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Subset Selection of Double-Threshold Moving
Average Models Through the Application of the
Bayesian Method

Jinshan Liu , Jiazhu Pan Qiang Xia∗ and Ying Xiao

The Bayesian method is firstly applied for the selection
of the best subset for the double-threshold moving average
(DTMA) model. The Markov chain Monte Carlo (MCM-
C) techniques and the stochastic search variable selection
(SSVS) method are used to identify the best subset mod-
el from a very large number of possible models. Simulation
experiments show that the proposed method is feasible and
efficient, despite the complexity being increased by the large
number of subsets, and the uncertainty of the threshold and
delay variables. Our method is illustrated by real data anal-
ysis on the Yen-Dollar exchange rate.
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1. INTRODUCTION

Since Tong (1978) and Tong and Lim (1980) proposed
the threshold autoregressive (TAR) models, nonlinear time
series models have attracted more and more attention, and
TAR model has become a hot topic in the analysis of non-
linear time series. There has been great interest for the the-
ory of TAR models in the literature. See Chan and Tong
(1985), Tong (1990) and Tsay (2005), and many others. N-
evertheless some authors suggested the Bayesian approach,
which can avoid complex analytical work and numerical mul-
tiplex integration for inference TAR models. For example,
Mcculloch and Tsay (1993) proposed a Bayesian method
for detecting the threshold value in the TAR model through
the posterior probability map. Chen and Lee (1995) applied
the Gibbs sampler of Geman and Geman (1984), and the
Metropolis-Hastings (M-H) algorithm of Metropolis et al.
(1953) and Hastings (1970), for inference of TAR models.
Pan et al. (2017) introduced the Bayesian stochastic search
selection of TAR models to identify a threshold-dependent
sequence with the highest probability. Meanwhile, in the
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literature, attention has been paid for threshold moving av-
erage (TMA) models using MCMC algorithm, because peo-
ple realized TMA models are as important as TAR models
in practice. See Liu and Susko (1992), Sáfadi and Moret-
tin (2000), Ismail and Charif (2003), Ling and Tong (2005),
Ling et al. (2007), Xia et al. (2010), Chen et al. (2010), Li
et al. (2012) and Li (2012), among others.

However, the above papers only discussed the model-
s with a single threshold variable. This greatly limits the
scope of application of the model. In real data analysis, two
and even more thresholds are required. For example, Leeper
(1991) divided the policy parameter space into four disjoint-
ed regions depending on whether monetary and fiscal poli-
cies are active or passive. Tiao and Tsay (1994) proposed a
four-region autoregressive model for the actual US quarter-
ly GNP growth rate based on past growth rate levels and
positive or negative signs. In terms of turnover and average
price, Chen et al. (2012) and Ni et al. (2018) divided the
daily return series of Hang Seng Index into three and four
regimes, respectively. But it is found that the model selec-
tion discussion in these examples is on the double-threshold
AR (DTAR) model. Therefore, as the new progress of study,
a natural idea is to extend DTAR models to DTMA models
in the relevant theory and application.

The aim of this paper is to study the Bayesian approach
for the estimation problem for DTMA models. In litera-
ture, in order to avoid complex analytical work and nu-
merical multiplex integration, Chen and Lee (1995), Ismail
and Charif (2003), and Sáfadi and Morettin (2000) used
the MCMC techniques and simultaneously estimated the
threshold parameters and other parameters using permut-
ed autoregressive methods. So and Chen (2003) developed
a selection method of SETAR model, which can estimate
unknown parameters, including threshold parameters and
delay variables, and simultaneously identified the best sub-
set SETAR model in Bayesian framework. In this paper,
based on these work, we use the SSVS method proposed by
George and McCulloch (1993) to select the best subset of
DTMA models. Meanwhile, we apply the MCMC method
which combines the Gibbs sampler and the M-H algorithm
to generate the posterior samples of all parameters in the
DTMA model. It is worth mentioning that we can identify
the best subset of DTMA with the highest posteriori prob-



ability, and estimate the unknown parameters including the

threshold parameters and delay variables well.

The contents of this paper is organized as follows: Section

2 describes the DTMA model and the selection of its subset;

Section 3 gives the details of Bayesian inference based on the

MCMC algorithm; Some simulation studies are presented in

Section 4; Section 5 shows an example of real data analysis;

Section 6 contains our conclusion.

2. THE DTMA MODEL AND THE
SELECTION OF ITS SUBSET

2.1 The DTMA model

We consider the following double-threshold moving aver-

age models, denoted by DTMA(2;q1,q2, q3,q4,d1,d2):

(1)
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The above model (1) is a MA model with two threshold

variables and four regimes (or four-mechanisms), where r1,

r2 are the threshold parameters,d1, d2 are commonly re-

ferred to the delays (or threshold lags) of the model. For

j = 1, 2, 3, 4, {ε(j)t } is assumed to be a sequence of inde-

pendent and identically distributed (i.i.d.) random variables

with distribution N(0, σ2
j ); the positive integer qj is the or-

der of the j-th regime; z1,t−d1
and z2,t−d2

are called the

threshold variables, which are observable, exogenous or en-

dogenous variables. If the threshold variables are endoge-

nous, then they relate to yt or or functions of yt. The pa-

rameters in model (1) are Θ(j) = (θ
(j)
0 , θ

(j)
1 , · · · , θ(j)qj )′ with

Θ(i) ̸= Θ(j) for i ̸= j.

