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Nonlinear dynamics of triple quantum dot molecules in a cavity:
multi-stability of three types of cavity solitons
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Abstract. By numerical simulation of a cavity filled with triple quantum dot molecules under tunneling
induced transparency, we show that various regimes of existence of different kinds of cavity solitons are
possible. Forming in overlapping regions of a multistable parameter space, cavity solitons in this system
exhibit different dynamical behaviors: stationary on a flat background when there is only one cavity soliton
branch, oscillating when two cavity soliton branches coexist, and stationary-rambling on a honeycomb
background arising from simultaneous presence of a stable pattern and a cavity soliton branch. In particular,
we show that three different types of dissipative localized structures can be excited in multistable regions
where material coherence is high due to light-matter interaction processes.
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1 Introduction

Theoretical and experimental studies on nonlinear opti-
cal cavities have been the focus of many researchers for
almost half a century. The motivation arises from diverse
application prospects as well as interesting nonlinear cav-
ity physics. These areas include all-optical storage and
operations [1-6], photonic tools [7-13], pattern formation
and self-organization [14-17], dissipative solitons [18-21],
vortices [22-25] and extreme events [17,25-28].

With the introduction of quantum coherent phenomena a
promising window has been opened in the realization of
schemes required for efficient quantum information sys-
tems, coherent control protocols and light-matter interac-
tion routes [29]. Electromagnetically induced transparency
(EIT) in atomic systems and its solid state counterpart,
tunnelling induced transparency (TIT), have shown to be
effective multi-level processes in increasing material coher-
ence and generating large nonlinearities leading to multi-
stability, coexistence and competition of solutions 28,30,
31]. The nonlinear scenario is more complex when spatio-
temporal instabilities destabilize the competing attract-
ing sets and multiple bifurcations affect the number and
evolution of the solutions. In bistable cavities, bright cav-
ity solitons (CSs) are generally formed in regions of co-
existence of a low-intensity stable solution and a higher
intensity solution affected by modulation (Turing) insta-
bility [32]. Recenly, Hansson and Wabnitz, going beyond
Lugiato-Lefever equation (LLE) and mean-field approxi-
mation, numerically observed two different stable CSs cor-
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responding to regular LLE CS and an excited state CS
labeled as super CS [33]. The term super reflects the fact
that the excited state CSs are much narrower than the
regular LLE CSs which then can find interesting applica-
tions in frequency combs. Such localized structures were
later experimentally verified in a passive Kerr resonator
in the regime of continuous wave tristability where the
presence of more than two coexistent continuous wave so-
lutions can be associated with a different CS state [34].
Coexistence of two types of CSs due to overlapping reso-
nances was also reported in ring resonators in [35] and for
polariton solitons in microcavity wires [58].

Moreover, coexistence of multiple nonlinear states in a
cavity can lead to even more exotic formations if one or
more of these states are affected by temporal or spatial
instabilities. For example, stable CSs atop a temporally
oscillating spatially homogeneous background due to Hopf
instability have been reported in semiconductor systems
[37,38]. On the other hand, localized states on top of pat-
tern backgrounds were first found in liquid-crystal light
valves in a diffractive configuration of an optical system
in [39] and later experimentally in [40] (see also [41]). CSs
forming atop a spatially modulated background due to
the Turing instability have also been reported recently in
[34] where stable coexistence of temporal Kerr CSs and
extended modulation instability is discussed and claimed
to be the first observation of its kind. An interesting ob-
servation made there was the extension of CS branch of
the first resonance into the region of cw bistability of the
second resonance when the driving was sufficiently strong.
They showed that in this regime, the intracavity field is
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composed of two different CS states both sitting on top of
the lower state cw solution of the second resonance with
distinct duration, peak and power [34]

