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1.  INTRODUCTION

Agent-based models (ABMs) refer to simulations
where individual agents are given the ability to
interact with each other as well as with their envi-
ronment (Grimm et al. 2005, Railsback & Grimm
2010). ABMs have existed as a concept since the

1940s, but the computational power necessary to
execute them did not exist until much later. Conse-
quently, ABMs have become increasingly wide-
spread since the 1990s (Niazi & Hussain 2011),
including in the life sciences, with application to
fields such as ecology, wildlife management, and
epidemiology. The main appeal of using an ABM is
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model that simulated sea lice larvae dispersal from salmon farms in the Broughton Archipelago
(BA), British Columbia, Canada. We employed a concept from ecological agent-based modeling
known as ‘pattern matching’, which identifies similar emergent properties in both the simulated
and observed data to confirm that the simulation contained sufficient complexity to recreate the
emergent properties of the system. One emergent property from the biophysical simulations was
the existence of sub-networks of farms. These were also identified in the observed sea lice count
data in this study using a space−time scan statistic (SaTScan) to identify significant spatio-tempo-
ral clusters of farms. Despite finding support for our simulation in the observed data, which con-
sisted of over a decade’s worth of monthly sea lice abundance counts from salmon farms in the BA,
the validation was not entirely straightforward. The complexities associated with validating this
biophysical dispersal simulation highlight the need to further develop validation techniques for
agent-based models in general, and biophysical simulations in particular, which often result in
patchiness in their dispersal fields. The methods utilised in this validation could be adopted as a
template for other epidemiological dispersal models, particularly those related to aquaculture,
which typically have robust disease monitoring data collection plans in place.
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that among the many single interactions between
agents, or between agents and their environment,
emergent behaviours in complex systems can be
modeled (McLane et al. 2011).

One area in which ABMs have only recently been
utilised effectively is in marine epidemiology, where
disease particles (bacteria, viruses, protists, para-
sites, etc.) act as individual agents, interacting with
each other and hosts as well as with ocean currents
and other physical parameters of the waters they
inhabit, such as temperature and salinity (Asplin et
al. 2004, Salama et al. 2013, Skarðhamar et al. 2018).
These types of simulations are able to create an ABM
in the ocean by combining a particle-tracking model
with biological characteristics assigned to the parti-
cles, which then allows them to interact with the
physical environment (including underlying circula-
tion) and sometimes with each other. A coupled bio-
logical and physical model (also referred to as a ‘bio-
physical model’) that can reflect both the life cycle
and behaviours of the disease-causing particle of
interest as well as its movement within the area of
interest is needed in order to capture how a pathogen
disperses throughout a specific population of hosts
and/or geographical areas. The characteristics as -
signed to the particles reflect the specific biology of
the simulated organism (Cantrell et al. 2020a). This
type of biophysical model has been used to simulate
dispersal of a wide variety of waterborne particles,
from neonate sea turtles (Robson et al. 2017), to the
causative agents of cholera (Augustijn et al. 2016),
and to salmonid pathogens such as infectious hema -
to poietic necrosis virus or infectious salmon anaemia
virus (Foreman et al. 2015, Gautam et al. 2018).

These biophysical models have also been used to
model the dispersal of the copepod Lepeophtheirus
salmonis, a common marine salmonid ectoparasite in
many salmon farming regions in the Northern Hemi-
sphere (Adams et al. 2015, Salama et al. 2016, Cantrell
et al. 2018, 2020a). This ectoparasite, commonly known
as the sea louse, is one of the most persistent and
costly pests of farmed salmon (Costello 2009, Jansen
et al. 2012). Sea lice have a free-living larval stage
that can be dispersed 100s of km, depending on local
currents (Kragesteen et al. 2018). While in the larval
stage, they undergo 2 nauplii stages before becom-
ing infective copepods, which are then able to attach
to a salmonid host (Hamre et al. 2013). Once adults,
they eat the mucus, blood, and scales of their hosts,
creating lesions which make the fish susceptible to
secondary infections and sometimes acting as a vec-
tor for bacterial infections (Brauner et al. 2012,
Novak et al. 2016).

