a, b) = s(b, a).

In regards to the C parameter, it is treated as a confidence
level or a decay factor. In the scenario where nodes a and
b both only have a single common in-neighbour c, because
the similarity of c with itself is 1, the SimRank equation
without the decay factor would also return a value of 1
when comparing a and b. Instead, the calculation becomes
s(a, b) = C · s(c, c), indicating that there is less confidence in
the similarity of a and b, than there is between c and itself.

Because of the recursive nature of the SimRank equation,
in order to compute the scores for the node pairs in a graph
G, it is necessary to first assign each of the n2 pairs an
initial similarity value and then iterate until a fixed-point.
For each iteration k, the n2 similarity scores for all node
pairs sk(?, ?) are computed over the values from the previous
iteration sk−1(?, ?). The initial values are therefore set to be:

s0(a, b) =

{
1 , if a = b ,

0 , if a 6= b .

and represent a lower bound on the actual SimRank scores
(the values sk(?, ?) for each successive iteration are non-
decreasing). The similarities at iteration k + 1 are then:

sk+1(a, b) =
C

|I(a)| |I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

sk(Ii(a), Ij(b))

These values are shown to quickly converge [15], with a
suggested k = 5 iterations and a decay factor of C = 0.8.

A more succinct method of expressing the n2 operations
that need to be performed for each iteration can be achieved
using the matrix representation for SimRank:

Sk+1 = max{C · (WT · Sk ·W ), I}
where the entries at Sij denote s(i, j), W is the column
normalized adjacency matrix, and I is the identity matrix. In
this notation S0 = I .

Algorithm 2 SimRank

1: INPUT: edge file of G(V,E), number of iterations k,
decay factor C

2: A = getAdjacencyMatrix(G)
3: W = normalizeColumns(A)
4: S = I
5: for i = 1 to k do
6: S = max{C · (WT · S ·W ), I}
7: return S

B. ReFeX and RolX

Feature extraction is an alternative graph mining technique
that is not concerned with propagating node affinities. It is
the process of analysing the structural properties of a given
graph and computing a set of values per node, indicative of
its regional information. This typically comes in the form of
node degree, a number of edges entering/leaving a node’s
neighbourhood, and other characteristics of a node’s direct
and k-steps away neighbours. Extracting effective features is
a crucial step for many machine learning tasks such as outlier
detection [19] and node classification [20].

1) Recursive Feature Extraction: The Recursive Feature
Extraction (ReFeX) [21] algorithm offers an efficient way of
obtaining meaningful features for the nodes of a given graph.
It recursively combines local (node-based) and neighbourhood
(egonet-based) features to produce regional features that cap-
ture “ behavioural” information. This provides key insight into
the qualities of a node’s environment – the kind of nodes that
connect to it.

ReFeX approaches the problem of feature extraction by
computing an n × f feature matrix F (i.e., calculating f
features for each node), using only the structural properties of
the graph, without any attribute information about the nodes
or edges. The algorithm separates the features it extracts into
three categories: local, egonet and recursive, with the first two
being used to seed the recursive feature generation. The local
feature includes measurements of node degree, while egonet
features are computed using the node’s ego network. This
network is composed of the node itself, its direct neighbours,
and all edges in the subgraph consisting of these nodes. The
information obtained from the egonet consists of the number
of edges it contains, as well as the number of edges entering
and leaving the egonet.

2) Role Extraction: RolX [20] is an algorithm that extends
recursive feature extraction by making use of the obtained
feature matrix to perform role extraction. Role extraction on
graphs is the process of assigning role membership to the
nodes of a graph, which reflects their structural behaviour;
e.g., members of cliques, centres of stars, peripheral nodes,
‘bridges” between highly connected subgraphs, etc.