In this paper, we generalize these discussions to the trans-
verse spatio-temporal dynamics of a nonlinear cavity filled
with quantum dot molecules under TIT. We focus in par-
ticular on the coexistent multiple nonlinear states and
overlapping Turing instability domains. We show that the
nonlinear behaviour of such a model is rich enough to ex-
hibit different regimes of existence for CSs when the sys-
tem is either in bistable or tristable state. Bistability and
tristability refer to the continuous wave solutions with-
out spatial coupling (i.e. when neglecting diffraction). We
introduce different types of CSs corresponding to isolated
cells of a stable pattern solution (due to Turing instability)
either belonging to the intermediate intensity branch (first
type CS) or that of a coexistent higher intensity branch
(second type CS) sitting on a low intensity homogeneous
state in a tristable solution space. The third type of CSs
is found when the control parameter is further increased
and larger switching pulses are used to excite CSs of much
higher intensities (at least 3 times larger than the first two
levels). We label these intense CSs as high-level CSs to dis-
tinguish them from those of ordinary intensity. Our high-
level CSs (the third type of CS) are different from those of
multiple-state purely temporal configuration in [34] where
a CS branch of first resonance is extended into the bistable
region of the second resonance giving rise to a state of co-
existent CSs of two neighboring resonances. These can be
regarded similar to the first and second types of CSs in
our three type localized solutions of a transverse spatio-
temporal dynamics where an upper branch emerges above
those of intermediate and low intensity solutions when in-
creasing the control parameter. To our knowledge, there
has been no report of high-level CSs of peak intensities
much higher than those of ordinary intensity (first and
second kind CSs) and yet sharing the same low intensity
homogeneous background.

After introducing the mean-field model and calculations
of the associated nonlinear term in section 2, we turn our
attention to its multistability feature and domains of spa-
tial instability in section 3. Cavity soliton branches and
their properties are then discussed in sections 4, 5, 6, and
7 respectively including stationary CSs over a flat back-
ground, oscillating CSs on a steady background, station-
ary and rambling CSs over a honeycomb background, and
high-level CSs. Final remarks and conclusions appear in
section 8.

2 The model

A ring cavity filled with triple quantum dot molecules is
considered where the dots in individual molecules are cou-
pled by electric gates as shown in Fig. 1. Realization of
EIT and coherent population trapping (CPT) in atomic
systems require laser beams for coupling appropriate en-
ergy levels; however, the same purpose is served by volt-
age gates in quantum dot molecules which can, in ef-
fect, control electrons’ tunneling rates between different
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Fig. 1. (Color online) (a) Cavity configuration for a typical
triple quantum dot molecule with an external injection and
tunneling indexes controlled by gate voltages. Labels a, b and
c refer to the bottom, center and top dot plunger gates, respec-
tively and gates labeled d and e are used to tune the tunnel
barriers between the bottom and center dots and between the
center and top dots, respectively. A drain-source bias Vys is
also depicted. For more details regarding the fabrication and
material see [42—44]. Typical specifications are: active region
thickness around 200 nm, overall thickness including DFB mir-
rors around 0.5 pm, active emission area around 0.023 cm?, and
emission wavelength around 630 nm. (b) Energy-level structure
for the dots in the molecule.

energy states. Such conditions can be tuned to achieve
tunneling induced transparency for solid state devices as
compared to electromagnetically induced transparency in
atomic media. Recent progress on fabrication techniques,
experiments and application prospects with triple quan-
tum dot structures can be found in [42]. Although the
focus in this paper is about solid-state quantum dot de-
vices, we note that the model and results apply equally
well to three level atomic gases in optical resonators [45]
and to silica based optical microcavities [46].

Cavity configuration can be described by a single mean-
field equation [28,47-51]:

OE =E; — [(1+1i0) +iZx(E)| E+iV?E, (1)

where E and E; are respectively the slowly varying ampli-
tude of the electric field and the injected pump field both
scaled to the square root of the saturation intensity of the
first quantum dot transition. The injected pump E; has
a frequency w; close to that of the transition |0) — |1)
which couples the ground state |0) with the exciton state
|1) (a pair of electron and hole bound in the first dot).
The electron tunneling, on the other hand, couples the
exciton |1) with the indirect exciton state |2) (one hole in
the first dot with an electron in the second dot) and also
with the indirect exciton state |3). The detuning term 6 is
the frequency difference between the cavity resonance and
w; normalized to the inverse of the photon lifetime. The
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diffraction term is given by the Laplacian operator in two
transverse dimensions and time is normalized to the pho-
ton life time in the cavity. X is the cooperative parameter
directly proportional to the number density of quantum
dot molecules N through

_ Ny, kL

= _tur 2
TLFE()T’ ()

where po; is the transition dipole moment, k the wave
number of the cavity field, L the length of the cavity, I" the
linewidth, €y the permittivity of free space, and T is the
cavity mirror transmittivity. x (E) is the complex suscepti-
bility which contains all the medium-related details due to
the off-diagonal density matrix elements when multiplied
by the field amplitude E. We note that non-interacting
situation among individual quantum dot molecules inside
the cavity is considered in the formalism for simplicity.

