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Abstract: Power distribution networks are increasingly challenged by ageing plant, environmental
extremes and previously unforeseen operational factors. The combination of high loading and
weather conditions is responsible for large numbers of recurring faults in legacy plants which have
an impact on service quality. Owing to their scale and dispersed nature, it is prohibitively expensive
to intensively monitor distribution networks to capture the electrical context these disruptions occur
in, making it difficult to forestall recurring faults. In this paper, localised weather data are shown
to support fault prediction on distribution networks. Operational data are temporally aligned with
meteorological observations to identify recurring fault causes with the potentially complex relation
between them learned from historical fault records. Five years of data from a UK Distribution
Network Operator is used to demonstrate the approach at both HV and LV distribution network
levels with results showing the ability to predict the occurrence of a weather related fault at a given
substation considering only meteorological observations. Unifying a diverse range of previously
identified fault relations in a single ensemble model and accompanying the predicted network
conditions with an uncertainty measure would allow a network operator to manage their network
more effectively in the long term and take evasive action for imminent events over shorter timescales.

Keywords: data analytics; weather faults; fault prediction; distribution network; machine learning

1. Introduction

Adverse weather conditions can have a significant impact on electricity network infras-
tructure and will subsequently compromise the quality of power delivered to consumers.
A study on the effects of climate change on the US electrical network concluded that 80%
of all large scale power outages between 2003 and 2012 were caused by weather and
the average number of weather related outages per year doubled during those years [1].
Although some results refer to weather conditions specific to the US climate, they are
indicative of how changing weather conditions can affect the electricity network. In the UK,
the distribution network operators have published climate adaptation reports, outlining the
current risks and the anticipated impacts as a result of a changing climate. Among others,
ref. [2] discusses the main results of a study conducted with the UK Met Office regarding
the impacts on the electricity network, which identified the major causes of weather related
outages and estimated how their frequency might change in the future. Using the Met
Office climate projections [3], the study showed that there is an uncertainty regarding the
future occurrence of wind related faults, as there is uncertainty in the wind gust projections
as well. However, the number of lightning related faults is more likely to increase and
the faults due to snow, sleet and blizzard are estimated to be fewer but with the same or
increased intensity.

1.1. Overview of Research

This work examines the consequence of weather conditions on the distribution net-
work operation and attempts to predict the occurrence of weather-related faults in the case
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where only weather observations are available. These are typical conditions for a UK distri-
bution network, where little to no monitoring is usually available. In addition, this work
was conducted with a UK Distribution Network Operator (DNO) and stemmed from expert
observations that certain faults occurred following certain weather conditions, therefore it
is an application with real operational value. Therefore, the methodology and predictive
models from this research can be deployed immediately to offer value in a distribution
network. There is no need for costly additional monitoring equipment installation. This
is also achieved without detailed topographic information or widespread environmental
sensing. The focus of this paper is on the prediction of weather related faults at the HV and
LV level of a distribution network, considering only the fault history for that network and
historical weather conditions. While weather is not the sole contributor to a distribution
network’s faults, it has been proven from the relevant research (as discussed later in this
paper) that it has a major impact on the power systems faults. This combined with the fact
that weather data are usually more easily obtained (and with less cost) than component
specific measurements led to the decision to address this issue using meteorological data
only. The purpose of this work is not to predict the exact location of the fault or specific
type of electrical fault, but the circuit that is more likely to be affected by a fault, given
the expected weather conditions in that area. To this end, statistical analysis and machine
learning methods are used, where the fault records are used as ground truth for the event
occurrences in the network and minimal environmental data are examined as fault causes.
The results presented and discussed later in this paper show that the prediction of a weather
related fault at a specific part of a distribution network considering only meteorological
observations is possible. A practical application stemming from the work presented in this
paper would be utilising longer term weather forecasts in order to identify areas of the
distribution network that might be at risk of fault under specific weather conditions. This
can extend to both HV and LV levels of the network, where this methodology could be
used to enhance preparedness for a fault potentially affecting a large number of customers
or strategically position maintenance staff, therefore assisting in the overall distribution
network management. The uncertainty measure associated with the predictions would
allow the DNOs to act on predictions according to their attitude to risk. The data analysis
methodology presented in this paper can be summarised in Figure 1.

Figure 1. Data analysis methodology.

The diagram shown in Figure 1 gives an overview of how the weather variables are
analysed in conjunction with the fault records in order to identify a suitable fault prediction
model. The different stages of the methodology from the dataset development to the
selection of the fault prediction model of Figure 1 are detailed in Sections 2 and 3 of this
paper, which discuss the data used and the data analysis process, respectively.

1.2. Related Work

The weather related impacts on the power system and the uncertainties accompanying
climate change have been a recurring research subject of the academic and power industry
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sectors. The existing research on weather related fault prediction is reviewed in this section,
which concludes with the contribution of the work presented in this paper and how it
differs from the previously conducted research.

A review of the research addressing the impacts of extreme weather on the power
systems’ resilience is presented in [4], where a framework for the modelling of weather
related impacts on power systems is proposed. A methodology based on this framework is
developed in [5], where the effects of windstorms on the transmission network’s resilience
are assessed, utilising real time weather conditions and calculating the weather dependent
failure probabilities. The application of this methodology on the GB transmission network
determined the critical wind speed above which there was a sharp increase in the event
occurrences per year.

The effect of wind on the GB transmission system was also investigated in [6], where
historical data was used to identify the relationship between wind gust and fault occurrence.
The work presented in this paper concluded that, when extreme values of wind gust are
observed there is a higher probability for a wind related fault to occur. The occurrence,
intensity and duration of wind storms in the northeast US are modelled in [7]. Subsequently,
the dependencies of weather and component failure are investigated, and the risk of failure
is quantified for the components of a real distribution system.