Let Y = {y1, y2, · · · , yn}, q = max{q1, q2, q3, q4}+1. Giv-

en the first q− 1 observations, we can write the conditional

likelihood function of the model (1) as follows:

L(Θ(j), σ2
j , r1, r2, d1, d2(j = 1, 2, 3, 4)|Y )
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where I(·) denotes the indication function, n1 is the num-

ber of observations which satisfy the condition of z1,t−d1 ≤
r1, z2,t−d2 ≤ r2, and n2,n3,n4 are defined accordingly. Fur-

ther, ε
(j)
t can be recursively computed by

ε
(j)
t = yt − θ

(j)
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(j)
1 ε

(j)
t−1 + · · ·+ θ(j)q1 ε
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Denote Σ(j) = diag(σ2
j , σ

2
j , · · · , σ2

j ), which is an (n− q +

1) × (n − q + 1) matrix; Y (j) = (yq, yq+1, · · · , yn), x(j)
t =

(1,−ε
(j)
t−1, · · · ,−ε

(j)
t−q−j)

′, X(j) = (x
(j)
q , x

(j)
q+1, · · · , x

(j)
n ); and

S(1) = diag(I(z1,t−d1 ≤ r1, z2,t−d2 ≤ r2), . . . ,

I(z1,t−d1 ≤ r1, z2,t−d2 ≤ r2)),

S(2) = diag(I(z1,t−d1 ≤ r1, z2,t−d2 > r2), . . . ,

I(z1,t−d1 ≤ r1, z2,t−d2 > r2)),

S(3) = diag(I(z1,t−d1 > r1, z2,t−d2 ≤ r2), . . . ,

I(z1,t−d1 > r1, z2,t−d2 ≤ r2)),

S(4) = diag(I(z1,t−d1 > r1, z2,t−d2 > r2), . . . ,

I(z1,t−d1 > r1, z2,t−d2 > r2)).

Therefore, the conditional likelihood function (2) can be ex-
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pressed as:

L(Θ(j), σ2
j , r1, r2, d1, d2(j = 1, 2, 3, 4)|Y )

∝
4∏
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σ
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2
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(Y (j) −X(j)′Θ(j))
′
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(3)

where tr(S(j)) represent the trace of matrix S(j)(j =
1, 2, 3, 4).

2.2 A mixture specification

The main objective of this paper is to identify the best
subset of the DTMA model by SSVS method. George and
McCulloch (1993) suggested the discrete indicators to iden-
tify good regression models using SSVS MCMC method,
which was successfully employed to TAR, TARMA and D-
TAR models in So and Chen (2003), Chen et al. (2011) and
Ni et al. (2018). Based on this idea, the binary indicator
variables δj,m, m = 1, 2, · · · , qj , j = 1, 2, 3, 4, are introduced
which take a value of either 0 or 1. Each value of δj,m de-

termines the distribution of Θ
(j)
m . Then, prior assumptions

are assumed on a single Θ
(j)
m by the normal mixture distri-

bution, as follows:

(4) Θ(j)
m |δj,m ∼ (1− δj,m)N(0, τ2j,m) + δj,mN(0, c2j,mτ2j,m)

and

(5) δj,m =

{
1, with probability γj,m,

0, with probability 1− γj,m.

The general specification allows correlations among Θ
(j)
m ,

and the mixture distribution in (4) can be stated as following
multivariate normal prior for the slope parameters Θ(j) =

(Θ
(j)
0 ,Θ

(j)
1 , · · · ,Θ(j)

qj ):

(6) Θ(j)|δj ∼ N(0,MδjDjMδj )

where δj = (δj,0, δj,1, · · · , δj,qj )′, Dj is the prior correlation
matrix and Mδj = diag{aj,0τj,0,
· · · , aj,qjτj,qj} with aj,m = 1 if δj,m = 0 and aj,m = cj,m if
δj,m = 1.

When no prior information about the relationship among

Θ
(j)
m , j = 1, 2, 3, 4, are available, the prior distribution just

simplified with Dj = Λ, where Λ is a diagonal matrix with
elements a2j,mτ2j,m, m = 0, 1, · · · , qj . That is,

(7) p(Θ(j)|δj) =
qj∏

m=0

p(Θ(j)
m |δj,m).