The execution of RolX involves three main phases:
1) In feature extraction, the previously described ReFeX

algorithm is used, providing RolX with an n× f feature
matrix as a starting point.
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2) The Minimum Description Length criterion [22] is then
used for model selection – i.e., determining the number
of roles. Because of this operation, it is not necessary
for a user to have prior knowledge about the number of
structural roles that are present amongst a graph’s nodes.

3) Finally, to perform feature grouping, Non-negative Ma-
trix Factorization is applied as a form of soft clustering
in the structural feature space. In particular, NMF is used
to generate a rank r approximation RH ≈ F , where F is
the n×f feature matrix produced by ReFeX, H is a r×f
matrix, where the columns specify how membership in a
specific role contributes to estimated feature values, and
R is an n× r matrix, where the rows represent a node’s
membership among the available roles.

C. Simple Feature Extraction
As a means of evaluating the benefits of more advanced

node analysis algorithms such as RolX, in the context of
measuring graph distance, we also introduce a simple feature
extraction method (SFE). This technique involves obtaining
only local features from the nodes of an input graph. Specifi-
cally, our method computes the in and out degrees of each node
and return an n × 2 matrix representation of the graph. The
clear advantages of this approach are its low computational
cost and low storage requirements - the output matrix grows
linearly with the number of graphs nodes, unlike FaBP and
SimRank which compute n2 sized matrices.

D. DeepWalk
DeepWalk (DW) [23] is a data mining algorithm for net-

work structures that aims to learn latent representations of
adjacency matrices using deep learning techniques developed
for language modelling. The first stage of DeepWalk involves
obtaining a text corpus from the input graph. The algorithm
treats the set of node IDs as its vocabulary V and generates
sentences (sequences of node IDs) through a series of random
walks, with each node vi being used as the starting point for γ
walks of length t. Each random walk Wvi , beginning at node
vi, is a stochastic process that traverses a section of the graph
by uniformly sampling its next destination from the neighbours
of the last visited vertex until a maximum length (t) is reached.
Perozzi et al. [23] show that the frequency with which vertices
appearance within short random walks, resembles that of
word frequency in natural languages – enabling modelling
techniques in that domain to be re-purposed for graph analysis.

In its second stage, DeepWalk uses the gathered corpus
along with an initial Rn vector mapping of the graph’s
vertices as input to the SkipGram algorithm [24]. For each
available sentence, this method updates the current Rn vector
representations by maximising the co-occurrence probabilities
among the vertices (“words” in the vocabulary) that appear
within a window of size w. The posterior distribution is learned
using Hierarchical Softmax [25].

E. Data Representations to Distance Metrics
Each of the presented graph mining techniques involves

computing a matrix representation of a graph, where the indi-

vidual nodes are expressed as multidimensional vectors – the
rows of the output matrix. Because of the imposed known node
correspondence constraint, where every graph in a considered
population has an equal number of nodes with known IDs,
we can obtain a measure of distance between the graphs
by processing them with the same algorithm and comparing
the resulting matrices. This way of evaluating the change in
connectivity between graphs with an identical set of vertices
is currently applied in DeltaCon [16]. However, the matrix
comparison method that is used, RootED, assumes that all
matrix entries are in the [0, 1] range. This is not necessarily the
case for other algorithms – e.g., the multidimensional vector
embeddings produced by DeepWalk can hold negative values.
As such we compare the matrices by measuring the Euclidean
or Cosine distance between pairs of rows and aggregating
the results (i.e., comparing the different representations for
corresponding nodes):

Euclidean(M1,M2) =
n∑
i=1

√√√√ n∑
j=1

(M1,ij −M2,ij)
2

COS(M1,M2) =

n∑
i=1

1− M1,i ·M2,i

||M1,i|| ||M2,i||

V. EXPERIMENTAL EVALUATION

To evaluate the performance of the presented distance
measures we conducted experiments involving collections of
graphs with prior knowledge of their intended cluster assign-
ments. Each of the considered datasets emphasises unique
structural distortions amongst the target clusters, showcasing
the limitations of different algorithms. A common framework
was created in Python, including implementations for GED,
DeltaCon, SimRank and SFE, while provided distributions
were used for RolX1 and DeepWalk2.