Weather data have been used as part of an improved protection strategy called hierar-
chically coordinated protection [8,9]. Unlike other fault prediction approaches which aim
to prevent the occurrence of a fault, the purpose of prediction in hierarchically coordinated
protection is to give the utilities the opportunity to anticipate a weather-related fault and be
better prepared to deal with it. This approach utilises weather data and machine learning
techniques such as Neural Networks or Support Vector Machines to detect and classify the
potential faults. Then, when a fault is detected and recognised by the system, the protection
is adjusted based on the type of the fault. The prediction of occurrence and location of
weather-related faults in the distribution network was also examined in [10] which pro-
vides a comparison of machine learning models developed for this purpose. Again, the aim
of these predictive models, which utilised grid electrical parameters and infrastructure
type alongside historical weather and fault data, was to enhance preparedness for an event
rather than preventing it.

The use of historical weather data alongside a number of other data sources such
as customer calls and Smart Meter data, geographical information system data, asset
condition data etc, for post fault analysis is proposed in [11]. Work utilising the above
ideas is presented in [12,13], where historical and real time weather data are analysed
alongside data from various other sources in order to provide an understanding of the
effects that different nature-caused events have on the network and produce risk maps for
weather-related outages using a geographical information system framework and fuzzy
logic, respectively.

Weather conditions and lightning strike positions have been used in addition to data
from remote power quality monitoring devices to improve their predictive maintenance
system by detecting incipient equipment failure in [14], while in [15] wind speed data in
conjunction with component resiliency index and distance from the hurricane centre have
been used as inputs to a Support Vector Machine model, in order to predict an electrical
grid component outage following a hurricane.

Data from maintenance tickets, features related to equipment vulnerability and various
weather-related features, mostly related to temperature and precipitation to model monthly
weather conditions have been used for the modelling approach presented in [16]. The aim
of this model was to gain an insight of the weather factors that significantly affect the
power grid and, subsequently, lead to serious events and model their dependencies.

A framework to predict the duration of distribution system outages is presented in [17].
Using outage reports and their respective repair logs in conjunction with weather data,
it was found that certain weather features were correlated with specific causes and good
results could be achieved, even when taking only weather data into account. The inclusion
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of information contained in the outage reports and repair logs was found to enhance the
model’s performance.

An analysis of the correlation between failures and weather conditions is presented
in [18], where market basket style analysis is used to generate predictive rules using weather
data which has been earlier categorised as “high”, “medium” or “low”. The analysis
gave a moderate accuracy of prediction but indicated that there is potential in using
weather forecasts to predict component failure. In [19], an extended version of logistic
regression is used to perform a probabilistic classification and calculate the probability of a
fault occurrence given information regarding the weather conditions, location, time and
operating voltage.

The relationship between weather conditions and the total number of interruptions is
examined in [20], where historical weather data and daily number of failures are considered
in order to predict the total number of weather related failures in a year. The purpose
of this work is to assess the network’s performance by the end of the year by comparing
the actual and the previously predicted number of failures. Similar work is presented
in [21], where a Neural Network based model is developed to predict the total number of
interruptions and not only those that are directly caused by weather conditions.

The previously conducted research presented above, gives an idea of how weather
data have been used to predict weather related faults for various applications. The first
examples of research work discussed, refer to fault prediction at the transmission level and
wind is the environmental factor that is predominantly considered. Next, the relevant work
at the distribution level was discussed. The majority of this work utilises a substantial
amount of data, coming from various sources alongside the weather data that they use.
Two of the papers presented above [20,21], make use of weather data and number of
failures only but their purpose is to predict the total number of interruptions in a region.
Another [18], aims to predict a component failure using only weather data but, instead of
using the actual measurements, they have previously classified them in three categories
(high, medium, low). In contrast, the research work presented in this paper aims to assess
the impact of weather on the occurrence of distribution network faults in the absence
of extensive monitoring. As the distribution networks in the UK are usually minimally
observed, this work utilises already existing meteorological data from local Met Office
weather stations and fault records provided by a UK Distribution Network Operator,
in order to predict a weather related fault occurrence at a given location. This work extends
the fault prediction methodology down to the LV level of the distribution network and
follows an ensemble approach, which unifies a range of identified fault relations as these
were captured by a number of machine learning methods, allowing the benefits of different
techniques to be combined in a single model. The machine learning methods used in this
paper have already been used in the literature to address various applications and no new
techniques are proposed as part of this paper. The motivation for using machine learning
was to address the unknown physics of the individual fault cause processes. Identifying the
most suitable methods for this specific task and combining them in an ensemble model that
retains the strengths of individual models results in the development of fault prediction
models for the HV and LV distribution network that can have a significant impact from a
practical point of view.

The remainder of this paper is organised as follows. The network operator data and
context are described in Section 2. In Section 3, the machine learning methods and the
data analysis process are described, while the results are presented and discussed in the
three case studies of Section 4. Finally, a brief summary and conclusion discussing the
operational benefit of this research are given in Section 5.

2. Network Operator Data and Context

The work presented in this paper utilises fault data from a real distribution network
alongside historic weather observations. This section provides an overview of the context
and nature of the data used.
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2.1. Fault Records

Five years of fault records were provided by Northern Powergrid (NPG) and used
for the work presented in this paper. The data files contained the recorded incidents that
occurred at both the HV and LV levels of their distribution network (covering the areas
of North East of England, Yorkshire and northern Lincolnshire) and were examined first
separately and then together.

The HV fault records cover the period 20/05/2013–20/07/2018 and contain 17,653
events in total. The range of voltages covered in the HV fault records was 6.6 kV–132 kV
with the majority of recorder faults occurring at 11 kV (~76%) followed by 20 kV (~18%),
which is reasonable as the largest part of NPG’s distribution network operates in these
levels. The postcode of the incident location was available in the report description for
16,318 of these faults, with 2441 of them being weather related faults (based on the cause
registered in the fault records). The causes included in the weather related faults and the
number of events per cause are listed in Table 1, which also states the median number of
customers affected and the median Customer Minutes Lost (CML) that correspond to the
faults that belong to each of the weather fault causes considered.

Table 1. HV weather related faults.