If δj,0, δj,1, · · · , δj,qj are chosen to be small, those Θ
(j)
m ,

which is associated with δj,m = 0, are also likely to be smal-
l. On the other hand, cj,0, · · · , cj,qj could be chosen greater

than 1 to make c2j,mτ2j,m ≥ τ2j,m. Consequently, those Θ
(j)
m

associated with δj,m = 1 will have a high variability. In
other words, variables associated with δj,m = 1 are con-

sidered very useful for likely moving Θ
(j)
m away form zero.

On contrary, the variables having δj,m = 0 are taken to be
unimportant.

In order to select the best subset, suitable choice of
the hyper-parameters τj,m, cj,m are very important. Note
that the ratio combinations (σ

Θ
(j)
m
/τj,m, cj,m) were select-

ed as (1, 5), (1, 10) by George and McCulloch (1993), and
(0.5, 5), (0.5, 10) by So and Chen (2003). Both paper are
found to have superior performance. Ni and Xia (2018) set
(Θ/τj,m, cj,m) as (0.1, 5), (0.2, 5) and (0.1, 10), which also
have achieved good results. In our models, we consider set-
ting (Θ/τj,m, cj,m) as (0.1, 5), (0.1, 10) and (0.1, 15), where
Θ represents the maximum value of the absolute value of

Θ
(j)
m , without thinking about the value of σ

Θ
(j)
m
.

3. BAYESIAN INFERENCE

3.1 Conditional posterior distribution

In order to complete the selection of the best subset of the
model by using MCMC methods, we need to infer the pos-
terior distribution of each parameter in the DTMA model,
so the priori information selection of the parameter is par-
ticularly important. Referring to Chen and Lee (1995), Xia
et al. (2010) and Pan et al. (2017), the determination of the
priori distribution can be completed.

(1) For i ̸= j, assume Θ(j)|δj ∼ N(0,MδjDjMδj ),(j =

1, 2, 3, 4), which is independent of Θ(i). Through the pri-
or distribution, we conclude that the conditional poste-
rior distribution of Θ(j) is a pseudo-normal distribution
as follows:

(8) p(Θ(j)|Y, δj , σ2
j , r1, r2, d1, d2) ∼ pN(U∗(j),Σ∗(j)),
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and Θ(j) is independent of Θ(i) for i ̸= j.
(2) We employe the inverse gamma distribution for σ2

j ,

which is independent of σ2
i for i ̸= j, σ2

j ∼
IG(

vj

2 ,
vjλj

2 ) (j = 1, 2, 3, 4). Then the posterior dis-
tribution of σ2

j , independently with σ2
i for i ̸= j, is also

the inverse gamma distribution:
(9)

p(σ2
j |Y, δj ,Θ(j), r1, r2, d1, d2) ∼ IG(

vj + nj

2
,
vjλj + njs

2
j

2
),
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where j = 1, 2, 3, 4, nj = tr(S(j)), and

s2j =
1

nj

n∑
t=q

(yt −Θ(j)′x
(j)
t S(j))2, j = 1, 2, 3, 4.

(3) When ri follows the uniform distribution (ai, bi), i =
1, 2, and r1, r2 are independent each other, the posterior
density function of r1 is derived from Bayes theorem:

p(r1|Y, δj ,Θ(j), σ2
j , r2, d1, d2)

∝
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where j = 1, 2, 3, 4, nj = tr(S(j)), and the posterior
density function of r2 is similar to r1.

(4) Let d1 follow the discrete uniform prior distribution
over 0, 1, 2, · · · , d1,0, and d2 be independent of d1. The
conditional posterior distribution of d1 is a multinomial
distribution:

p(d1|Y, δj ,Θ(j), σ2
j , r1, r2, d2)

=
L(Θ(j), σ2

j , r1, r2, d1, d2(j = 1, 2, 3, 4)|Y )∑d1,0

d1=0 L(Θ
(j), σ2

j , r1, r2, d1, d2(j = 1, 2, 3, 4)|Y )
,

(11)

where j = 1, 2, 3, 4, d1 = 0, 1, 2, · · · , d1,0, and
L(Θ(j), σ2

j , r1, r2, d1, d2(j = 1, 2, 3, 4)|Y ) is the likeli-
hood function in (3). The conditional posterior distri-
bution of d2 is similar to that of d1.

(5) The conditional posterior distribution of δj is a
Bernoulli distribution with the probability

p(δj,m|Y, δj,−m,Θ(j), σ2
j , r1, r2, d1, d2(j = 1, 2, 3, 4))

=
Aj,m

Aj,m +Bj,m
.

(12)

where

Aj,m = p(Θ(j)
m |δj,−m, δj,m = 1)γj,m,

Bj,m = p(Θ(j)
m |δj,−m, δj,m = 0)(1− γj,m).

In particular, if Dj = Λ and the uniform prior is
specified for δj,m, for example γj,m = 1

2 , the Aj,m

and Bj,m can be simplified to p(Θ
(j)
m |δj,m = 1) and

p(Θ
(j)
m |δj,m = 0). Formally, the conditional posterior

distribution of δj is a Bernoulli distribution.