A. Execution Environment

All experiments were conducted on a system with two Intel
Xeon E5-2660 2.20GHz CPUs and 64GB of RAM running an
installation of Ubuntu 14.04. GCC 4.8.4 was used to compile
the provided implementation of RolX as part of the Stanford
Network Analysis Platform – Release 4.0, while a Python 2.7.6
environment was used for executing the remaining algorithms,
which heavily depend on numpy 1.14. The considered release
of DeepWalk is 1.0.3.

B. Graph Generator and Data Sets

A custom graph generator was used to build the experi-
mental data sets. To produce a collection of graphs G the
generator requires the size of the collection g, the number of
nodes n in each graph (there is a known node correspondence
between all graphs in the collection), and a partitioning of
the graphs’ nodes into k subsets. Each partition pk of Vi
(where Vi is the vertex set of a graph Gi ∈ G) is a continuous
sequence of nodes, defined using a (start node ID, end node

1https://github.com/snap-stanford/snap/tree/master/examples/rolx
2https://github.com/phanein/deepwalk
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ID) tuple. Additionally, a connectivity parameter is supplied
for pk, indicating how many edges should be placed among
its nodes – calculated as a percentage of the edges in a clique
of size |pk|. The number of edges between different partitions
(i.e., edges (u, v), where u ∈ pk and v ∈ pl, k 6= l) can
also be adjusted. With this configuration, we can model an
output graph as a collection of regions with varying internal
and cross-region connectivity.

Ideally, we would expect that graphs with similar structural
properties (i.e., same degrees of intra- and cross-region con-
nectivity) are grouped together by the clustering algorithm.
Equivalently, we would like to see such similarly structured
graphs have a small distance value computed using the dis-
tance metrics mentioned above. As such, our test datasets
consisted of several sub-collections of graphs, each created
using a different set of input parameters for the graph generator
(keeping the size of the vertex set n constant as we assume
known node correspondence).

The following data sets were generated to evaluate the
silhouette performance of the various distance measures:

DS1: A collection of 400 graphs with 20 nodes each, where
the vertex set of each graph is split into four equally sized
regions: (1 - 5), (6 - 10), (11 -15), and (16 - 20). In the first 100
graphs, region (1 - 5) is set to contain 90% of the edges in a
clique of size 5, while the remaining regions contain 20%. For
each subsequent 100 graphs, the region connectivity values are
shifted clockwise. Cross-region connectivity is adjusted, such
that there are multiple edges between the densely connected
region and the sparse regions. This effectively creates a series
of graphs, with a well-connected core and several other outlier
nodes, where the position of the core moves for each of the
four groups.

DS2: A collection of 500 graphs with 50 nodes each,
where the vertex set of each graph is split into five regions:
(1 - 10), (11 - 20), (21, 30), (31, 40), and (41 -50). For
each group of 100 graphs, a different permutation of the
following region connectivity values is assigned: 80%, 60%,
40%, 20%, and 10%. The cross-region connectivity is set so
that there are 5 ×

(
5
2

)
edges randomly positioned between

the regions. This configuration models a network with semi-
isolated communities of nodes, where the position of different
community types (densely/sparsely connected) is shifted.

DS3: A collection of 200 graphs with 40 nodes each, where
the vertex set of each graph is split into two regions: (1 - 20)
and (21 - 40), both with an internal connectivity value of 80%.
In the first 100 graphs, the two regions remain completely
isolated (i.e., there are 0 cross-region edges), while in the
second group, 20 edges are randomly placed between the two
regions. This setup expresses the difference between having
independent and loosely coupled communities.