Cause No. of Events Customers Affected (Median) Total CML (Median)

Wind and Gale (excl. Windborne Material) 1023 82 12,243
Lightning 902 20 4439

Snow, Sleet and Blizzard 204 133 21,655
Windborne Materials 133 49 10,109

Flooding 70 8 3088
Ice 34 58 9009

Rain 34 163 15,962
Solar Heat 25 62 4595

Freezing Fog and Frost 16 64 7871

The locations of the faults on Northern Powergrid’s HV network can be seen in
Figure 2, where the size of the circles corresponds to the number of customers affected
by each event and the colour to the total CML. The darker colour of the circles indicates
lower CML. According to Ofgem [22], all interruptions with durations of 3 min or longer
contribute to a fault’s CML. In this paper, the CML is used to explain the impact of weather
related faults and how this differs in the different voltage levels.

Figure 2. HV faults in NPG distribution network licence area–darker colour of circles indicates lower CML (Left: all faults,
Right: weather related faults).
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A histogram of the CML that corresponds to each of the HV recorded faults can be
seen in Figure 3.
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Figure 3. Distribution of the CML that resulted from the HV faults in NPG distribution network
licence area (left: all faults, right: weather related faults).

Figure 3 demonstrates that the majority of faults have low CML, reflecting a short
duration and/or a small number of affected customers-at HV this is more likely to be
the former. The LV fault records cover the period 16/06/2013–11/06/2018 and contain
103,819 events in total. The LV faults refer to the LV side of the secondary transformer
(0.4 kV). The postcode of the incident location was available in the report description for
60,501 of these faults, with only 711 of them being weather related faults. The number of
events per weather related cause for the LV level, the number of customers affected and
the CML for each fault are shown in Table 2. It can be seen that no faults due to “Ice” or
“Freezing Fog and Frost” are present at the LV level, which is probably due to the fact that
it is a predominantly underground network.

Table 2. LV weather related faults.

Cause No. of Events Customers Affected (Median) Total CML (Median)

Wind and Gale (excl. Windborne Material) 476 2 594
Rain 132 1 260

Flooding 64 6 1190
Solar Heat 16 1 60

Snow, Sleet and Blizzard 10 2 604
Lightning 8 4 915

Windborne Materials 5 3 625

Unlike the HV level, where the numbers of weather, non-weather and unknown cause
faults were comparable, this is not the case for the LV level, where the amount of faults with
a registered weather cause is significantly lower than the rest. It is worth noting that even
when including the 43,318 LV incidents, for which no postcode was available (and were
not included in the analysis), the number of events that have been registered as weather
related faults is only 1034 which is still very low compared to the total amount of LV faults.
This, combined with the fact that the number of unknown cause faults at the LV level is
very high, could be an indication that weather related faults at LV level are underestimated
as they cannot always be correctly identified. The fault occurrences and their locations
for the LV level can be seen in Figure 4 and a histogram of the CML that corresponds to
each of the LV recorded faults can be seen in Figure 5. The ratio of customers affected
at HV and LV level has been taken into account so that the sizes of the circles appearing
on the map are of the same order of magnitude. The visualisation of the fault data on
the map serves two purposes. First, it provides an easy way of assessing the impact of
weather related faults and identify areas of the network that are affected more by this type
of faults. In addition, the ratio of weather related faults with respect to the total number of
faults indicates where there is a greater need for a weather related fault prediction. It is
worth noting, that although the number of fault occurrences is much higher at the LV level,
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the HV faults are more valuable to predict as there are more customers per substation at
the HV compared to the LV level. Therefore an HV fault results in higher CML.

Figure 4. LV faults in NPG distribution network licence area–darker colour of circles indicates lower CML (left: all faults,
right: weather related faults).
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Figure 5. Distribution of the CML that resulted from the LV faults in NPG distribution network
licence area(left: all faults, right: weather related faults).

Figure 5 shows a similar distribution to Figure 3, in that the majority of faults have
a low CML; unlike HV, the distribution tail is heavier, indicating the potential for longer
(although with fewer customers affected) CML from weather related faults-this may be
exacerbated by the lack of automation on distribution networks, necessitating manual
restoration of power or replacement of damaged components.

It is worth noting that the effects of weather on the distribution network can vary
significantly. Certain weather conditions can have an immediate effect that would result in
a fault (short term fault cause) or can have a cumulative effect, leading to asset degradation
and failure at a later date (long term fault cause). This would affect the assets’ Health Index
which would subsequently influence the resulting CML [23].

2.2. Weather Data

For the purposes of this analysis, access to the Met Office UK MIDAS datasets was
granted by the Centre of Environmental Data Analysis (CEDA). Nineteen weather variables
were considered for the analysis and are shown in Table 3. The total number of active
Met Office weather stations within NPG’s licence area is 276. Not all measurements are
available at each weather station, so data from more than one station was used to describe
the weather conditions at the time of a fault. The 19 variables are categorised in 4 groups of
weather data: daily rainfall (RD), daily temperature (TD), hourly wind (WM) and hourly
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weather observations (WH). To obtain the desired data, the locations of all active weather
stations within Northern Powergrid’s licence area were compared to the known fault
locations (postcode found in each fault’s ‘location text’ description in the fault records) and
a nearest weather station for each group of variables was assigned to each fault. These
measurements were then used to form the datasets that are discussed later in the paper.

Table 3. Fault predictive weather variables.

Variable Units

1 Precipitation on the day before mm
2 Sum of precipitation 2 days before mm
3 Sum of precipitation 3 days before mm
4 Sum of precipitation 6 days before mm
5 Max daily air temperature deg C
6 Min daily air temperature deg C
7 Difference in max air temperature with day before deg C
8 Difference in min air temperature with day before deg C
9 Mean wind speed knots

10 Mean wind direction deg (true)
11 Max gust speed knots
12 Max gust direction deg (true)
13 Air temperature deg C
14 Dew point temperature deg C
15 Wet bulb temperature deg C
16 Humidity %
17 Derived hourly sunshine duration 0.1 h
18 Total cloud amount code eighths
19 Visibility dam

The measurements used for the variables (1)–(8) were recorded on a daily basis, while
hourly measurements were used for the rest of the variables. There were two reasons why
daily precipitation data was selected over hourly. Based on the network owners experience,
in the case of an underground fault at both HV and LV levels, the rainfall in the days before
the event has a greater impact than at the time of the event, as it takes some time for the
rainfall to permeate through the ground into the cables that have been damaged by the
ground movement. This is not the case for flooding events, when the faults occur fairly
soon after the rain. However, since there are more Met Office weather stations collecting
daily precipitation data compared to those collecting hourly, and it was possible to use data
from a site nearer to the fault location, daily precipitation data was chosen for this analysis.
The timescales of the selected weather variables that are used as inputs to the classification
models with respect to the time of the fault (or no fault) example can be seen in Figure 6.