3.2 Sampling scheme

From the previous analysis, we can see that the full con-
ditional posterior distributions of the parameters are iden-
tified except for Θ(j), r1 and r2. Then, the Gibbs sampler

should be used to the standard posterior distributions. Ow-
ing to the parameters Θ(j), r1 and r2 don’t have a specific
distribution, we need to employ the M-H algorithm to draw
it, which can be found in Chib and Greenberg (1995). For
example, let f(·) be the conditional density in (10), the al-
gorithm of drawing ri is described below.

In order to enhance the convergence of the MCMC al-
gorithm, we will modify the sampling plan of ri in the fol-
lowing. First, we perform the M-H sampling step of ran-
dom walk for M iterations. Then we use the previous M
iterations to obtain the sample mean µri and the sample
covariance Ωri . Finally, using of the Gaussian proposal dis-
tribution with mean µri and covariance Ωri , we apply the
independent kernel M-H algorithm to ri starting from the
M + 1 iteration, as follows:

Step 1: At iteration j, generate a point r∗i from the inde-
pendent kernel M-H algorithm,

r∗i = µri + εri , εri ∼ N(0,Ωri),

where rj−1
i is the (j − 1)th of ri .

Step 2: Accept r∗i = rji , if the probability meets the con-

dition p = min{1, f(r∗i )q(ri)

f(rj−1
i )q(r∗i )

}. Otherwise, set rji = rj−1
i .

Where, rj−1
i is the (j− 1)th of ri, and q(r∗i ) ∝ exp{− 1

2 (ri−
µri)

′Ωri(ri − µri)}. Similarly, the M-H sampling algorithm
for other parameters can be shown as above. In summary,
we use the following iterative sampling scheme to construct
the desired posterior sample:

(1) Draw Θ(j) using the random walk and the indepen-
dent kernel M-H algorithm from the conditional posterior
distribution in (8), j = 1, 2, 3, 4;

(2) Draw σ2
j from the inverse Gamma distribution in

(9), j = 1, 2, 3, 4;
(3) Draw ri using the random walk and the indepen-

dent kernel M-H algorithm from the conditional posterior
distribution in (10), i = 1, 2;

(4) Draw di from the multinomial distribution in (11),
i = 1, 2;

(5) Draw δj,m from the Bernoulli distribution in (12),
j = 1, 2, 3, 4.

This completes one iteration. Of course, we can change
the order to attain fast convergence in sampling the vari-
ables.

4. SIMULATION EXPERIMENTS

This section uses two different models for simulation ex-
periments to verify the accuracy of the Bayesian optimal
subset selection and the fitting effect of the sampling scheme.
In order to improve the validity of the sampling results, the
MCMC algorithm is performed a total of 8000 sampling it-
erations, the pre-iteration values of the previous 5000 transi-
tion periods are discarded, and the parameters are estimated
based on sample values of back 3000 times. For each of the
simulation models, 1500 observations are produced, and the
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Table 1. Estimated results of model (13) based on 100
replications

Parameter True Value Mean S.D.

ϕ
(1)
0 0.3 0.2856 0.0192

ϕ
(1)
1 0.6 0.5913 0.0263

ϕ
(2)
0 0.7 0.6935 0.0435

ϕ
(2)
1 -0.2 -0.2290 0.0307

ϕ
(3)
0 -0.2 -0.2263 0.0969

ϕ
(3)
1 -0.7 -0.7211 0.0476

ϕ
(4)
0 0.5 0.4889 0.0432

ϕ
(4)
1 0.3 0.2822 0.0293
σ2
1 1 1.0090 0.0932

σ2
2 1 1.0062 0.0913

σ2
3 1 0.9472 0.0835

σ2
4 1 1.0480 0.0786

r1 0 0.0037 0.0564
r2 0 0.0013 0.0205
d1 1 1 0
d2 1 1 0

last 1000 observations are selected as samples. 100 simula-
tions are run twice to verify the accuracy of the Bayesian
optimal subset selection. The values of the hyper-parameters
for the prior distribution are taken as

vj = 3, λj = 1, Dj = I,

di,0 = 3, ai = pi,10, bi = pi,90,

where j = 1, 2, 3, 4, i = 1, 2 and pi,k represents the k quantile
of the data {zi,t}.

4.1 Simulation I

The first model that we consider is

(13) yt =


0.3 + 0.6ε

(1)
t−1 + ε

(1)
t , z1,t−1 ≤ 0, z2,t−1 ≤ 0,

0.7− 0.2ε
(2)
t−1 + ε

(2)
t , z1,t−1 ≤ 0, z2,t−1 > 0,

−0.2− 0.7ε
(3)
t−1 + ε

(3)
t , z1,t−1 > 0, z2,t−1 ≤ 0,

0.5 + 0.3ε
(4)
t−1 + ε

(4)
t , z1,t−1 > 0, z2,t−1 > 0,

where ε
(j)
t ∼ N(0, 1), j = 1, 2, 3, 4, zi,t ∼ N(0, 1), i = 1, 2,

and y1 = y2 = y3 = y4 = 0.