The Hamiltonian of the system for the energy level con-
figuration shown in Fig. 1(b) can be written as follows:

H=Hy+ H;+ Hr, (3)

where the unperturbed, interaction and tunneling Hamil-
tonian terms respectively are :

3
Ho =1 w;li) (i, (4)
j=0
1 ) )
Hy = §Eiu01|0)(1|e(2k'z_’“’it) + M. C., (5)
Hyp = Tyo|2) (1] + Ths|3)(2| + H. C. (6)

where H. C. stands for Hermitian Conjugate. In the Hamil-
tonian terms above, j represents the respective energy
level, z is the longitudinal coordinate, T2 and T3 de-
note the electron tunneling matrix elements for |1) — |2)
and |2) — |3) transitions, respectively. It should be noted
that in the effective time scale here hole tunneling can be
neglected.

The dynamics of the medium variables is described by the
master equation of motion for density matrix:

p=—ylH0) (7)

Under the rotating-wave approximation, equations of mo-
tion for density matrix elements are obtained as follows:

po1r = i + (i0 — yo1)po1 + 11202, (8)
po2 = {i(0 — wi2) — 20} po2 — iEp12 + iT12p01 + iT23/)(E:57)
po3 = {i(0 — w12 — was) — Y30} P03 — ip13 + iT23po2,
(10)
p12 = — (w12 + Y12)p12 — B po2 + iTasp13, (11)
P23 = —(iwaz + v23) p23 — iT12p13. (12)
p13 = —(iw1z +7113)p13 — i £ po3 — iT12p23 + iTa3p12 13)

where 0 is the frequency mismatch between the injected
field and the |0) — |1) transition which is normalized to

the linewidth of the quantum dot transition, here con-

sidered to be positive for a self-focusing nonlinearity. wis

is the frequency difference between levels |1) and |2) and

wog is that of |2) and |3). Both of the level separations

are managed by electric gates which give control over the

occupation of levels |2) and |3) [52]. The relaxation rate

o1 is taken as unity while all others are 10™37q; [53,54].

We note that such an analysis is relevant for quantum-

confined semiconductor systems where excitonic transi-

tions are dominant. These are more pronounced in quan-

tum dots (3D carrier confinement) than in quantum wells

(1D carrier confinement). Similar calculations can be found,
for example, in [52,53,55,56] for variety of quantum-confined
structures.

These coupled equations are solved for pp; under steady
state conditions along with an additional condition that
the sum of the probabilities of occupancy of the levels is
equal to one and can be written in a compact form as:

A+iB

— 14
C+1iD’ (14)

por=FE

where A, B, C, and D are all functions of (0, w;;, Ti2, Tos
and |E|?). This expression is then substituted in Eq. (1)
according to x(E) = po1/E. Real and imaginary parts of
the derived nonlinearity identify a large dispersion curve
slope along with a vanishing absorption around § = 0.37
[28].

3 Multistability of homogeneous states and
multistable patterns

Multistability in this system is achieved for homogeneous
steady states (0; = 0 and V2 = 0 in Eq. (1)) when pop-
ulation in level |2) is increased via the control param-
eter wis (or equivalently the gate voltage) allowing for
more absorption in the transition |0) — |1). By increas-
ing the control parameter value at the fixed stationary
intensity |F,|?> = 0.2, monostability changes into bistabil-
ity at wia = 0.25 beyond which a lower intensity branch
develops in simultaneous presence of the already estab-
lished higher intensity solution. A second critical point
is found at wijo = 0.38 where an even lower intensity
branch appears leading to tristability with the two pre-
viously described branches. The system then returns to
a bistable state by removing the branch of the lowest in-
tensity when the control parameter is further increased to
w2 = 0.41. At wio = 0.51, the solutions with the lowest
intensity is recovered (enduring for all control parameter
values larger than this critical point) and the tristable
state emerges once more. When the control parameter
value crosses wis = 0.59, the highest intensity branch
disappears and bistability dominates again between the
moderate intensity solutions and those of the lowest in-
tensity. The branch of highest intensity develops again at
the critical value of wis = 0.63 and tristability occurs
for the third time lasting until wis = 1.54 after which
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Fig. 2. (Color online) (a) Mono-, bi-, and tri-bistable states of
the system when the control parameter value w2 is increased
from 0.30 to 0.40 and 0.43. The available outputs for the fixed
stationary intensity |Es|> = 0.2 are depicted by circles. (b)
Multistable solution space for different values of the control pa-
rameter. Monostable, bistable and tristable regions are marked
respectively by numbers 1, 2, 3. Other parameter values are:
X =1,Ta=0.1,Tg =0.01,w23 = 0.3,6 = 0.3, and § = —0.5.