The interactions of the sea lice larvae with their
hosts, the physical environment, and each other are
complex enough to result in some emergent behav-
iour for the larval population. Emergent behaviour
refers to the fact that ‘a system can have qualities
that are not analytically tractable from the attributes
of its internal components’ (Baas & Emmeche 1997);
in other words, the whole is greater than the sum of
its parts. Examples of such behaviour in sea lice pop-
ulations include density-dependent dispersal between
farms (Jansen et al. 2012), complex connectivity net-
works that can span entire coastlines (Samsing et al.
2019), or strong seasonality to dispersal patterns
(Samsing et al. 2017). Understanding emergent prop-
erties is often the driving motivation in constructing
an ABM. Due to the complexity of quantifying emer-
gent behaviour as well as the difficulties associated
with obtaining suitable data, and despite the fact that
agent-based modeling has been widely used across
multiple disciplines for more than a decade (ecology,
economics, socio-biology, epidemiology, etc.), the
problem of validating an ABM remains a challenge
(Manson 2003, Grimm et al. 2005), and there is no uni-
versal consensus on how best to approach validation.

In ecological modeling a validation concept known
as ‘pattern matching’ has emerged, referring to spa-
tial patterns from the model compared to idealised
yet realistic characteristics of the natural system
(Manson 2003). Grimm et al. (1996) defined a ‘pattern’
as a characteristic, clearly identifiable structure in
data extracted from nature. Consequently, a pattern
goes beyond random variation and thus indicates an
underlying process that generates recognizable
structure (Jeltsch et al. 1999, Wiegand et al. 2003).
The following are examples of such patterns: distri-
bution of dispersal distances, the spatial pattern of
species occurrence in fragmented landscapes (Han-
ski 1994), wave-like patterns in the spread of rabies
(Jeltsch et al. 1997), the spatial pattern of savannah
trees (Jeltsch et al. 1999), and the size-class distribu-
tion of acacia trees (Jeltsch et al. 1999). If the ABM
captures such complexity, then there is evidence that
the assumptions placed in the model are adequate to
create the emergent behaviours expected from the
system. Pattern-matching validation illustrates the
importance of blending quantitative and qualitative
methods in the validation of multi-agent systems
(Manson 2003).

Despite some uncertainties around validating bio -
physical models, they have provided important and
useful information for managers and ecologists. Set-
ting up model assumptions to simulate ‘worst case
scenarios’ can allow managers to plan using a pre-
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cautionary approach to avoid such outcomes (Sam-
sing et al. 2019), as well as to develop surveillance
or monitoring programs that reflect epidemiological
realities (Pande et al. 2015). Simulation of different
conditions to assess outcomes most similar to obser-
vations allows for hypothesis testing involving
mechanisms of dispersal (Kough et al. 2015) or en -
vironmental drivers of disease outbreaks (Aalto et
al. 2020). Additionally, as climate change leads to
warming oceans, the geographic ranges may change
for both hosts and infectious agents. Biophysical
models will be key for identifying susceptible host
populations, predicting disease transmission path-
ways across larger areas, exploring the impacts of
future climatic scenarios on transmission processes,
and developing intervention strategies (Cantrell et
al. 2020b).

We have previously published in-depth explo-
rations of a biophysical model to simulate sea lice dis-
persal from salmon farms in the Broughton Archipel-
ago (BA), British Columbia (BC), Canada (Cantrell et
al. 2018). We investigated both the spatial (Cantrell
et al. 2018) and temporal (Cantrell et al. 2020a) pat-
terns in the output as well as the environmental driv-
ers of the dispersal patterns (Cantrell et al. 2020a).
The physical model that underlies the ABM has been
validated (Foreman et al. 2009). Here, we validated
emergent properties of the combined biophysical
model using the pattern-matching approach. We
used quantitative methods to identify clusters in the
observed sea lice monitoring data and sub-networks
in the simulated data. We then qualitatively com-

pared the clustering and the sub-networks identified
in each of the 2 data sets. To identify clusters in the
observed sea lice count data set, we utilised space−
time cluster analysis (SaTScan software; https:// www.
satscan .org) to detect significant spatio-temporal
clusters in the observed sea lice count data set, and
temporal scanning analysis to identify seasonal or
annual variation (Kulldorff 1997, 2015, Kulldorff et al.
2009).

2. METHODS

2.1.  Study area

The BA is a group of islands off the northeastern
tip of Vancouver Island, BC. The model domain is
within the BA (Fig. 1) and includes 20 farm sites as
well as ecologically important juvenile salmon out-
migration routes. There are 5 species of salmonids
in the area, with wild salmon runs in BC that rou-
tinely exceed 107 tonnage of fish for certain rivers
(Ye et al. 2015). There is widespread interest in
protecting the wild salmon of the entire BC coast as
well as the BA in particular, as returns over the
past few decades have shown a general trend of
de cline in abundance of spawning adults for several
salmonid species (Miller et al. 2014, Price et al.
2017). Consequently, farms in the BA treat for sea
lice every early spring/ late winter to suppress counts
before the wild salmon migration period over the
spring and summer months (specific migration win-