Table 1 records the posterior mean and posterior stan-
dard deviation (S.D.) of the estimated results of each pa-
rameter after the model (13) was repeated for 100 times. It
can be seen from Table 1 that the posterior mean of each
parameter is very close to the true value, and the posterior
standard deviation of each parameter is very small, indicat-
ing that the sampling method has a very good fitting effect
on the model (13).

Let q1 = q2 = q3 = q4 = 1, then the model (13) has
24q+4 = 256 possible subsets. A subset of the real model

Table 2. Subset selection results of model (13)

(0.1, 5) (0.1, 10) (0.1, 15)

Best

(
1 1 1 1
1 1 1 1

) (
1 1 1 1
1 1 1 1

) (
1 1 1 1
1 1 1 1

)
Pos. Prob. [0.2037] [0.4153] [0.5447]

Second best

(
0 1 0 1
1 0 1 0

) (
0 1 0 1
1 0 1 0

) (
0 1 0 1
1 0 1 0

)
Pos. Prob. [0.0020] [0.0003] [0.0001]

Table 3. Proportion of correct selection of the true model
(13) with 100 replications

(ϕ/τ(j,k), c(j,k)) Proportion 1 Proportion 2

(0.1, 5) 94 100
(0.1, 10) 92 100
(0.1, 15) 94 100

(13) can be represented by the following matrix:

(δ1, δ2, δ3, δ4)
′ =

(
1 1 1 1
1 1 1 1

)
.

Table 2 shows (ϕ/τ(j,k), c(j,k)) based on three different
values, the optimal subset of (δ1, δ2, δ3, δ4)

′ selected from
100 repetitions and the posterior probability (Pos. Prob.).
In each data set, the model with the highest a posteriori
probability, or the model that is the most frequently selected
during the MCMC operation, is selected as the best. In our
simulation experiment, we use (ϕ/τ(j,k), c(j,k)) and select the
three sets of values (0.1, 5), (0.1, 10) and (0.1, 15), where ϕ

represents the absolute maximum value of ϕ
(j)
k .

From the last 2000 MCMC iterations, the optimal sub-
set of the model and the second best subset and posteri-
or probabilities are recorded in Table 2, and three sets of
(ϕ/τ(j,k), c(j,k)) =(0.1, 5), (0.2, 5), (0.1,10) are also record-
ed. For all sets, the true subset is successfully selected as the
best subset of the model, and the posterior probabilities of
the three groups are 0.2037, 0.4153 and 0.5447. In addition,
the second best model found by the selection scheme is close
to the real model, and the respective posterior probabilities
are 0.0020,0.0003,0.0001. Compared with these results, the
posterior probability of the best subset selection is much
higher than the second, and (ϕ/τ(j,k), c(j,k)) = (0.1, 15) is
the preferred value in the selection scheme.

The selected results from the 100 replications of the sim-
ulations are shown in Table 3. We calculate the proportions
of correct selection of the true model. Proportion 1 shows
the accuracy of selecting the true model as the best one;
proportion 2 indicates that the true model is selected either
the best or the second best subsets. In this example, it seem-
s that our Bayesian subset selection scheme performs well,
especially when (ϕ/τ(j,k), c(j,k)) = (0.1, 15).
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4.2 Simulation II

The second model that we consider is:

(14) yt =



−0.5ε
(1)
t−1 + 0.5ε

(1)
t−2 + 0.5ε

(1)
t−3 + ε

(1)
t ,

z1,t−1 ≤ 0, z2,t−2 ≤ −0.5,

0.5− 0.5ε
(2)
t−2 + ε

(2)
t ,

z1,t−1 ≤ 0, z2,t−2 > −0.5,

0.5ε
(3)
t−1 − 0.5ε

(3)
t−3 − 0.5ε

(3)
t−4 + ε

(3)
t ,

z1,t−1 > 0, z2,t−2 ≤ −0.5,

0.5 + 0.5ε
(4)
t−4 + ε

(4)
t ,

z1,t−1 > 0, z2,t−2 > −0.5.

where ε
(j)
t ∼ N(0, 0.25), j = 1, 2, 3, 4, z1,t−1 ∼ N(0, 1),

z2,t−2 ∼ N(−0.5, 1), and y1 = y2 = y3 = y4 = 0.
Based on 100 samples, the estimated results are shown

in Table 4, which lists the true values, posterior means, and
posterior standard deviations for model (14). It can be seen
from Table 4 that the posterior means are closed to the
true values. Meanwhile, compared to the standard deviation
of the posterior of some parameters, the average value is

small. These results indicate an estimate of 0, such as Θ
(1)
0

and Θ
(1)
4 in the first mechanism. In addition, other posterior

standard deviations are small. Therefore, we believe that the
estimation of the parameters applies to the model (14).