To measure the algorithms’ runtime and scalability potential
we consider an additional 10 data sets, with 5 of them
containing 500 graphs each and the rest having 1000. The
number nodes per graph n = |V | for the individual data sets
in these two groups is also varied, starting from 50 nodes per
graphs, and increasing to 100, 200, 500 and 1000 (table I).

C. Evaluation Metrics

A standard way of evaluating the quality of a performed
clustering operation is by calculating the Within-Cluster Sum
of Squares (WCSS). This refers to the sum of squared dis-
tances between each data point and its nearest centroid:

WCSS =
k∑
i=1

∑
x∈Si

‖x− µi‖2

In the context of comparing distance functions, however,
WCSS produces hard to interpret results. This is because
the distances between two graphs in a given dataset can
vary greatly depending on the choice of dissimilarity measure
and these values are not directly comparable without per-
forming normalisation. An alternative approach for comparing
the properties of different distance functions in a clustering
scenario is to use Silhouette [26]. Silhouette is a method of
interpretation and validation of consistency within clusters of
data. It offers a succinct way of representing how well each
data point lies within its specified cluster. The silhouette score
of a particular observation in the input set is a measure of how
similar that object is to its own cluster in comparison to other
clusters. This value can range from -1 to 1 so that:
• Values near 1 indicate a near perfect assignment – the

observation is closely matched to its own cluster and
poorly matched to its neighbouring clusters.

• Values near 0 indicate that the assignment is indifferent
– e.g., the data point is equidistant from its current and
neighbouring cluster.

• Values near -1 indicate an incorrect assignment – the
observation is closer to a different cluster from the one
its assigned to.

The cluster model as a whole is then considered to be well
adjusted to the input data distribution if most points have
a high score. The silhouette value for any observation i is
computed as:

S(i) =
B(i)−A(i)

max{A(i), B(i)}
where A(i) is the average distance from i to all other points in
its assigned cluster and B(i) is the lowest average distance from
i to the points in any other cluster (the neighbouring cluster
of i). The silhouette value for the entire model is, therefore,
the mean of the scores of all data items.

While this evaluation method is intended to aid in iden-
tifying the optimal value for K it can easily be adapted for
comparing different distance measures. By supplying a data set
with known groups of similar items, along with their intended
cluster labels, we only need to vary the way distances are
computed between the individual items. Although the cluster
assignments in each run would not change, the values returned
by silhouette will differ. In particular, high scores would
indicate that the given distance measure “agrees” with the
provided cluster labels (i.e., the distance between elements
in any single cluster is low, while the distance between
elements in different clusters is high) and low scores would
mean that the distance measure was unable to detect the
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structural dissimilarities between items in different groups.
Note that larger silhouette values do not necessarily correspond
to improvements in quality – e.g., having a distance of 0
between all items within a cluster may not be desirable.
Instead, silhouette provides an indicator of how “confident”
the particular distance measure is that the items should be
partitioned according to the supplied labels.

For each of DS1 - 3, we measure the silhouette performance
of a chosen distance function by first setting any necessary
input parameters and computing a g×g matrix of dissimilarity
values between the considered graphs (g = |G|). A silhouette
score is then calculated for the target cluster membership
labels, such that all graphs generated with identical regional
connectivity parameters are assigned to the same cluster: e.g.,
in DS1, the first 100 graphs all have a label of 0, the next 100
have a label of 1, etc. The produced value is then a measure
of how much the particular distance function “agrees” with
the specified partitioning.

Note that while Graph Edit Distance and Deltacon can be
applied directly, there is a plethora of available configurations
for the outlined graph mining methods. As such, we consider
the impact of their adjustable input parameters along with the
different ways of comparing their output matrices. In the case
of SFE, however, having a disconnected node would result
in a division by zero when computing Cosine distance – this
constrains SFE to be exclusively used with Euclidean distance.