Figure 6. Timeline for selection of the 4 groups of weather variables approaching a fault occurrence
classification (d is the day of each fault or no fault example). The codes RD, TD, WM and WH
correspond to subsets of the weather variables shown in Table 3. Each group includes the following
variables. RD: 1–4, TD: 5–8, WM: 9–12 and WH: 13–19.
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Using the information available for the weather related faults and the weather mea-
surements for the corresponding periods, a new dataset was created for each voltage level.
These new datasets contained weather variables describing the conditions for Fault and
No Fault examples and were used as inputs to the classifiers, which are described in the
next section. The dates and times of the Fault examples were taken directly from the fault
records. In our analysis, anything that results in the interruption of power supply is consid-
ered a Fault, while a No Fault example can be any time when no fault occurred, i.e., there
was no fault record present. For each of the recorded faults, two No Fault examples were
selected for the same location. The time of the first No Fault example was selected to be
24 h before the fault (previous day, same time) and the time of the second No Fault example
was one week before the fault (one week before, same day, same time). This was done to
ensure that the fault was not caused by a typical time based network event. If a selected
date and time for a No Fault example coincided with a date and time of a fault in the fault
records, then it was not included in the analysis. After the dates and times were finalised,
the corresponding values for the selected weather variables were extracted from the nearest
weather station corresponding to each of the 4 groups of variables mentioned earlier in this
section. The day ahead prediction model uses two major sets of inputs to create its forecast
of faults: the relevant weather conditions up to one week before (the timescales for each
weather variable considered are shown in Figure 6); and, the weather forecast for the next
day. If a longer term prediction of faults is required, then long-range weather forecasts can
be used and the predictions updated as weather forecasts change closer to the period when
the fault prediction is required.

As the measurements for the selected weather variables were not available for all
dates and times in the new dataset, a number of different subsets were explored, includ-
ing different combinations of weather variables and Fault/No Fault examples each time.
These subsets, which had different sizes, were then used as inputs to the classifiers for a
comparison in order to identify the best performing method, based on the criteria outlined
in Section 3. The datasets resulting from the process discussed above, describe the training
and test datasets used later in the paper. A more detailed presentation of the process
described above and how this work fits in a more general data analysis methodology for
distribution networks can be found in [24].

3. Application of Data Analysis Methodology

This section is divided into two subsections, which describe the classification methods
compared in this paper and the overall data analysis process.

3.1. Classification Methods

The main challenge is the need to accurately map environmental conditions to fault
occurrence. The functional form of this relation will vary across networks, so a means
of articulating it for all eventualities must possess a flexible decision surface that can
be learned from past observations. To determine the optimal model choice, a selection
of candidate classification techniques with diverse underlying decision surfaces were
compared in order to identify the most suitable methods to classify exemplar data into:
(a) Fault and No Fault and (b) No Fault and Fault Type. The characteristics of each of the
methods considered in this paper are summarised in Table 4, while a brief description of
how the two best performing classifiers work is given as follows.
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Table 4. Characteristics of classification methods.

Classifier Description Advantages Disadvantages Decision Boundary

Classification
and Regres-
sion Trees
(CART)

One of the most established and commonly used
classifiers. It works by partitioning data into rectan-
gular boxes with bounding rules forming a decision
tree. The tree is then used to predict the class of
new, previously unseen, data examples [25].

Simple classifier,
interpretable as a
decision tree.

Functionally limited,
prone to overfitting Rectangular boxes

Naïve Bayes
(NB)

Based on the Bayes Theorem and uses the prob-
abilities of each feature for each class to make a
prediction with the ‘naive’ assumption that obser-
vations are completely independent given the class
label. The assumption of independence simplifies
the calculation of the joint probability of the at-
tributes for this class and, then, the class with the
highest probability is selected [26].

Does not require
large amount of
training data. Fast
compared to more
sophisticated meth-
ods.

Assumption that pre-
dictors are completely
independent.

Linear

Logistic Re-
gression (LR)

A linear machine learning model that uses the
logistic sigmoid function to estimate a probability
value from the training data, which is then assigned
to the relevant class to make a prediction [27].

Simple and easy to
implement. Can
be easily updated
to incorporate new
data.

Sensitive to outliers.
Difficult to capture
complex relationships

Linear

Support Vec-
tor Machines
(SVM)

They construct a hyperplane that separates the
data into their classes. The best separation can
be generally achieved when the distance of the
nearest points of each class to the hyperplane is
greatest. For non linearly separable data, SVMs take
this concept a step further by first mapping input
variables into a high dimensional space to provide
greater discriminative power [28]

Versatile and
memory efficient
method.

Large datasets re-
quired to train the
SVM. Do not directly
provide probability
estimates

Linear or nonlinear.
Nonlinear bound-
ary used here (Ra-
dial Basis Function
(RBF) kernel)

k-Nearest
Neighbours
(k-NN)

Uses a metric such as Euclidean distance to appor-
tion labels to new data points based upon the labels
of the k nearest data points [29].

Easy to understand
and implement. No
parameters to tune.

Memory intensive.
Sensitive to noise. Nonlinear

Gradient
Boost Ma-
chines (GB)

Use multiple single predictors (often trees or rules)
to make very simple, broad classifications and
then weigh outputs from these according to their
expected error into an overall classifier that has
greater predictive power than any one of the con-
stituent predictors [30].

Effective on wide
area if applications.
Flexible–allows
to optimise user
preferred loss func-
tions.

Computationally
expensive, not easily
interpretable.

Can learn complex
nonlinear decision
boundaries.

Bagged Trees
(BT)

Bagging is applied on a decision tree classifier. This
means that the classifier is trained on random sub-
sets (drawn with replacement) of the original train-
ing dataset and the final prediction is constructed
by aggregating the individual predictions [31].

Improved accuracy
compared to a
single decision tree.

Can be computation-
ally expensive.