Fig. 1. The Broughton Archipel-
ago and salmon farm locations
used in the simulation. Sub-net-
works of farms (identified from
Cantrell et al. 2018, 2020a) have
been given matching colours.
Sub-network 1 includes Farms
1–5; Sub-network 2 includes
Farms 10, 11, and 15; Sub-net-
work 3 includes Farms 6, 7, 16,
17, and 18. Sub-network 4 repre-
sents a group of farms which ex-
hibited low connectivity in the
bio-physical simulation, and in-
cludes Farms 8, 9, 12, 13, 14, 19 

and 20
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dows vary between years and species) (Carr-Harris
et al. 2018). Adult salmon re turn to the rivers to
spawn between May and October, again with vari-
ability between species and year (Puget Sound
Indian Tribes and Washington State Department of
Fish and Wildlife 2017). The 7 large river mouths
(all locations of active salmon runs) and annual large
spring freshet event contribute to a complex and
temporally variable circulation pattern. There is a
validated physical circulation model for the BA
(Fore man et al. 2009), which was used to inform
the biophysical model in Cantrell et al. (2020a).

In BC, only one treatment type was used during the
study period (January 2005–December 2017): an in-
feed chemical treatment with ema mectin benzoate
(EMB; commercially available as SLICE®). Unlike in
most of the North Atlantic, there has been little evi-
dence of resistance to Slice in BC over this period
(with the possible exception of a few years in Klemtu,
an area isolated to the north of the BA). It is thought
that this lack of resistance is mainly due to (1) low
frequency of use — many sites only require a single
application of EMB over the whole production cycle;
(2) the large populations of wild salmonids on the
Pacific coast, which acts as adequate ‘refugia’ that
re-introduce naive parasites. This dilutes any genes
conferring resistance which may have developed in
the population (McEwan et al. 2015). The efficacy of
SLICE is approximately 90% for at least 35 d after
treatment (Stone et al. 2000).

In Cantrell et al. (2020a), we identified an emer-
gent behaviour of 3 sub-networks of farms in the BA
that are more highly connected to each other than to
the rest of the farms in the area. Thus, they could also
be thought of as farm clusters. We also identified a
fourth group of farms that were not highly connected
to any others, referred to as Sub-network 4 for ease
of discussion (Fig. 1). The coherence of sub-networks
is the emergent behaviour used throughout in the
context of the pattern-matching validation tech-
niques (i.e. comparisons of clustering in SaTScan
analysis of the observed data to sub-networks identi-
fied in the simulated data).

2.2.  Biophysical simulation

The simulated data used in this paper comes from
the ABM published in Cantrell et al. (2018), with a
detailed description of the model.

A Finite Volume Community Ocean Model (FV -
COM) with unstructured triangular grid was created
to span the entire BA region. Unstructured grids

allow for varying model resolution, with a wider grid
size in open parts of the BA and a finer grid in the
more complex areas of the model domain. Daily
freshwater river discharge values (see Fig. 1 for river
locations) and M2, N2, S2, K1, P1, and O1 hourly tidal
constituents were prescribed as forcing at the model
boundaries. Hourly wind forcing data were captured
with 9 weather stations deployed across the BA
region, with winds interpolated between and extrap-
olated beyond station locations to all grid elements
(Foreman et al. 2009). The FVCOM physical circula-
tion model outputs (i.e. wind, temperature and salin-
ity fields, and resulting currents) were validated in
Foreman et al. (2009).

Hourly output from the hydrodynamic model was
used by an offline particle-tracking model, in which
each simulated particle represented an individual
in a cohort of sea lice larvae. Each of these particles
was coupled to a biological model that dictated the
maturation and survivorship of the particle based
on the salinity and temperature encountered (Stuc-
chi et al. 2011, Cantrell et al. 2018). The details of
the equations governing the biology of the sea lice
larvae can be found in Cantrell et al. (2018). In
short, particles were released as pre-infectious nau-
plii, which matured into infectious copepods at a
temperature-dependent rate, with lower tempera-
tures re sulting in slower maturation rates. Salinity
impacts nauplii particle survival, with salinity be -
low 30 psu resulting in decreased survival and
mature larvae having a constant reduction in sur-
vival of −0.31 d−1.