bistability and then monostability (at wis = 1.82) domi-
nate since the branches of highest and moderate intensity
solutions vanish respectively. For higher control parame-
ter values monostability is the only feature of the system.
These transitions and the coexistent states are shown in
Fig. 2(a) and (b).

The linear stability analysis of the homogeneous station-
ary solutions, i.e. the response of the system to small fluc-
tuations around the steady states, provides the most un-
stable spatial wave-vectors which rule the periodicity of
the emerging pattern in a mechanism typical of Turing
pattern formation [32,51,57]. For the parameter values ca-
pable of a multistable behaviour, separate Turing domains
and branches have been reported for our system leading to
conditions for pattern competition and optical turbulence
with the possibility of triggering 2D rogue waves [28].
Coexistence of Turing unstable branches at higher inten-

0.6

™4,

0.5+

0.4+

0.3+

—— 2nd Turing domain
—@— 1st Turing domain
- Higher intensity stable background

Lower intensity stable background
0.1+ T T T

0.0 0.1 0.2 0.3 0.4 0.5 0.6
[E;| 2 (arb. units)

0.2

Fig. 3. (Color online) Overlapping stable and unstable do-
mains in w12 — |E;|* parameter space. Stable homogeneous
branches (light and dark gray) coexist with Turing domains of
different critical wave-vectors (blue squares affecting the upper
branch and red circles the middle one). Parameter values are
the same as in Fig. 2.

sities with a low-intensity stable homogeneous branch is a
generic feature of this system and is shown in Fig. 3 in the
parameter space (|E;|?,wia). We observe that depending
on the value of the control parameter different branches in
the multistability curve experience Turing instability with
a different critical wave-vector K .: the region delimited by
squares shows the instability for small K. domain and that
by circles for large K. domain. In addition to the fact that
these separate Turing domains coexist for certain range of
parameter values (see the overlapping region of the areas
delimited by squares and circles in in Fig. 3), they also co-
exist with stable backgrounds illustrated by light and dark
gray areas in the figure. Specifically, the Turing domain of
small K. coexists in part with both the lower intensity and
higher intensity stable backgrounds. However, the Turing
domain of large K. is only coexistent with the lower inten-
sity stable background. These are also evident in Fig. 4(a)
and (¢) and have different consequences in the nonlinear
dynamics of the cavity.

In a typical bistable condition and in presence of self-
focusing nonlinearity, the lower intensity stable homoge-
neous solution can surround one cell of the higher inten-
sity pattern formed as a result of Turing instability thus
providing the necessary conditions for the formation or ex-
citation of localized structures known as cavity solitons.
Here, we numerically check the existence and properties
of CSs in four regimes: i) CSs on a flat (homogeneous)
background, ii) temporally oscillating CSs on a stationary
background, iii) CSs on a honeycomb background and iv)
high-level CSs with peak intensities much higher than the
stable or unstable homogeneous solutions. Numerical sim-
ulation of the system is carried out through the standard
split-step method separating and solving time derivative
and diffraction terms respectively by Runge-Kutta and
Fast Fourier Transform methods. We have used grid sizes
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Fig. 4. (Color online) (a) Multistability curve and the CSs belonging to middle and upper branches sharing the same low
intensity stable background for w2 = 0.402. (b) Intensity and phase values of these CSs versus pump value. For oscillating CSs
we have considered their maximum values in intensity and phase. (c) Multistability curve and the CSs belonging to the middle
and upper branches where the middle branch serves as the low-intensity background for the CSs. The control parameter value
is wiz = 0.4675. (d) Intensity and phase values of these CSs versus pump value. K. stands for the critical wave-vector related
to the Turing instability domains and the parameter values are the same as in Fig. 2.

up to 128 x 128 lattice sites and guaranteed that the re-
sults are fully reproducible.