Similar but
smoother deci-
sion boundaries
compared to CART.

Random For-
est (RF)

Modified version of bagged trees, where many trees
with reduced correlation are developed and then
averaged [30].

Flexible, can fit a
variety of data well.

Slow at training. Not
suitable for small
samples.

Similar to BT

Linear Dis-
criminant
Analysis
(LDA)

Uses a linear boundary implied by the intersection
of probability distributions representing difference
classes. In LDA, a simplifying assumption is that
classes have the same covariance structure [30].

Fast classification,
easy to implement.
Inherently multi-
class classifier.

Can only learn linear
boundaries. Linear

Quadratic
Discrimi-
nant Analysis
(QDA)

QDA is similar to LDA but it differs in that it re-
laxes the assumption that classes have the same
covariance, resulting in class decision boundaries
that are quadratic [30].

More flexible than
LDA, as it is not
limited to a linear
decision boundary.

More parameters to
estimate.

Nonlinear
(quadratic)

Multi-Layer
Perceptron
(MLP)

Neural Networks allow arbitrary nonlinear func-
tions to be modelled either as regressors or classi-
fiers. This is enabled by layers of hidden weights
that are tuned to map model inputs to outputs
through a process called Backpropagation [32]. The
MLP that is used here is a basic type of feedforward
neural network that is trained using the backpropa-
gation algorithm to obtain parameter estimates.

Can learn nonlinear
models. Can learn
models in real time.

Sensitive to feature
scaling. More than
one local minima (in
loss function) can lead
to different validation
accuracy for different
random initialisa-
tions.

Nonlinear
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Table 4. Cont.

Classifier Description Advantages Disadvantages Decision Boundary

Gaussian Pro-
cess Classifier
(GPC)

A Gaussian Process is a collection of random vari-
ables whose functional relation is represented as
the covariance function of a multivariate Gaussian
distribution. A GPC can take a number of decision
surface shapes. It achieves this by modelling deci-
sion boundaries as a Multivariate Gaussian distribu-
tion with position dictated by its mean and decision
threshold by is covariance function-this can be spec-
ified via a kernel function to take a different form
along the length of the decision boundary [33].

Probabilistic pre-
diction. Versatile-
different kernels
can be specified.

Efficiency decreases
with higher dimen-
sions.

Nonlinear

Gradient Boost (GB): In machine learning, boosting is a method that combines many
simple models in an ensemble that performs better than the individual models, by se-
quentially applying a weak classifier to repeatedly modified versions of the data. The first
successful implementation of boosting was the AdaBoost algorithm, which is short for
adaptive boosting. GB, which is a generalisation of AdaBoost, uses multiple single pre-
dictors (often trees or rules) to make very simple, broad classifications and then weighs
outputs from these according to their expected error into an overall classifier that has
greater predictive power than any one of the constituent predictors [30]. The classification
process starts with a very simple model (e.g., a decision tree), which is a weak classifier,
meaning that it produces predictions which are only slightly better than guessing. Then
subsequent models are used to predict the error made by the model so far. The models,
which are trained sequentially, focus on the difficult to predict data examples. The objective
of these classifiers is to minimise the loss, which is the difference between the actual and
the predicted class value of a training example. To minimise this loss, this method uses
gradient descent.

Gradient Boost identifies the difficult to predict examples using residuals, which are
calculated in each iteration m (and for each class k) using Equation (1). The difficult to
predict data examples are identified by large residuals.

rk,im = −
[

∂L(yi, fk(xi))

∂ fk(xi)

]
fk= fk,m−1

(1)

where L(y, f (x)) is the loss function.
The residuals are then used to train a weak classifier hkm(x) which is multiplied by a

multiplier γkm. This is calculated using:

γkm = arg min
γ

(
N

∑
i=1

L(yi, fk,m−1(xi) + γhkm(xi)) (2)

In the above equation, gradient descent is used to find the γ that minimises this
expression. The model is then updated to

fk,m(x) = fk,m−1(x) + γkmhkm (3)

This process is repeated K times at each iteration m, one for each class and the final
model is given by K different (coupled) tree expansions fkM, where k = 1, 2, ..., K, which
produce the probabilities that a data point xi belongs to each of the K classes, as explained
in [30].

Linear Discriminant Analysis (LDA): To make predictions, LDA as the name suggests,
uses a linear decision boundary implied by the intersection of probability distributions
representing difference classes [30]. A linear separation of the data is achieved when the
data points are separated by class using a line or a hyperplane in the d dimensional input
variable space. LDA finds a linear combination of input variables and the high dimensional
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data points are then projected on this eigenvector. Then, a hyperplane perpendicular to
this vector is used as the linear decision boundary used for data classification (LDA can
also be used for dimensionality reduction like PCA). In LDA, two simplifying assumptions
about the data are made: (i) the data are assumed to follow a Gaussian distribution and (ii)
the inputs of every class have the same covariance. A brief explanation of LDA for the case
of binary classification of a high dimensional data point ~x = [x1, x2, ..., xd], where each data
point ~x belongs to one of two classes, namely y = 0 or y = 1, is given below.

To perform classification, LDA assumes that the conditional probability density func-
tions of the two classes p(~x|y = 0) and p(~x|y = 1) follow a normal distribution. The mean
vectors and covariance matrices of these distributions are assumed to be (~µ0, ∑0) and
(~µ1, ∑1), respectively. Based on the above, a data point ~x belongs to the second class (here
y = 1) if the log of the likelihood ratio is bigger than some threshold T, so that:

(~x− ~µ0)
TΣ−1

0 (~x− ~µ0) + ln |Σ0|−
(~x− ~µ1)

TΣ−1
1 (~x− ~µ1)− ln |Σ1| > T (4)

After the application of the second assumption of LDA, which is that the classes have
common covariance matrices (Σ0 = Σ1 = Σ), the above expression is simplified and the
decision criterion becomes a threshold on the dot product

~w ·~x > c (5)

where ~w = Σ−1(~µ1 − ~µ0) and c is some threshold constant given by

c =
1
2
(T − ~µ0

TΣ−1~µ0 + ~µ1
TΣ−1~µ1) (6)

In terms of classification of a data point ~x to one of the two classes, it is determined by
which side of a hyperplane (that is perpendicular to ~w) this point is located on. The thresh-
old c determines the location of the above hyperplane.