The offline particle-tracking model simulated the
release of 50 particles from each farm (n = 20) every
hour, for the duration of the simulation from 11
March until 20 July 2009, resulting in 129 d of total
simulation time. The location and status of each par-
ticle was tracked for 11 d in order to simulate the
hypothetical lifespan of a sea lice copepod in temper-
ature conditions typical of the BA region (Stucchi et
al. 2011), with particle locations recorded at 20 min
time steps and an internal time step of 60 s. The posi-
tion of the particles from the biophysical simulation
was assumed to be a measure of infectious pressure
each farm exerts on each other farm as well as on
itself. In this simulation, infectious pressure was
measured in particles km−2.

2.3.  Observed data (sea lice counts and treatments)

From January 2005 to December 2017, veterinar-
ians at BA salmon farms recorded approximately
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monthly sea lice counts, including chalimus, mobile
and gravid female stages for Lepeophtheirus salmo-
nis, and combined unidentified Caligus species
counts. The number of fish sampled farm−1 yr−1

ranged from 6−540, with 95% CIs of 58.2−61.9, and
with the mean number of fish sampled during any
sea lice counting event being around 60 (i.e. typi-
cally 3 pens with 20 fish from each). Lice abun-
dance used in all analyses here combined mobile
lice and gravid females into a total motile lice
abundance. This was then divided by the number
of fish sampled, resulting in a motile abundance
value fish−1 for farm sampling events during the
period 2005−2017. These data were collected
from all aquaculture companies and curated into a
single data set as part of the BC Salmon Farmers
Association (BCSFA) Marine Environmental Re -
search Program (Project MERP_17A). The present
validation study includes data from January 2005
to December 2017, totalling 2569 observations. The
sea lice counts did not occur as exactly 1 ob -
servation site−1 mo−1, as some sites would have
been harvesting, fallowing, or re-stocking over this
period (Table 1).

All treatments administered in the BA region
during this time period were recorded. The BA is
unique in the salmon farming industry in that
despite widespread resistance to SLICE in other
regions of the world (Sutherland et al. 2015), it
remains efficacious in the BA (Saksida et al. 2010),
likely due to the large influx of ‘naïve’ sea lice
regularly introduced to salmon farms by large wild
salmon migrations up the rivers every year (Saksida
et al. 2011, McEwan et al. 2015, Kreitz man et al.
2018).

2.4.  SaTScan spatio-temporal analysis

SaTScan is used to detect clusters in spatio-temporal
data. This task is accomplished by systematically and
gradually scanning a window across space and/ or
time, noting the number of observed and expected
observations inside the window compared to outside
the window at each location and time step. In the
SaTScan software, the scanning window is a cylinder
with a circular base (in space−time analyses) and
varying height representing the steps in time. The
maximum window sizes in space and time are pre-
defined by the user, and it is generally recommended
to carry out a sensitivity analysis spanning biologi-
cally meaningful values (Pfeiffer et al. 2008). The
window with the maximum likelihood is the most
likely cluster, that is, the cluster least likely to be due
to chance. A p-value is assigned to this cluster using
Monte Carlo methods (Kulldorff 2015). Additionally,
SaTScan classifies clusters as ‘high’ or ‘low’ risk, with
high-risk clusters having higher lice abundance inside
the cluster than outside, and conversely, low-risk clus-
ters having smaller lice abundance inside than out-
side the cluster. Fig. 2 is a schematic illustration of the
analysis.

For SaTScan analyses, the motile lice abundance
data were log transformed and used in a normal dis-
tribution model as described by Kulldorf et al. (2009).
For the spatial cluster analyses, seaway distances

Year            No. of active sites                   Abundance

2005                         19                                       225
2006                         20                                       230
2007                         19                                       266
2008                         20                                       259
2009                         20                                       274
2010                         18                                       268
2011                         18                                       241
2012                         15                                       139
2013                         17                                       179
2014                         16                                       179
2015                         16                                       155
2016                         14                                       157
2017                         14                                       154

Table 1. Number of active salmon farming sites and sea lice 
abundance counts for each year in the data set

Fig. 2. Schematic illustration of how SaTScan analysis scans
through spatio-temporal data (red ‘X’s) with scanning win-
dows of varying sizes (grey cylinders) to identify clusters.
 Illustration is an adaptation of a figure from Ahmadkhani et 

al. (2018)
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between sites (rather than Euclidean distance) were
used (defined in a neighbour file). Sensitivity analy-
sis was carried out to define the upper limit of spatial
cluster sizes, ranging from 15% (representing 3 farms)
to 50% (representing 10 farms).

Results from Cantrell et al. (2020a), which quanti-
tatively identified sub-networks, were qualitatively
compared to those from the SaTScan analyses to
identify matching patterns in the emergent proper-
ties (i.e. clustering/sub-networks).