Let q1 = q2 = q3 = q4 = 4, then model (14) has 22q+4 =
4096 possible subsets. A subset of the real model (14) can
be expressed as follows:

(δ1, δ2, δ3, δ4)
′ =


0 1 1 1 0
1 0 1 0 0
0 1 0 1 1
1 0 0 0 1

 .

Like the simulation experiment for model (13), from the
last 3000 MCMC iterations, the best model and the second
best model with posterior probabilities for model (14) are
recorded in Table 5. Three sets of (ϕ/τ(j,k), c(j,k))=(0.1, 5),
(0.1, 10) and (0.1, 15) are examined and recorded. For all
sets, the true model was successfully chosen as the best sub-
set selection for model (14), and the posterior probabilities
of the three sets are 0.1414, 0.3549 and 0.4910, respective-
ly. In addition, the second best model found by the selec-
tion scheme is close to the real model, and the respective
posterior probabilities are 0.0004, 0.0001, 0.00002. Clearly,
(ϕ/τ(j,k), c(j,k)) = (0.1, 15) provides the best results.

In addition, the selected results of the 100 replicates of
the model (14) simulation are recorded in Table 6. We cal-
culate the proportion of the correct selection of the true
model: the ratio 1 indicates the accuracy of selecting the
real model as the best model, while ratio 2 means that true
model is selected as either the best or the second best sub-
set. These results show that our Bayesian subset selection
scheme works well and (ϕ/τ(j,k), c(j,k)) = (0.1, 15) is a good
choice for the scheme.

Table 4. Estimated results of model (14) based on 100
replications

Parameter True Value Mean S.D.

ϕ
(1)
0 0 -0.0002 0.0552

ϕ
(1)
1 -0.5 -0.5087 0.0664

ϕ
(1)
2 0.5 0.5087 0.0704

ϕ
(1)
3 0.5 0.5166 0.0825

ϕ
(1)
4 0 -0.0135 0.0694

ϕ
(2)
0 0.5 0.5037 0.0479

ϕ
(2)
1 0 0.0108 0.0696

ϕ
(2)
2 -0.5 -0.4997 0.0668

ϕ
(2)
3 0 -0.0042 0.0720

ϕ
(2)
4 0 -0.0108 0.0758

ϕ
(3)
0 0 0.0021 0.0509

ϕ
(3)
1 0.5 0.5027 0.0738

ϕ
(3)
2 0 0.0118 0.0713

ϕ
(3)
3 -0.5 -0.4932 0.0680

ϕ
(3)
4 -0.5 -0.5026 0.0773

ϕ
(4)
0 0.5 0.4994 0.0439

ϕ
(4)
1 0 -0.0166 0.0666

ϕ
(4)
2 0 0.0056 0.0744

ϕ
(4)
3 0 -0.0061 0.0583

ϕ
(4)
4 0.5 0.5141 0.0729
σ2
1 0.25 0.2458 0.0218

σ2
2 0.25 0.2454 0.0220

σ2
3 0.25 0.2439 0.0215

σ2
4 0.25 0.2464 0.0223

r1 0 -0.0011 0.0367
r2 -0.5 -0.4843 0.0358
d1 1 1 0
d2 2 2 0

Table 6. Proportion of correctly selecting the true model (14)
with 100 replications

(ϕ/τ(j,k), c(j,k)) Proportion 1 Proportion 2

(0.1, 5) 96 100
(0.1, 10) 95 100
(0.1, 15) 96 100
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Table 5. Subset selection results of model (14)

(0.1, 5) (0.1, 10) (0.1, 15)

Best


0 1 1 1 0
1 0 1 0 0
0 1 0 1 1
1 0 0 0 1



0 1 1 1 0
1 0 1 0 0
0 1 0 1 1
1 0 0 0 1



0 1 1 1 0
1 0 1 0 0
0 1 0 1 1
1 0 0 0 1


Pos. Prob. [0.1414] [0.3549] [0.4910]

Second Best


0 1 1 1 1
1 0 1 0 1
1 1 0 1 1
1 1 0 0 1



0 1 1 1 1
1 0 1 0 1
1 1 0 1 1
1 1 0 0 1



0 1 1 1 1
1 0 1 0 1
1 1 0 1 1
1 1 0 0 1


Pos. Prob. [0.0004] [0.0001] [0.00002]

From these two simulation experiments, we believe that
the Bayesian estimation of unknown parameters in the DT-
MA model is satisfactory, the Bayesian subset selection
method can separate the real model from other models, and
(ϕ/τ(j,k), c(j,k)) = (0.1, 15) is a good choice for this scheme.