The tradeoff to be made, when comparing the different methods, is one of complexity
versus generalisation: the relation between fault occurrence and complex weather phenom-
ena may not be captured by a simple classification boundary. However, closely fitting a
classification boundary to very specific weather conditions is also undesirable as the classi-
fier will capture too few eventualities-this phenomenon is referred to as overfitting [32].

Apart from the individual classification methods that were described in this section,
two additional ensemble methods were used in the analysis presented in this paper. Ensem-
ble methods provide a means of unification of a diverge range of identified fault relations
in a single model. Two types of ensemble models were considered in this analysis: Voting
and Stacking. A Voting classifier works by taking the outputs of a set of estimators (other
classification methods) and calculating its output using ‘hard’ or ‘soft’ voting. Hard voting
is based on the ‘majority rule’ meaning that the voting classifier outputs the label that was
assigned to an example by a majority of estimators, while soft voting takes into account
the probability of prediction along with the label assigned by each estimator. A Stacking
classifier uses the outputs of the individual estimators as inputs to a final estimator in order
to produce its prediction, allowing the strengths of each estimator to be reflected in the
final prediction.

3.2. Data Analysis Process

The classification methods presented in Section 3.1 were applied to the data in order
to do a classification between Fault and No Fault examples. Using a 10-fold cross validation
approach, all the classifiers were applied on the same datasets and compared to find the
ones that performed better. In cross validation, the dataset is split into a number of smaller
subsets, which is 10 in this case. Out of these 10 subsets, 9 are used as the training set
and 1 is used as the test set. This process is repeated 10 times so that all data points have
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been used for both training and testing. For datasets with an adequate number of faults
for more than 1 weather related cause, the same process was used to classify the data
between No Fault and each fault type. This process is repeated for the different datasets in
order to obtain the final results of the best performing dataset and classification method,
which determine the optimal model choice. The metrics used to assess the classification
performance of each method were the classification accuracy, precision and recall and are
computed using the expressions shown in Table 5, where TP is true positive, TN is true
negative, FP is false positive and FN is false negative.

Table 5. Classification performance metrics.

Metric Expression

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall TP
TP+FN

In the context of fault prediction, precision refers to the ability of the classifier not
to label a No Fault as a Fault example, while the recall refers to its ability to find all Fault
examples. Using these metrics, the overall performance of a classification method on
each of the developed datasets is assessed and compared to that of the other classifiers.
The ‘optimal model choice’ refers to selecting the model with the highest classification
accuracy, precision and recall, while taking into account both the input variables (as
different datasets have different combination of weather variables) and the classification
algorithm. After applying the different classification methods to the different datasets
at the HV and LV level separately, the best performing models were combined into two
ensemble classifiers in order to assess their performance on a single dataset containing
faults that occurred at both HV and LV distribution levels.

4. Results and Discussion

The process of jointly analysing distribution network fault data and historic weather
data in order to predict the occurrence of weather related faults was described in the
previous section. The results of this analysis are presented in the form of the following
three case studies.

4.1. Weather-Related Fault Prediction at the HV Level

Section 2 describes the subsets of data considered which contain a different number of
Fault/No Fault examples and part of the weather variables shown in Table 3. The dataset
characteristics and the accuracy of the best performing classifier for each of these subsets
are summarised in Table 6.

Table 6. Summary of results for HV datasets.

Dataset Weather Variables Dataset Size Accuracy Classifier

#1 All 86 examples 0.728 (0.130) RF
#2 Excluding variable (17) 277 examples 0.764 (0.174) LDA
#3 (1)–(16) 381 examples 0.792 (0.156) LDA
#4 (1)–(4) and (9)–(16) 717 examples 0.743 (0.165) LDA

The numbers shown in the “Weather Variables” column in Table 6 correspond to the
weather variable numbers in Table 3 and the values in the “Accuracy” column are the mean
and standard deviation (in parentheses) accuracy resulted from the cross validation process.
The accuracy refers to the accuracy of prediction of a fault at a given location given the
weather conditions at the time of the fault and the days before the fault. The above results
show that Linear Discriminant Analysis performed better in the majority of the analysed
datasets, while the highest accuracy was achieved when dataset #3, which contained 381
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Fault/No Fault examples, was used as input to the classifier. More detailed results regarding
the analysis of this subset are presented below.

The 12 classifiers described in Section 3 were compared in order to find which of
them performed better in this case study. The result of this comparison for the Fault/No
Fault classification on dataset #3 is shown in Figure 7, which shows the range of the fault
prediction accuracies for each classifier and Table 7 which shows the mean and standard
deviation of the resulting accuracies for each classifier for dataset #3.

Figure 7. Cross validation results on dataset #3 for the HV level faults.

Table 7. Cross validation accuracy and standard deviation for HV dataset #3.

Classifier Mean Accuracy Standard Deviation

CART 0.648 0.126
NB 0.761 0.145
LR 0.782 0.161

SVM 0.638 0.057
KNN 0.706 0.171

BT 0.711 0.134
GB 0.719 0.136
RF 0.743 0.113

LDA 0.792 0.156
QDA 0.755 0.162
MLP 0.677 0.159
GPC 0.683 0.130

The majority of faults in this dataset were caused by “Wind and Gale” or “Lightning”,
while only 7 faults were caused by other conditions. In order to explore the potential of
the classifiers to classify the data not only into Fault and No Fault but also into the fault
types, these 7 faults were removed from the dataset and the classification process was
repeated for the reduced dataset. The results of this analysis were similar to those shown
in Figure 7, with the mean classification accuracy for the best performing classifier (LDA)
being 0.792. To assess the classification results, metrics such as the precision and recall
were considered alongside the classification accuracy. The meaning of these metrics was
discussed in Section 3.2.

After removing the 7 Fault examples mentioned above, 80% of the remaining dataset
was used for training and 20% for testing. Using LDA, which was the best performing
classifier, the classification results on the held-out test set (48 No Fault and 27 Fault examples)
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are shown in Figure 8a, which shows the confusion matrix for this classification’s results
and the relevant performance metrics.