2.5.  SaTScan purely temporal analysis (seasonal
and annual clusters)

SaTScan is also able to conduct purely temporal
scan statistics to identify clusters in seasonal or an -
nual variation. For the seasonal analysis, data were
analysed on a connecting loop, ignoring the year in
which observations are made and only considering
the month. For the annual variation cluster analysis,
data were aggregated up to year and analysed across
the yearly values. Both can classify clusters as ‘high’
or ‘low’ risk. For both of these analyses, the log-trans-
formed sea lice count data was again utilised for the
normal distribution model, as in Section 2.4. The
minimum and maximum temporal lengths were
specified, and a sensitivity analysis was conducted
ranging from 15−50% of the study period. In the case
of the seasonal analysis, this means ranging from
about 2−6 mo. For the yearly analysis, this translated
into possible maximum cluster sizes ranging from
2−7 yr.

3.  RESULTS

3.1.  Descriptive analysis of the observed data (sea
lice counts and treatment data)

Overall, mean sea lice abundance during the period
from March−June has declined since 2005, with an
atypical rise in abundance in 2015 (Fig. 3a). The
monthly data (summed across years) has a pattern of
abundance steeply declining by Month 3 (March),
and remaining low until the end of summer (Month 8),
before increasing for the remainder of the year
(Fig. 3b). This is largely due to the focussed application
of sea lice treatments at the start of each year (Fig. 3d)
prior to the period of wild smolt out-migration.

There were 152 treatments on the 20 farms be -
tween 2005 and 2017. Typically, sites administered at
most one treatment in a given year. The number of

treatments yr−1 site−1 varied between 0.45 and 0.8
(Fig. 3c), with a slightly higher number of treatments
administered in 2005−2006 and 2013−2014 com-
pared to other years in the study.

3.2.  Sub-networks in simulated data detected in
observed data

3.2.1.  Observed sea lice abundance within the
study domain

Boxplots for motile sea lice abundance farm−1 are
presented in Fig. A1 in the Appendix. The observed
sea lice abundance did not have obvious patterns of
similarity that reflected sub-networks previously
defined in the simulated data. Because this type of
summary visualisation ultimately was not adequate
to identify the similarities (or otherwise) among
farms in a putative cluster, a more complex and sen-
sitive method of spatio-temporal cluster analysis
(SaTScan) was utilised.

3.2.2.  SaTScan spatio-temporal analysis

SaTScan analyses identified between 3 and 6 sig-
nificant clusters of lice abundance over the study
period, depending on the specified maximum spatial
window size (Table 2). When limiting the spatial
 window to a maximum of 3 farms (15% of the farms
in the study), 5 clusters were identified; conversely,
fewer clusters were identified when the maximum
number of farms per cluster was increased to include
more than 35% of all farms (maximum 7−10 farms
cluster−1). ‘Clusters’ may be as small as one farm,
which indicates that the mean lice count of this farm
is significantly different than the mean lice count of
the farms outside of the spatio-temporal window that
one farm occupies for that time period — in such
case, the emphasis is placed on the temporal aspect
of the detected cluster within that farm.

With smaller spatial windows (15 and 20%), the
significant clusters were fully nested within the sim-
ulated sub-networks, i.e. all farms in each significant
cluster belonged to the same sub-network for a given
period of time (Table 2). As the spatial window in -
creased from 25−50% of the farms, the smaller sig-
nificant clusters tended to aggregate and expand
outwardly into neighbouring simulated sub- networks
(Table 2). There were both high- and low-risk areas
identified throughout the study and across the vari-
ous spatial windows.
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Figs. 4 & 5 are visual representations of Table 2.
Fig. 4 summarises the significant clusters, identified
with a spatial window that included up to 20% of the
farms, to illustrate how smaller clusters were nested
within the simulated sub-networks. The figure is
divided into 4 sections to illustrate the progression of
the significant clusters over the study period. Fig. 5
summarises the output for a larger cluster size, up to
30% of farms, to illustrate the effects of expanding
the maximum cluster size. Fig. 5b illustrates the
results from years 2007−2012. This is the time frame
that encompasses the year of the simulation study,
which simulated the environmental conditions from
the year 2009 (Cantrell et al. 2018). In both Figs. 4 &
5, the black, semi-translucent ‘X’s placed on farms
indicate the farm was not active for the entire dura-

tion of time period represented in the panel. Light
grey ‘X’s indicate the farm was not active for some
duration of the time period represented in the panel
(for at least 1 mo of the time period shown). Though
farms typically are fallowed for 6 or more months in
total, this can be split between 2 years).