5. ILLUSTRATIVE EXAMPLE

Interventions on foreign exchange market are widespread,
and dynamics of exchange rate data has the characteris-
tics of structural thresholds. We use the double-threshold
variable moving average model to investigate the nonlinear
characteristics of exchange rate of the Japanese Yen against
the US dollar. We analyze this actual exchange rate using
monthly data from January 1986 to December 2018, with
a total of 396 observations. Ling and Tong (2005) and Xia
et al. (2010) had analyzed such data sets, but their analysis
were based on a single-threshold model. We break through
the assumption of a single threshold variable, examine more
comprehensively the trading information of the foreign ex-
change market, and establish a double-threshold moving av-
erage model. Liu (2007) used different linear and nonlinear
time series models for the real historical data of the exchange
rate of the RMB against the US dollar, and the nonlinear
self-exciting threshold autoregressive model showed a good
fitting effect. This paper will also use the self-excited thresh-
old moving average model to analyze the historical data of
the Yen against the US dollar, giving two threshold variables
z1,t−d1 and z2,t−d2 :

xt = 100[log(Pt)− log(P(t−1))],

yt = xt −
396∑
i=2

xi/395(t ≥ 2),

z1,t−d1
= yt−1, z2,t−d2

= yt−2,

where Pt represents the exchange rate of the Japanese dollar
against the US dollar for the t-th month. Figure 1, Figure
2, Figure 3 show the logarithmic difference sequence of the
yen-to-dollar monthly data from January 1986 to December
2018, and the time series diagram of two threshold variables,
respectively.

Figure 1. The yt series from January 1986 to December 2018

Figure 2. The z1,t−d1 series from January 1986 to December
2018

For the empirical analysis, our hyperparameter selection
is similar to that of Chen and Lee (1995) and Xia et al.
(2010). We use the values of hyperparameters:

vj = 3, λj = 1, Vi = I,

d10 = d20 = 3, a = p5, b = p95,

where pk represents the k quantile of the sample data.
To construct the DTMA model with four mechanisms, we
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Figure 3. The z2,t−d2 series from January 1986 to December
2018

performed the MCMC iterations according to the sampling
plan in Section 4. A total of 20,000 iterations were performed
and the first 15,000 iterations were discarded. The last 5000
iterations were retained to make the parameter estimation
and optimal subset selection for the double-threshold mov-
ing average model. The estimation results and confidence
intervals for each coefficient are recorded in Table 7. Table
8 shows the estimated values of the threshold parameters
as well as the standard deviation and confidence intervals.
Table 7 shows that the posterior standard deviation of the
DTMA model of the Yen against the US dollar is relative-
ly small, and the estimated values of parameters fall within
their corresponding confidence intervals. According to the
standard deviation of parameters and confidence interval-
s, some parameters in each mechanism are significant (the
values with ⋆ in model (5.1) below mean that the parameter-
s are significantly different from zero). Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC)
for the DTMA model and the TMA model are calculat-
ed and compared with the TMA model in Ling and Tong
(2005), and the results are recorded in Table 9. It can be seen
that the AIC of the four-mechanism DTMAmodel is smaller
than that of the TMA model. Moreover, the BIC of the four-
mechanism DTMA model is also small. This indicates that
the four-threshold moving average model with four mech-
anisms is more suitable for the Yen-Dollar exchange rate
data.

For the empirical analysis, our hyperparameter selection
is similar to that of Chen and Lee (1995) and Xia et al.
(2010). We use the values of hyperparameters:

vj = 3, λj = 1, Vi = I,

d10 = d20 = 3, a = p5, b = p95,

where pk represents the k quantile of the sample data.
To construct the DTMA model with four mechanisms, we

performed the MCMC iterations according to the sampling
plan in Section 4. A total of 20,000 iterations were performed

Table 9. AIC and BIC values for two models

Value TMA DTMA

AIC 644.81 639.80
BIC 735.05 732.44

and the first 15,000 iterations were discarded. The last 5000
iterations were retained to make the parameter estimation
and optimal subset selection for the double-threshold mov-
ing average model. The estimation results and confidence
intervals for each coefficient are recorded in Table 7. Table
8 shows the estimated values of the threshold parameters
as well as the standard deviation and confidence intervals.
Table 7 shows that the posterior standard deviation of the
DTMA model of the Yen against the US dollar is relative-
ly small, and the estimated values of parameters fall within
their corresponding confidence intervals. According to the
standard deviation of parameters and confidence interval-
s, some parameters in each mechanism are significant (the
values with ⋆ in model (15) below mean that the parame-
ters are significantly different from zero). The values of the
Akaike (AIC) and Bayesian Information Criterion (BIC) for
the DTMA model and the TMA model are calculated and
compared with the TMA model in Ling and Tong (2005),
and the results are recorded in Table 9. It can be seen that
the AIC of the four-mechanism DTMAmodel is smaller than
that of the TMA model. Moreover, the BIC of the four-
mechanism DTMA model is also small. This indicates that
the four-threshold moving average model with four mech-
anisms is more suitable for the Yen-Dollar exchange rate
data.