In regards to evaluating the runtime performance of the
individual algorithms, because we are interested in the problem
of clustering a collection of graphs, we measure the time
necessary to compute the g × g matrix of dissimilarity values
between any two graphs in a given dataset G. This procedure
is performed in two separate stages. First, we pre-compute the
adjacency matrix for each graph in G and perform a mapping
operation, such that each matrix is individually transformed
using the chosen graph mining method – e.g., Fast Belief
Propagation in the case of DeltaCon (this phase is not present
for GED as it is the only algorithm that directly operates
on adjacency matrices). Next, a matrix comparison method
is applied to compute the

(
g
2

)
dissimilarity values between all

pairs of graph embeddings produced in the previous stage (the
g×g matrix is mirrored with zeros along the diagonal). Finally,
we return the aggregated runtime for both jobs.

Because the implementations for RolX and DeepWalk are
external to our framework, the way they are used in the
outlined mapping stage involves running them as standalone
processes, operating on text files that store graph representa-
tions. While this approach results in a noticeable performance
penalty for small datasets, we show that the added overhead
is not impactful for larger workloads.

Once the g × g matrix is returned, a clustering algorithm
can more efficiently be used by performing lookups for the
distances between graphs rather than re-evaluating them mul-
tiple times. Because of this, we observed that pre-computing
the dissimilarity matrix for g graphs takes far longer than the
subsequent clustering operation. Although we experimented
with multiple clustering algorithms, due to their runtime being

(a) DS1

(b) DS2

(c) DS3

Fig. 1: Silhouette scores for all algorithms (EUC: Using
Euclidean distance; COS: Using Cosine distance)

negligible in relation to calculating the g×g matrix (and clearly
unaffected by choice of distance function used to obtain the
dissimilarity matrix) we do not report on their performance.

D. Evaluation Results

Silhouette Performance: DS1: Figure 1a shows the highest
Silhouette scores obtained for DS1, using each of the graph
distance measures, while figure 3 displays the correspond-
ing heatmaps of dissimilarity values between the considered
graphs3. Each entry of the presented heatmaps at row i,
column j represents the distance between Gi and Gj in
DS1, such that darker and brighter colors correspond to lower
and higher values respectively (note the black line along the
diagonal indicating that the distance from each graph to itself
is 0). From these results, it is clear that most of the distance
measures were able to detect the positional shift of the densely
connected core of nodes among the four groups of graphs.

Graph Edit Distance (fig. 3a) and DeltaCon (fig. 3b) both
provide a clean partitioning of the intended graph clusters
(the observable squares along the diagonal), resulting in sil-
houette values between 0.2 and 0.3. SFE, however, manages
to obtain the highest score among the considered measures
(0.49), despite some perceived noise in its corresponding

3The presented heatmaps for SimRank, RolX and DeeplWalk showcase the
results of using Cosine distance as means of comparing the algorithms’ output
matrices, as this method produces higher Silhouette scores and more easily
observable clusters.
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(a) DS1

(b) DS2

Fig. 2: Silhouette scores for RolX vs number of roles

heatmap (fig. 3e). Because of the comparatively small size
of the graphs in DS1, within each cluster, the corresponding
nodes will have highly similar degree distributions – giving
SFE its discriminative power. In contrast, SimRank (fig. 3c),
using either Euclidean or Cosine distance to compare matrix
representations, is completely unable to identify the target
community structure, with a silhouette score near 0.

For RolX, we examined the effect of changing the num-
ber of roles that are computed for each node, along with
comparing the output matrices using Euclidean and Cosine
distance. Figure 2a shows that by increasing the dimensionality
of the produced representation, the algorithm’s potential to
distinguish between the four clusters is generally reduced.
Indeed, the largest silhouette score is obtained when using a R2

embedding of the graphs’ nodes, with Cosine distance (0.38)
providing marginally higher value than Euclidean (0.35).
While RolX operates on the output of a feature extraction
algorithm (ReFeX), this result is still lower than the one
computed for SFE. In the corresponding heatmap (fig. 3d) we
can observe that graphs within the first group (top left square)
are not considered to be part of a cohesive cluster – i.e.,
the algorithm has identified additional underlying structural
differences. As such, the silhouette score for that group is
considerably lower, decreasing the overall score for the dataset.