Farms 11, 19, and 20 were never identified as part
of a cluster. Farms 19 and 20 were part of the low
connectivity group of farms identified in the simula-
tion study and were frequently fallowed during the
study period (Figs. 4 & 5). Starting with a maximum
cluster size of 4 and up, Farms 1, 2, and 3 (all part of
Sub-network 1 in the simulation) were always clus-
tered together. In addition, irrespective of the exact
members of their shared cluster, this group was
always characterised as low risk. Farms 7, 16, 17, and

Fig. 3. (a) Mean motile sea lice abundance for (a) the months March−June for all sites over the years 2005−2017 and (b) all sites
between 2005−2017 broken down by month. Treatments (c) per year (summed across all sites and months) from 2005−2017, 

and (d) per month (summed across all years and sites)



Aquacult Environ Interact 13: 65–79, 202172

18 were a highly significant cluster starting at a clus-
ter size of 4, and all were part of Sub-network 3 in the
simulation. When the maximum cluster sizes were
set to 5−10, the clusters persisted over most of the time
period of the data set, meaning the ephemeral clus-
ters which only lasted for 5 or fewer months (not shown
for ease of interpretation) joined other clusters.

3.2.3.  SaTScan purely temporal analysis (seasonal
and annual clusters)

Varying the maximum cluster size for the yearly
analysis from 15−50% of all years in the data set did
not result in substantially different cluster results
(Table 3). The years 2004−2006 remained the only
significant cluster once the maximum cluster size
was large enough to include all 3 years. This cluster
was identified as high risk, indicating the sea lice
counts were significantly higher in these years than
in the following years.

The seasonal analysis identified a significantly
higher risk during the winter months. The months

included in this high-risk cluster
grew as the maximum cluster size in -
creased, from only Month 12, when
the maximum cluster size was set to be
15% of all months in the data set, to
Months 10−2, when the maximum
cluster size was set to be 50% of all
months in the data set.

4.  DISCUSSION

Despite a long history of use in many
fields, validating the emergent behav-
iours of ABMs remains difficult and
often relies on qualitative comparisons
between simulated outcomes and
known patterns in the observed data.
Here, we attempted to validate the
clusters of fish farms identified in a
previous ABM with outcomes from an
observed sea lice count data set. We
used a SaTScan analysis to identify
space−time clusters in the observed
sea lice data set to qualitatively com-
pare to the clustering determined in
the simulated data.

While there were complications in
interpreting output from this valida-
tion analysis, there remains support

for the simulation in the observed sea lice count time
series. The SaTScan analyses identified clusters in
the ob served data that were consistent, even when
the maximum cluster size was varied, and these con-
sistencies were similar to the clusters identified from
the biophysical simulation. SaTScan provides evi-
dence for the clustering identified in the biophysical
model to also be present in the observed data, as this
analysis identified clusters of farms similar to the
clusters in the biophysical simulation. This pattern
matching gives us confidence that the model we con-
structed was complex enough to capture the emer-
gent behaviour of the system, and lends support for
the conclusions from the model.

However, some key differences between clusters
in the observed data and sub-networks in the simu-
lated data remain. Some of the farms that were iden-
tified as part of ‘Sub-network’ 4, or the sub-network
that was actually a group of farms with low connec-
tivity to any other farm, were actually identified in
this study as being in a consistent cluster. Farms 8, 9,
13, and 14 were part of Sub-network 4 in the simula-
tion, and in the SaTScan analysis were clustered

Max.                     Farms in                        Time period                  Risk (high 
cluster size             cluster                                                                   vs. low)

3 (15%)                    8,14                    Early 2005 to end 2017                H
                                    4                      Mid 2005 to early 2006                H
                              17,18,16                Late 2005 to early 2006                H
                                  1,5                     Early 2007 to late 2013                L
                                    6                       Mid 2011 to late 2014                 H
4 (20%)                  8,13,14                 Early 2005 to end 2017                H
                                1,2,3                    Mid 2007 to late 2017                 L
                            7,16,17,18              Late 2005 to early 2006                H
                                    4                      Mid 2005 to early 2006                H
                                    6                       Mid 2011 to late 2014                 H
5 (25%)                 6,8,9,14                 Mid 2011 to end 2017                 H
                                1,2,3                    Mid 2007 to late 2017                 L
                         7,10,16,17,18             Mid 2007 to late 2012                 L
                                    4                      Mid 2005 to early 2006                H
6 (30%)              6,8,9,13,14              Early 2005 to end 2017                H
                               1,2,3,5                  Mid 2007 to late 2013                 L
                      7,10,15,16,17,18,          Mid 2007 to late 2012                 L
                                    4                      Mid 2005 to early 2006                H
7, 8, 9, 10            6,8,9,13,14              Early 2005 to end 2017                H
                          1,2,3,4,5,12              Mid 2007 to late 2017                 L
                       7,10,15,16,17,18          Mid 2007 to late 2012                 L