(a) Fault/No Fault Classification (b) Classification based on fault type
Figure 8. Confusion matrix and classification metrics for classification on the 20% held-out test set
for the best performing classifier and dataset at HV level.

It can be seen that, for this randomly chosen test set, the overall classification accuracy
when using LDA is 86.67%. The model correctly classified 44 out of the 48 No Fault
examples and 21 out of 27 Fault examples. Even though there are more Fault than No
Fault examples that were misclassified, the accuracy is high considering the fact that only
weather variables have been used to predict the occurrence of a fault. The same process
was repeated in order to classify the faults based on their cause and the results are shown
in Figure 8b.

Again, the overall classification accuracy is 86.67% and 44 out of the 48 No Fault
examples have been correctly identified. Regarding the fault causes, the model correctly
classified 9 out of 10 faults caused by lightning and 12 out of 17 of those caused by wind.
It is worth noting that no Fault example was attributed to the wrong cause as all the
misclassified Faults were classified as No Faults. The results presented above show that
it is possible to predict the occurrence of a weather related fault with a relatively high
accuracy, considering only common weather variables that are not specific to a certain
fault cause. From a network operator’s point of view, this work could be extended to
make use of weather forecasts covering their licence area in order to identify potential
fault locations ahead of time. Such an analysis could provide the opportunity for DNOs to
identify vulnerable areas of their network and, therefore, be better prepared to respond to
potential weather related faults.

4.2. Weather-Related Fault Prediction at the LV Level

As seen in Section 2, the LV faults with a registered weather related cause are fewer
than those at HV level, even though a much higher number of faults occurred at the LV
network. This combined with the lack of location information associated with many of
the LV faults resulted in considerably smaller datasets. The results for the best performing
classifier for the LV datasets are summarised in Table 8. As there were only 9 Fault/No
Fault examples with available data for all 19 weather variables, the LV equivalent to the #1
dataset is not included in this table.



Energies 2021, 14, 2053 16 of 22

Table 8. Summary of results for LV datasets.

Dataset Weather Variables Dataset Size Accuracy Classifier

#2 Excluding variable (17) 50 examples 0.820 (0.227) GB
#3 (1)–(16) 95 examples 0.797 (0.188) NB
#4 (1)–(4) and (9)–(16) 205 examples 0.758 (0.183) LR

During the LV fault analysis, the best performing dataset was found to be #2, which
contained 50 Fault / No Fault examples. It is worth noting that the accuracy of prediction is
also relatively high when datasets #3 and #4 are considered. The comparison of the results,
however, indicates that the increased number of weather variables considered in dataset #2
gives a better description of the weather conditions affecting the LV network operation and,
therefore, help to identify the most suitable prediction model. This is why dataset #2 was
selected for a more detailed presentation of the results. When this dataset was used as input
to the Gradient Boost classifier, an accuracy of 82% was achieved. The cross validation
results and classifier comparison for dataset #2 are shown in Figure 9 and Table 9.

Figure 9. Cross validation results on dataset #2 for the LV level faults.

Table 9. Cross validation accuracy and standard deviation for LV dataset #2.

Classifier Mean Accuracy Standard Deviation

CART 0.700 0.184
NB 0.820 0.244
LR 0.720 0.240

SVM 0.600 0.126
KNN 0.400 0.237

BT 0.740 0.237
GB 0.820 0.227
RF 0.720 0.223

LDA 0.720 0.256
QDA 0.600 0.126
MLP 0.600 0.126
GPC 0.580 0.166

The above results show that the average classification accuracy of the Naive Bayes
classifier was the same as that of Gradient Boost (82%). However, due the range of
accuracies during cross validation being larger in the case of Naive Bayes, Gradient Boost
was selected as the best performing classifier. The dataset was randomly split into the train
and test sets (80%–20% respectively) and the classification results on the held-out test set
are shown with the confusion matrix and the performance metrics of Figure 10.
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Figure 10. Confusion matrix and classification metrics for Fault/No Fault classification on the 20%
held-out test set for the best performing classifier and dataset at LV level.

The overall classification accuracy on the test set was 80%. More specifically, 5 out
of 6 No Fault and 3 out of 4 Fault examples were correctly classified. This methodology
has incorporated multiple performance metrics. This is because operationally true or false
positives will have a different consequences on decision making process. Similarly to the
results of the HV case study presented above, the results of this case study show that there
is potential in using weather forecasts to predict the occurrence of weather related faults
at the LV level as well. As discussed earlier, the number of LV faults that are attributed
to weather related causes is very low compared to the total number of fault occurrences.
Adopting a methodology that would successfully predict the occurrence of weather related
LV faults could identify any weather related faults that would be otherwise attributed to
an unknown cause. This could be another possible contribution of this analysis for the LV
level as it would enable DNOs to get a better understanding of the environmental factors
affecting their network. As can be seen from Table 2, rain and flooding are the second
and third most common fault causes, respectively, and amount to a total of 196 out of the
711 weather related LV faults. However, for these faults, there was either no information
related to their location in the fault records or no weather data available. This explains why
no classification based on fault type was undertaken in this case, as almost all faults in the
final datasets considered for the LV level were caused by wind.

4.3. Weather-Related Fault Prediction Using Ensemble Methods

The above case studies identified the combination of weather variables and classi-
fiers that achieved the highest prediction accuracy for the HV and LV distribution levels.
Section 4.1 showed that LDA performs better for the HV faults, followed by LR and NB,
while the best performing classifier for the LV faults was GB, followed by NB (Section 4.2).
In the case of HV faults, the best performance was achieved when the weather variables in
Dataset #3 were used, while in the case of LV faults, the highest accuracy was achieved
when Dataset #2 was used. It is worth noting, however, that LV Dataset #3 performed well
(achieving slightly higher cross-validation accuracy compared to the same dataset for the
HV level). The above results combined with the fact that Dataset #2 had very few data
examples led to the decision to focus on Dataset #3 on both voltage levels for this part of
the analysis. While having different models can be useful for capturing the specific fault
characteristics at each level, having a single model for the network could be more effective
operationally. To do this, the weather-related faults occurred at both HV and LV distribu-
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tion levels are combined in a single dataset, where the weather variables corresponding to
Dataset #3 are used as predictors. An ensemble model can combine a range of identified
fault relations and retain the strengths of individual models, so here, the four classifiers
identified in the previous case studies (LDA, GB, LR and NB), are used as estimators in
two ensemble classifiers. The cross validation accuracy comparison between the ensemble
classifiers and against the individual classifier is shown in Table 10.