When evaluation DeepWalk, a variety of possible configu-
rations were attempted – changing the dimensionality of the
produced embedding, increasing/decreasing the walk length
and the number of walks started at each node, using different
window sizes for the language modelling phase, etc. In all
scenarios, the algorithm was found to have low discriminative
power, with the highest result obtained at: 64-dimensional
vertex representations, with ten walks of length 50 started at
each node and a window size of 5. We also observed that
comparing DeepWalk’s output matrices using Cosine distance
results in a noticeable increase in silhouette score versus
Euclidean distance – 0.15 and 0.08 respectively.

DS2: The results obtained for DS2 are presented in fig. 1b
and 4. We can see that while the ranking of the individual
algorithms has shifted, using methods that rely on feature
extraction again provides the most segregated clusters. One ob-
servation about the data in DS2 is that the regional connectivity
properties for the first two groups are highly similar, resulting
in lower distances between the graphs in those clusters and an
overall reduction in the computed silhouette scores.

In this scenario, the performance of Graph Edit Distance
(0.07) is much lower compared to DS1, because of the
increased graph size. As the number of edges in a clique
n× (n− 1)/2 grows quadratically with the size of the vertex
set n, if n is increased, the possibilities for placing a low
percentage of those edges amongst the vertices will also
rise. Therefore, regardless of the identical parameters used to
generate the graphs of a target cluster, GED will return high
dissimilarity values.

DeltaCon outperforms GED, due to its ability to identify
the shift in regional connectivity values between the different
clusters – i.e., all nodes within a densely linked region will
have high affinities with each other, regardless of the exact
placement of the edges. This property is also present in Sim-
Rank, which is now able to identify the intended community
structure, although its discriminative power is still low.

SFE once again produces a large silhouette value (0.26), as
a result of the similar degree distribution of the corresponding
nodes within a cluster. RolX, however, manages to obtain
the highest score (0.45) when using a R2 representation for
each vertex and Cosine distance. Similar to the behaviour
observed for DS1, figure 2b shows that assigning more roles to
each vertex diminishes the algorithm’s ability to differentiate
between graphs in different clusters. Although, in this scenario,
the choice of matrix comparisons method is found to have a
greater impact on silhouette, with Cosine distance providing
larger values than Euclidean.

Finally, applying DeepWalk results in the lowest score
(0.05) for DS2 – i.e., the least amount of segregation between
the target clusters. This result was obtained with the same
parameters used for DS1, with alternative configurations not
providing any improvement.
DS3: Figures 1c and 5 present the gathered results for DS3,
which indicate a new trend in the silhouette performance of
the analyses distance measures. In particular, because of the
unique difference among the graphs in the two clusters of DS3
(graphs in the first cluster have two densely connected regions
with no edges between them, while in the second cluster all
graphs have 20 edges linking nodes in the two regions), the
observed values reflect the sensitivity of each algorithm to
disconnected components.

DeltaCon and SimRank, both being methods that rely on
the spread of node affinities throughout a graph, can find a
clear separation between the intended clusters. Because they
produce an Rn representation for each vertex (n = |V |) when
there is no link between two sets of vertices, all of the values
referring to nodes in the opposite region will be 0. In the
examined graphs, the two separate regions both contain 50%
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of the vertex set, and so their separation would have the highest
impact on the propagated affinities.

Unlike the results for DS1 and DS2, SFE and RolX both
produce silhouette values near 0. This is expected for SFE,
as the inclusion of the additional cross-region edges does
not greatly alter the degree distribution of corresponding
nodes. For RolX, the obtained vertex representations could
not express the behavioural function of nodes, acting as the
connecting points between two dense regions, regardless of the
number of specified roles. Graph Edit Distance also provides
a low score, as the added dissimilarity from the presence of
the cross-region edges is far smaller than that of the variance
in edge placement within the individual regions.