Table 2. Summary of the SaTScan analyses indicating the maximum cluster
size set in each analysis, the salmon farms that were defined as a cluster, the
time window over which each cluster existed, and whether the cluster is high
or low risk. Only significant clusters are shown, and all had p-values < 0.002.
For ease of interpretation, the farms have been colour coordinated to match
the sub-networks to which they belonged in the simulation study (see Fig. 1):
pink: Sub-network 1; green: Sub-network 2; teal: Sub-network 3; purple: the 

unconnected farms referred to as Sub-network 4 
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together at multiple cluster sizes. Here, the differ-
ence between a sub-network and a cluster in this
context becomes important. A sub-network means a
group of sites that are connected to each other,
whereas a cluster, in this context, indicates a group of
farms whose sea lice abundance is similar to each
other over a specified period of time. Therefore, it is
perhaps not at all surprising that a group of farms
with low connectivity would have more similarity in
their monthly sea lice abundance than farms that
have high connectivity to other farms in the area

Despite the long time series data set of the ob -
served sea lice counts from the farms (>10 yr) avail-
able to validate the biophysical simulation model, the
validation has uncertainty, though there is support
for the simulated sub-networks in the observed data
clustering as well as support for the reduction in
viable sea lice larvae during the spring freshet event

seen in the simulation. Another difficulty in this vali-
dation exercise is the fact the simulation only cov-
ered a portion of the observed data time frame. At
this point in time, a simulation with the high spatial
and temporal resolution of the one described here
would be prohibitively costly for computational time
in order to simulate multiyear time scales.

Accounting for the impact of the treatments is diffi-
cult. If the treatments were effective and controlled
sea lice levels, the sea lice abundance will not reflect
original infestation. Thus, it is likely that treatments
will break up connectivity among farms, thereby
obscuring true clusters. The BA also has extremely
large migrations of wild salmon (Ye et al. 2015)
which, when returning to their natal rivers to spawn,
typically carry attached sea lice (Gottesfeld et al.
2009). The introduction of additional infective sea
lice to farms could further complicate our ability to

Fig. 4. SaTScan results from a window that may include up to 20% of farms, with significant (p < 0.05) high-risk (red) and low-
risk (blue) clusters of farms for sea lice counts (log-transformed) over the study period. The analyses were carried out with
monthly time steps and summarised by years (inclusive) to capture overall trends through time: (a) 2005−2006; (b) 2007−2010;
(c) 2011−2014; (d) 2015−2017. Black, semi-translucent ‘X’s placed on farms indicate the farm was not active for the entire du-
ration of time period represented in the panel; light grey ‘X’s indicate the farm was not active for some duration of the time 

period represented in the panel
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detect farms that are hydrodynamically connected by
inflating sea lice abundance on some farms. There-
fore, it is possible that a farm with high abundance

compared to the rest of the farms in their sub-
 network could either be interpreted as evidence
against the integrity of a given sub-network, or as a
farm highly impacted by wild salmon migration, or
some other unknown farming practice. Additionally,
sea lice abundance is itself a derivative of larval
infestation pressure. The relationship between larval
infestation pressure and adult sea lice abundance on
fish is not well understood (Frenzl 2014) and may not
be linear. Therefore, it is possible that motile sea lice
levels on farmed salmon may not even be the appro-
priate variable for comparison to infestation pressure
because there are too many potential confounders
and unknown steps between the larval supply and
observed infestation.

In the previous exploration of the biophysical
model simulated data set, we discovered that the
freshet event in the spring suppressed sea lice devel-

Fig. 5. SaTScan results from a spatial window that may include up to 30% of farms, with significant (p < 0.05) high-risk (red)
and low-risk (blue) clusters of farms for sea lice counts (log-transformed) over the study period. The analyses were carried out
with monthly time steps and summarised by years (inclusive) to capture overalls through time: (a) 2005−2006; (b) 2007−2012;
(c) 2013; (d) 2014−2017. Black, semi-translucent ‘X’s placed on farms indicate the farm was not active for the entire duration of
time period represented in the panel; light grey ‘X’s indicate the farm was not active for some duration of the time period 

represented in the panel

Max. cluster              Years in cluster                Risk (high 
size (%)                                                                  vs. low)