Table 10. Cross validation accuracy for the joint HV, LV datasets.

Classifier Mean CV Accuracy and Standard Deviation

NB 0.775(0.135)
LR 0.782(0.136)
GB 0.768(0.102)

LDA 0.793(0.126)
Voting 0.800(0.118)

Stacking 0.793(0.108)

It can be seen that both ensemble classifiers perform better than the individual models
(although LDA shows a very similar performance in terms of mean CV accuracy), with the
voting classifier accuracy being only slightly better than that of stacking. Applying the
classifiers on a random split of the dataset (80% training, 20% test), gave the results shown
in Table 11, which details the results for all the metrics considered. The precision and recall
are calculated for both No Fault (NF) and Fault (F) examples as can be seen in the table.

Table 11. Cross validation accuracy for the joint HV, LV datasets.

Classifier Accuracy Precision (NF) Recall (NF) Recall (F) Recall (F)

NB 0.707 0.871 0.675 0.519 0.778
LR 0.793 0.833 0.875 0.688 0.611
GB 0.793 0.868 0.825 0.650 0.722

LDA 0.776 0.829 0.850 0.647 0.611
Voting 0.845 0.897 0.875 0.737 0.778

Stacking 0.828 0.895 0.850 0.700 0.778

When the specific examples on the test set and the labels assigned to them by each
classifier were examined, it was found that there are certain examples that were easy or
difficult for all classifiers to predict, while there were also cases were different classifiers
performed better on different examples. The results on Table 11 show that for this case,
the ensemble classifiers performed much better than the individual classifiers, with voting
scoring higher in all metrics. Looking at the misclassified examples for each classifier, it
was found that 9 out of the 58 examples of the test set were misclassified by voting classifier
and 10 out of the 58 examples were misclassified by the stacking classifier. Figure 11 shows
the label probabilities for each classifier, based on which the Fault or No Fault label was
assigned to two selected examples of the test set.
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(a) Sample 20 (b) Sample 56
Figure 11. Label probabilities for two samples of the test set that correspond to the same dataset with
the results shown in Table 11.

Figure 11a shows the probabilities for sample 20 of the test set. Sample 20 corresponds
to a No Fault example that was correctly classified by the voting classifier but missed by
stacking. It can be seen from this figure that sample 20 is a difficult to predict example as the
majority of individual estimators give probability close to 0.5 for both labels, with only LR
giving a higher probability to No Fault, although still not very high. Using the probabilities
of prediction as well as the labels, Voting classifier managed to correctly predict sample 20
as No Fault, as opposed to the Stacking classifier which uses the predictions only. Figure 11b
shows the probabilities for sample 56, which is a No Fault example that was misclassified by
all classifiers. Although both ensemble methods made a wrong prediction (as all classifiers
in this case), the label probabilities show that the Fault prediction made by the Voting
classifier was with less confidence than that of Stacking.

The above results indicate that the voting classifier with ‘soft’ voting that takes into
account the probabilities of prediction of the individual estimators along with the labels,
can produce better results in difficult to predict data examples. Providing the probability
of prediction along with the Fault/No Fault label can provide an additional measure for
DNOs to assess the model’s prediction and inform the decision making process.

5. Conclusions

Fault prediction on networks with minimal monitoring was addressed in this paper.
After a brief discussion on the relevant research in the Introduction, the proposed method-
ology towards the prediction of weather related faults using only weather data and its
application on a real distribution network were presented. The results are presented with
three case studies. In the first two, the performance of different classification methods
on datasets with varying input variables is compared. Linear Discriminant Analysis was
the best performing method for weather-related fault prediction at the HV level, with an
accuracy of 79.2% for both Fault/No Fault classification and classification based on the fault
cause. For the LV level, Gradient Boost performed better in Fault/No Fault classification for
weather-related faults with and accuracy of 82%. The above results show that it is possible
to predict the occurrence of a weather-related fault at a specific part of the network using
only weather variables. The third case study, which looks into the distribution network as
a whole, combines the best performing classifiers into ensemble models. It is found that the
ensemble methods, and in particular the Voting classifier, generally achieve better results
compared to the individual methods. From a DNO perspective, having a single model that
retains the strengths of a number of other models that perform better for different faults,
may be preferable compared to having various models for different fault types and voltage
levels. In addition, providing a level of confidence of the prediction as this is reflected by
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the class probabilities is important as it can be used by the DNO to inform the decision
making process.

The contribution and novelty of this work is a methodology for finding the functional
relation between fault occurrence and environmental conditions. The practical use case
stemming from this methodology would be using the model with a longer term weather
forecast to understand which parts of the network were at risk of fault under forecast
weather conditions. At LV levels of the network, this would assist in the refinement of
spares budgets and strategic positioning of maintenance staff although at shorter timescales.
At HV level, switching out at risk areas before the occurrence of a fault could forestall an
outage affecting a large number of customers. With both use cases in mind, the benefits
for network operators could be further enhanced by moving the methodology towards
a probabilistic framework which would in turn accommodate uncertainties in forecasts
and measurement errors to provide probability of fault, and therefore priority of action,
rather than just prediction. As distribution network operators face increasingly diverse
challenges on their ageing infrastructure, such an approach would allow them to act on
predictions according to their attitude to risk which in turn could be informed by asset
health and criticality indices. Changes in the distribution network, such as component
repairs or replacements, could result in the causes of weather-related faults being removed
and hence impacting on the accuracy of prediction. Future research will examine the
use of fault analysis from maintenance records [34] in order to develop a more advanced
decision support system that would take into account changes in the network. As the work
presented in this paper proposes the weather-related fault prediction using weather data
alone, there is no need for deploying additional monitoring on the network. Therefore,
DNOs could gain value from this methodology immediately using their already available
fault records and weather data.
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