DeepWalk returns an average scores (0.23), as it considers
the graphs within the first group to be highly similar (fig.
5f) – walks started in one region cannot transition to the
nodes of another, and so each of the “sentences” used in
the language modeling phase contain elements from one half
of the vocabulary. As such, the deep learning method builds
an association only between vertices in the same region. The
second group of 100 graphs are not identified as a coherent
cluster, however, due to the random positioning of the cross-
region edges – the random walks move between regions at
different locations, resulting in inconsistent models.

Runtime Evaluation: Table I displays the performance of
each distance measure when operating on larger datasets. The
presented values show the aggregated runtime for executing
a mapping stage, where the relevant graph mining algorithm
is used to produce a matrix representation for each of the
available graphs, along with a matrix comparisons stage, where
the

(
g
2

)
distances between any two matrices are calculated

(g = |G|). For SimRank, RolX and DeepWalk we measure
the impact of using either Euclidean or Cosine distance for
the second stage. Additionally, when benchmarking RolX
and DeepWalk, we only consider the set of input parameters
that were shown to provide the largest silhouette values in
the previous experiment. As such, we apply RolX with the
number of extracted roles per vertex set to 2 (creating higher
dimensional representations has a greater computational cost),
and for DeepWalk, we use an R64 vertex representation, with
ten walks of length 50 started at each node and a window size
of 5. Note that while the process of performing random walks
through a graph can be parallelised using multiple workers,
the scope of this evaluation is limited to measuring single-
threaded performance.

From the obtained results we can see that SFE, due to
its linear complexity and low dimensional representation for
each vertex, outperforms all other algorithms. Graph Edit
Distance is second at runtime, despite being the only method
that does not require a mapping stage (it operates directly
on the adjacency matrices). This is because each of the

(
g
2

)
comparisons that it performs involves n × n matrices (where
n = |V |), while SFE operates on the n × 2 representations,
produced in its mapping stage. DeltaCon and SimRank are
next, as they both include an expensive mapping stage and
subsequent comparisons between n × n matrices (each row

holds the computed affinity between node i and all other
nodes in the graph). For SimRank, we also observe that using
Cosine distance after the mapping stage results in far lower
performance than Euclidean.

In the case of RolX and DeepWalk, because the resulting
vertex representations have few dimensions, the execution time
is heavily dominated by the mapping phase – transitioning
from 500 to 1000 graphs results in a 2x slow down. This
observation also applies to SFE, as the output matrices of
all three algorithms grow linearly with the size of the vertex
set. In contrast, the matrices used by GED, SimRank and
DeltaCon grow quadratically – also heavily affecting the
comparison stage. As such, when performing a mapping with
RolX or DeepWalk, the differences between using Euclidean
and Cosine distance are far smaller than for SimRank.

VI. CONCLUSIONS

In this paper, we surveyed a range of existing graph
similarity measurement methods and proposed several new
ones based on graph mining algorithms designed for node
classification tasks or community discovery within a network,
and investigated their performance in the context of measuring
distances between graphs with known node correspondence.
Furthermore, we presented a novel approach for using the
silhouette algorithm, to quantify how much a particular dis-
tance function “agrees” with a specified cluster membership
assignment; this method was used alongside custom generated
data sets, with known clusters of graphs with similar connec-
tivity properties, to determine the sensitivity of each distance
measure to unique structural distortions. Our performance
evaluation shows that there is no single distance measure that
returns the highest silhouette score in all scenarios, making
the choice dependent on the characteristics of the considered
graph collection and the available compute resources. Last, we
discussed the applicability of each distance metric for various
characteristics of the graphs in the dataset.
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(a) GED (b) DC (c) SR (d) RX 2D (e) SFE (f) DW 64D
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