4 Stationary CSs on a flat background

We have performed direct numerical simulations of the
dynamical equations as described in [28,30,31] to find CS
states over broad ranges of parameter space. Stable CS
states have been tested to random perturbations. Two
regimes of stationary CSs are accessible in different sec-
tions of the multistability curves depending on the val-
ues of the control parameter. The first regime of exis-
tence of stationary CSs is found in the interval |E;|?
(1.44 — 2.60) x 1072 corresponding to localized structures
connecting individual cells of the pattern solution of in-
termediate intensity located on the middle branch, and
the homogeneous background located on the low-intensity
branch. While the first regime is specific to the section on

the left of the multistability curves in Fig. 2 where trista-
bility is present, the second regime of existence for sta-
tionary CSs can be achieved on the right hand side of the
same figure within the bistable situation. In the interval
|E;|? = (19 —25.5) x 1072, stationary CSs are observed to
form due to coexistence of the intermediate intensity sta-
ble homogeneous solution located on the rightmost part
of the middle branch and pattern solution of higher in-
tensity belonging to the uppermost branch. In both cases,
CSs are created on a flat background provided either by
the lowest intensity branch or the intermediate intensity
branch with typical features of regular CSs. Fig. 4(a) de-
picts the CSs belonging to the first regime discussed above
while Fig. 4(c) illustrates those of the second regime along
with the curves associated with the stationary solutions.
The intensity and phase values of these CSs are shown in
detail in Fig. 4(b) and (d).
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Fig. 5. (a) Time evolution of intensities of an oscillating CS
and its stationary background for |E;|? = 1.64 x 1072 and
w12 = 0.399. (b) Frequency of CS intensity oscillations versus
pump intensity. Note that by increasing wi2 stationary inten-
sity falls onto the middle branch experiencing only one unsta-
ble domain and thus CSs become stationary in their intensity.
Parameter values are the same as in Fig. 2.

5 Oscillating CSs on a stationary background

As it is seen from figures 4(a) and (b), for smaller values of
the control parameter w12 the fixed stationary intensity at
0.2 lies entirely on the uppermost branch coexistent with
two lower intensity branches, one of which is modulation-
ally unstable. This gives rise to oscillations in the intensity
and phase of the CSs excited on the upper branch in the
range |E;|? = (1.5—1.7) x 1072, We note that these CSs sit
on a homogeneous stationary background belonging to the
lowest intensity branch. The intensity versus time plots for
an oscillating CS and its homogeneous stationary back-
ground are shown in Fig. 5(a) along with the frequency of
oscillations throughout their existence range in Fig. 5(b).
The reason behind this phenomenon is the fact that al-
though a very low-intensity stable homogeneous state ex-
ists, these CSs are affected by the Turing instability of
the middle branch having a different critical wave-vector
and a relatively lower intensity than those of the upper-
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Fig. 6. Limit-cycle trajectories for oscillating CSs (left panels)
and their peak-intensity time evolution (right panels) for (a)
wiz = 0.399 and |F;|? = 1.64 x 1072, (b) w12 = 0.400 and
\EJZ =1.88x1072, and (¢) wiz = 0.401 and \E,\Z =2.2x1072.
The horizontal axes in the plots of the right panels represents
time from zero to 20000 time units. Other parameter values
are the same as in Fig. 2.

most branch. In a special case where the two instabil-
ity domains (Turing domains affecting the uppermost and
middle branches) have comparable strength, pattern com-
petition is observed leading to 2D optical turbulence and
generation of rogue waves in the absence of any stable ho-
mogeneous solution [28]. In terms of the injected intensity
|E;)2, these oscillating CSs of the uppermost branch are
bistable with stationary CSs of the middle branch both
sharing the same stable homogeneous background of the
lowest intensity.

To further characterise the dynamics of these oscillat-
ing CSs, we show their limit cycles (peak intensity, phase)
along with their peak-intensity time traces in Fig. 6. These
plots correspond to three parameter values of wis = 0.399,
0.400, 0.401 and |E;|? = 1.64 x 1072, 1.88 x 1072, 2.2 x
1072, respectively, to illustrate the extent of the intensity
variations (oscillation amplitudes) and signature bound
phase behavior for these CSs.