Then the fitted four-regime DTMA model can be ex-
pressed as:
(15)

yt =



−0.0748ε
(1)
t−1 + 0.0112∗ε

(1)
t−2 − 0.0004ε

(1)
t−3 − 0.0599ε

(1)
t−4,

yt−1 ≤ 0.846∗, yt−2 ≤ 0.59∗,

0.2352∗ε
(2)
t−1 − 0.0844∗ε

(2)
t−2 + 0.0654ε

(2)
t−3 − 0.0468ε

(2)
t−4,

yt−1 ≤ 0.846∗, yt−2 > 0.59∗,

0.2493∗ε
(3)
t−1 + 0.3640ε

(3)
t−2 + 0.1201ε

(3)
t−3 + 0.0204ε

(3)
t−4,

yt−1 > 0.846∗, yt−2 ≤ 0.59∗,

0.4737∗ε
(4)
t−1 + 0.6697∗ε

(4)
t−2 − 0.0116ε

(4)
t−3 + 0.6704∗ε

(4)
t−4,

yt−1 > 0.846∗, yt−2 > 0.59∗.

Finally, the stationary convergence of Bayesian estima-
tion based on the iterative traces of each parameter was
tested. Figure 4 and Figure 5 show the iterative trajecto-
ry of the last 5000 MCMC sampling results. The frequency
histograms of the posterior means of parameters are shown
in Figure 6 and Figure 7.

Through the trace plot of each parameter sampling pro-
cess, it is found that the trace of each parameter fluctuates
and is stable above and below the estimated value, indicat-
ing that the sampling process is convergent. The posterior
mean frequency histograms in Figure 6 and Figure 7 show
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Table 7. Coefficient estimation results of four-regime DTMA model

jth regime ϕ
(j)
1 ϕ

(j)
2 ϕ

(j)
3 ϕ

(j)
4

1 -0.0748 0.0112 -0.0004 -0.0599
s.d. 0.0533 0.0554 0.0526 0.0634
c.i. [-00977,-0.0518] [-0.0122,0.0335] [-0.0232,0.0224] [-0.0850,-0.0349]
2 0.2352 -0.0844 0.0654 -0.0468

s.d. 0.0921 0.1046 0.0985 0.0797
c.i. [0.2050,0.653] [-0.1166,-0.0523] [0.0342,0.0966] -[0.0187,0.0748]
3 0.2493 0.3640 0.1201 0.0204

s.d. 0.1009 0.1003 0.1072 0.0978
c.i. [0.2177,0.2809] [0.3325,0.3955] [0.0876,0.1527] [-0.0107,0.0515]
4 0.4737 0.6697 -0.0116 0.6704

s.d. 0.1661 0.1925 0.1809 0.2702
c.i. [0.4332,0.5142] [0.6260,0.7133] [-0.0539,0.0307] [0.6187,0.7221]

Table 8. Coefficient estimation results of four-regime DTMA model

Parameters Posterior Mean Posterior Standard Deviation Confidence Interval

r1 0.8466 0.0441 [0.8526,0.8675]
r2 0.5900 0.0684 [0.5641,0.6160]

Figure 4. Trace plots of the last 5000 MCMC iterations of all
estimate parameters

that the parameter distribution of the four mechanisms is
almost symmetrical.

Regarding the selection of subsets, Table 10 shows the
best subset model and the second best subset model with
the values of (0.1, 5), (0.1, 10) and (0.1, 15). Although dif-
ferent (ϕ/τ(j,k), c(j,k)) lead to the same selection of the best
subset model, they have different posterior probabilities,
(ϕ/τ(j,k), c(j,k)) = (0.1, 15) has the highest posterior prob-

Figure 5. Trace plots of the last 5000 MCMC iterations of all
estimate parameters

ability. For the second best subset, (0.1, 10) and (0.1, 15)
select the same subset, and their difference is only reflect-
ed in the higher posterior probability of (0.1, 15). However,
(0.1, 5) select more parameters in the third mechanism than
the other two groups. Therefore, under the result of compre-
hensive comparison of the three sets of subsets, we tend to
choose the best subset of the three groups, and by compar-
ing the three posterior probabilities, we finally choose the
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Figure 6. A posteriori mean frequency histogram of each
parameter of the model (15)

Figure 7. A posteriori mean frequency histogram of each
parameter in the model (15)

highest probability of posterior (0.1, 15). In summary, the

optimal subset model considered in this section is:

(δ1, δ2, δ3, δ4)
′ =


0 1 1 0
1 0 0 0
1 1 0 0
1 1 0 1

 .

6. CONCLUSION

With the advent of the big data age, more and more
time series in practical applications require complex non-
linear models, and the single-threshold TMA model is not
applicable. Therefore, this paper proposes a two-threshold
moving average model, which uses the SSVS method to s-
elect the optimal subset. Due to the uncertainty of the t-
wo threshold variables and the two delay parameters in the
DTMA model, we have conducted a more in-depth study on
this model from the perspective of Bayesian estimation, and
extended the optimal subset selection method to the two-
threshold moving average case. Two simulation experiments
verify the accuracy and effectiveness of the proposed method
for parameter estimation and optimal subset selection. Fi-
nally, the empirical analysis of the Yen-Dollar exchange rate
data shows the best subset selection method of the DTMA
model is ideal and better than the TMA model.
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