6 CSs on a honeycomb background

The third regime is associated with the CSs belonging to
the rightmost bistable part of the multistability curve with
a stable background which has the intensity of the middle
branch, as it can be seen from Fig. 4(c). By increasing
the control parameter wis from 0.4275 to 0.4675 it is ob-
served that the extent of the stable section serving as the
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Fig. 7. (Color online) (a) 3D plot of the output intensity show-
ing the honeycomb pattern serving as the less intense back-
ground for the CS (|E;|* = 0.145 and wiz = 0.46) and (b)
the intensity versus time for the CS and its honeycomb back-
ground. Other parameter values are the same as in Fig. 2.

background for these CSs shrinks and the Turing domain
of the middle branch sets in. This process leaves the sta-
ble CSs with a modulation unstable background which in
turn gives them interesting new features. As a result, CSs
first loose their stable homogeneous (flat) background to a
honeycomb pattern which traps them in its intensity max-
ima and then, by further increasing wis that gives more
stability to the honeycomb solution, the trapped CSs start
to ramble along the sides of the honeycomb pattern where
the intensities are the highest. In Fig. 4(d), intensity and
phase variations of these CSs with the pump intensity are
depicted.

In Fig. 7(a) a stable CS over honeycomb pattern state is
shown for \E,-\Z = 0.145 and wi> = 0.46. Also depicted
is the comparison of the CS intensity and the honey-
comb background intensity (at its maxima) through time
in Fig. 7(b) which shows stationary values for both the
CS and the honeycomb background intensities. When the
control parameter values are increased, we observe faster
relaxations to the stable honeycomb background. At the
same time, the original CS starts moving around the hon-
eycomb structure with no preferred direction. The snap-
shots of Fig. 8 show the rambling CS over a honeycomb
pattern for increased control parameter values of |F;|? =
0.132 and wiy = 0.4675 at different times. Fig. 9 in par-
ticular shows the average output intensity over 3500 t. u.
confirming that the CS moves along the sides of the un-
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Fig. 8. (Color online) Snapshots of the output intensity which
shows the drift of the CS along the side of the underlying hon-
eycomb background. Time in the snapshots progresses as (a)
to, (b) t = to + 150, (C) t = to + 450 and (d) t = to + 850
in terms of time units. |Ez|2 = 0.132, w12 = 0.4675 and other
parameter values are the same as in Fig. 2.
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Fig. 9. (Color online) The honeycomb pattern reconstructed
by the rambling CS when average is taken from output inten-
sity over 3500 time units. wiz = 0.4675 and other parameter
values are the same as in Fig. 2.

derlying honeycomb pattern.

Since the CSs of different regimes mentioned above be-
long to different states of the system having coexistent
branches of different intensities and critical wave-vectors
for Turing instabilities, we expect them to have distinct
features. For instance, in Fig. 10(a) it is seen that CSs
belonging to the bistable state located on the rightmost
part of the multistability curves exhibit a full width at half
maximum (FWHM) value that is almost two times that
of CSs forming in the leftmost section of the multistabil-
ity curves. Moreover, due to the different intensities of the
involved background states, they are observed to have dif-
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Fig. 10. (Color online) (a) Intensity profiles along the

horizontal axis for stationary CSs and CSs over honey-
comb patterns at wiz = 0.4450(|E;|> = 0.183) and wiz =
0.4575(|E;|* = 0.15), and those for stationary and oscillat-
ing CSs at wiz = 0.398(]E;|> =144 x 107%) and wiz =
0.386(|E;|*> = 1.51 x 107?), respectively. (b) Efficiency value
(the ratio of CS intensity to that of pump) in terms of the
control parameter wi2. The discontinuities in the left part of
the figure are due to the replacement of the involved Turing
branches in the formation of CSs and the Turing destabilization
of the lower intensity background in the right part. Parameter
values are the same as in Fig. 2.

ferent contrast (CS intensity/background intensity) and
efficiency (CS intensity /pump intensity) values. For the
CSs forming in the bistable and tristable states of the left-
most part of the multistability curves the contrast value
varies between 15 and 22 while the range is only between
5 and 10 for the CSs of the bistable state in the rightmost
section of the multistability curve. For the efficiency pa-
rameter, Fig. 10(b) shows that it effectively depends on
the location of the modulation unstable branch since the
low intensity homogeneous solutions change their intensity
very slightly while the Turing-affected branch involved in
formation of the CSs can shift from the highest intensity
branch to the intermediate intensity branch when chang-
ing the control parameter. This trend is very less dramatic

45

% —O— Stationary CS
:3 404 —@— Oscillating CS
2 —Mm— High-level CS
= 35
2
LLIU’
304
254
20
15+
101 ./r
o
519 . . . . :
0.384 0.388 0.392 0.396 0.400 0.404
0‘)12

Fig. 11. (Color online) Switching energies involved in excit-
ing stationary (black circles), oscillating (red filled circles) and
high-level cavity solitons (blue squares) in terms of the control
parameter for the tristable region. Parameter values are the
same as in Fig. 2.

for the CSs belonging to the bistable state of the rightmost
part of the multistability curve since replacement of the
Turing-affected branch is not involved.

We conclude this section by stressing that all CS types
discussed here are stable as verified by long simulation
times of the model and robustness to perturbations. This
stability extends the results of [58] where CSs of first and
second type have been found to be stable only when the
system is in a two-state situation. In our case, instead, sta-
bility of all the CS types reported here is robust regardless
of the number of coexistent solutions.

7 Switching of Bistable and multi-level CSs

In this section we turn our attention to the switching of
multi-state CSs of the tristable region found at the left-
most section of the multistability curves, see Fig. 4(a).
Excitation of stationary CSs on a flat background or os-
cillating CSs is possible at the same control parameter
value by tuning the switching pulse energy. Various mech-
anisms of CS switching have been reported for a variety of
devices [59-63]. Here, however, we only use the coherent
switching method through a Gaussian address pulse in the
form below:

(w=20)?+(u=ug)?

B (20, Y0) = Epe w? (15)
where Fy and w are the amplitude and width of the Gaus-
sian address pulse respectively. (x,y) represent the trans-
verse coordinates and (zg,yo) is where the address pulse
falls onto. Note that this equation does not have a phase
term meaning that it is taken to be in phase with the
pump. We note, however, that the same pulse with a m
phase difference with the pump would switch off the CS.
To have a better quantitative comparison among separate
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Fig. 12. (Color online) Intensity and efficiency values of high-
level cavity solitons versus the control parameter. Parameter
values are the same as in Fig. 2.

simulations, we use the scaled equation Es, = |Eo|*tin;
for the switching energy which provides a rough estimate
of the energies involved in switching of CSs with differ-
ent dynamical behaviour for the same control parameter
value.

Fig. 11 shows the threshold energies required for switch-
ing different CSs. It is seen from the figure that oscil-
lating CSs are excited by lower switching pulse energies
compared to stationary CSs forming on a flat background
at the same control parameter values. This is a relevant
feature at both ends of the CS interval. It is important
to note that by increasing the control parameter from
w2 = 0.384 to wis = 0.397 at a fixed stationary inten-
sity of |E4|?2 = 0.2, the system moves from the upper
branch to the middle branch in the multistability curves.
Switching energies Ej,, shown on the left (right) part of
Fig. 11 belong to CSs with peak intensities close to the
upper (middle) branch. One can then conclude that oscil-
lating CSs being bistable with stationary CSs experience
intensity fluctuations only because they are affected by a
Turing unstable solution that is coexistent with that which
localizes them in presence of the lowest intensity flat back-
ground. They are found at both ends meaning that their
existence and oscillating character are independent of the

0.7

Stable

------ Large K_Turing
i conesnee S| Kc Turing
B High-Level CSs
| Oscillating CSs
@ Stationary CSs

Intensity (arb. units)

0.0

6 9 12 15 18

22'1 x1072
[E;l

Fig. 13. (Color online) High-level CSs achievable for higher
control parameter values for which the system is prepared on
the middle branch for the fixed stationary intensity |E;|? = 0.2,
here w1z = 0.404. A less extended curve (all black with dash-
dots) is also shown for comparison for which the system is
prepared on the upper branch for the fixed stationary intensity
of |Es|*> = 0.2 where high-level CSs are not supported, here
wiz2 = 0.384. Parameter values are the same as in Fig. 2.

system having been prepared in the upper branch or on
the middle branch with stationary intensity |Es|? = 0.2.
While bistable CSs exist both at the left and right ends of
Fig. 11, there is a branch of switching energies F,, that is
only found at the right end and is above other branches in
the interval wys = 0.4—0.404. Switching pulses of these en-
ergies excite CSs with intensities much larger than those
shown in Fig. 4 and featuring large efficiency values as
shown in Fig. 12. To distinguish these CSs from those
of ordinary intensity, we label them as high-level CSs. Al-
though CSs that can be switched on at both ends of the fig-
ure have a flat background on the lowest intensity branch,
high-level CSs are only achievable when the control pa-
rameter exceeds wips = 0.40 at which the system moves
from the uppermost branch affected by the smaller criti-
cal wave-vector Turing instability to the middle branch of
larger Turing critical wave-vector for the fixed stationary
intensity of | E4|? = 0.2, as shown in Fig. 13. This explains
why these high-level CSs require the initial state to be pre-
pared in the Turing domain of larger critical wave-vector
unlike similar tristable situations with smaller control pa-
rameter values where the system is initially prepared in
the Turing domain of smaller K, for |E,|? = 0.2 and high-
level CSs cannot be excited at all. A typical high-level CS
configuration is shown in Fig. 14.

At difference from their temporal counterpart reported
and named as super cavity solitons in [33,34] which are
narrower, these CSs of nonlinear states come with a broad
spatial width compared to ordinary CSs at the same con-
trol parameter value. This is consistent with the fact that
these high-level CSs originate from transverse modes af-
fected by instabilities of a different spatial wavelength
corresponding to the larger critical wave-vector Turing
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Fig. 14. (Color online) A high-level cavity soliton excited at wi2 = 0.4 and its horizontal intensity profile compared with an
ordinary CS excited at the same control parameter. Parameter values are the same as in Fig. 2.

domain. Multi-stability in our system is in fact induced
not just by coexisting resonances but also by coexistent
states of different spatial wavelength on the same reso-
nance. The high-level CS is a hybrid soliton of multi-stable
resonances and coexisting (not necessarily bistable) spa-
tial wave-vectors. As it is shown in Fig. 14, these high-level
CSs are 22 percent broader and 4 times more intense (on
average) than their regular siblings. The black squares in
Fig. 12 and Fig. 13 show that the high peak intensity of
high-level CS persists for the full parameter region of their
existence.

8 Conclusion

Since the introduction of quantum coherent phenomena
such as electromagnetically induced transparency, many
attempts have been made to investigate their interest-
ing features with the aim of opening novel application
prospects. However, it is the realization of those phenom-
ena in solid state devices that can make them compati-
ble with integrated photonics. Tunneling induced trans-
parency, the solid state version of electromagnetically in-

duced transparency, realized in triple quantum dot molecules

with the benefit of controlled electronic transitions have
made it possible to employ a combination of quantum
and nonlinear optical features within the confinement of a
cavity. Our work shows the ubiquity of cavity solitons in
these devices that can be used as digital optical memories.
Regimes of multi-stable cavity solitons allow for multi-
state digital optical memories where the coding power of
stored signals is greatly enhanced.

Here, the nonlinear dynamics of a cavity filled with triple
quantum dot molecules is investigated numerically un-
der the conditions of tunneling induced transparency. The
large material coherence provided by quantum coherent
phenomena generates multistate solution space. In such
a configuration, simultaneous presence of spatial insta-
bilities of different critical wave-vectors has already been
shown to give rise to pattern competition and optical tur-
bulence [28]. Here we have shown that the coexistence of a
low-intensity homogeneous stable solution with branches

affected by Turing instabilities prepares the system to
form cavity solitons of three different types and with unique
characteristics depending on the type of coexistent solu-
tions. In particular, through dynamical simulations, we
reported and found regimes of stability of regular, oscillat-
ing, bistable and high-level cavity solitons. The first two
types of CSs being related to different branches of mul-
tistable stationary homogencous solutions are the exten-
sion to the spatio-temporal regime of those predicted and
verified in [33,34] for a purely temporal regime although
without the introduction of lkeda maps. High-level cav-
ity solitons do not have a counterpart in previous studies
of either spatial or temporal systems. They correspond to
much more intense and broader dissipative localized struc-
tures than those expected by the simple intensity values
of the multistable homogeneous solutions. High-level cav-
ity solitons add to the rich landscape of complex localized
and extended structures in nonlinear optical cavities and
can offer the operator possible use of simultaneous and
controllable pixel elements for encoding of optical infor-
mation and smart optical memories.

Although the present study has focused on the spatio-
temporal features of a three-level medium in a cavity in
the presence of transverse diffraction, we expect many of
these results to hold in the presence of longitudinal disper-
sion in both regimes of anomalous and normal dispersion.
Fast time features and applications of the three types of
cavity soltions identified in this work in ring resonators
will be reported in future communications.
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