15                                   2004−2005                           H
25                                   2004−2006                           H
50                                   2004−2006                           H

                                 Months in cluster                       
15                                           12                                  H
25                                        11−1                                H
50                                        10−2                                H

Table 3. Sensitivity analysis for the purely temporal SaT -
Scan analysis to identify annual and seasonal variation in 

sea lice infestation of salmon farms
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opment and acted as a mechanism to keep connec-
tivity low between the farms. This suppression oc -
curs because sea lice growth is hindered by cold and
fresh water (Bricknell et al. 2006, Groner et al. 2016,
Samsing et al. 2016), and during this time there is a
large freshet event in the area which has been shown
to suppress sea lice larval growth (Groner et al. 2016,
Samsing et al. 2016, Cantrell et al. 2020a). Though
there were sea lice treatments in the beginning of
each year, the efficacy of SLICE is approximately
90% for at least 35 d after treatment (Stone et al.
2000). The fact the sea lice abundance remains low
beyond this point and does not increase again
throughout the summer provides evidence of the
freshet event helping to suppress sea lice abundance
for the duration of the summer months. Furthermore,
the identification of the winter months as a high-risk
cluster supports our finding of the freshet event in
the spring and summer suppressing sea lice larval
development. So, while the decrease in lice abun-
dance is likely due to the treatments, the fact it is
kept low for the entire summer without needing ad -
ditional treatments is possibly due to the freshet.
While the return timing of wild Pacific salmon de -
pends on species and can begin as early as May, runs
typically peak in late summer to autumn (August−
October) (Puget Sound Indian Tribes and Washing-
ton State Department of Fish and Wildlife 2017).
There is no large influx of wild salmon bringing new
sea lice to the area until the end of the summer
months.

Some of the challenges in parameterising sea lice
biophysical models include unknowns in the sea lice
biology, such as attachment rates, infestation pres-
sure needed to initiate an infestation, and interac-
tions between wild and farmed salmon, where sea
lice are undoubtedly exchanged in both directions as
adult salmon return to their natal rivers with existing
sea lice infestations (Beamish et al. 2005). Both bath
and in-feed treatments are commercially available to
control sea lice infestations, with a veterinarian pre-
scription. The impacts of these treatments on sea lice
larvae dispersion remain difficult to parameterise.
Additionally, the population size of sea lice as an ini-
tial condition in many models is unknown (Bellocchi
et al. 2010).

An additional complication to this validation at -
tempt is the resolution and scale mismatch between
the observed and simulated data. In previous papers
utilising the simulated data, we found high temporal
variation in the connectivity strength depending on
physical conditions from day to day (Cantrell et al.
2018, 2020a). The simulation used a high frequency

release of particles to analyse connectivity in a spe-
cific time period (March−July 2009). However, the
observed data utilised here is coarse in temporal res-
olution (monthly sampling events), but large in scale
(13 yr of data). It is possible that the high temporal
variation identified in the simulation also exists in
nature. With sea lice counts only being reported
monthly, higher frequency temporal variation could
be obscured.

The observed data set may not exhibit identical
patterns detected in the simulated data set because
not all farms were active at all times (Table 1, Fig. 4).
Having fallowed farms will disrupt the connectivity
via larvae dispersing among sites and could disrupt
farm clusters that would otherwise be present. This is
often the entire purpose of fallowing farms. By the
end of the observed data set in 2017, only 14 farms
remained active (Fig. 4). This number of fallowed
farms would undoubtedly disrupt connectivity. In
light of the treatments and fallowed farms, the fact
that the clusters can still be detected at all is perhaps
rather strong evidence that the clusters identified in
the simulation are valid.

The fact that a 13 yr data set with moderate tempo-
ral resolution does not offer either clear validation or
disproval of the simulation highlights the difficulty in
collecting observations that are able to ground-truth
the emergent properties of biophysical models, and
in particular, those simulating sea lice larval disper-
sion. All salmon farming regions will have farm treat-
ments and fallowing regimes that complicate using
their data for validation. However, the BA has fewer
treatments and only used one type of treatment
(EMB) during the study period (Saksida et al. 2011)
compared to other regions where chemical treat-
ments are rotated or used in tandem with non-medi-
cinal treatments, such as cleaner fish and cage
snorkel barriers in order to protect the efficacy of
existing sea lice medications (Aaen et al. 2015, Jack-
son et al. 2018). BC has not had the same issues with
resistance to chemical treatments found in other
salmon farming regions, so responses to the treat-
ments are fairly consistent (McEwan et al. 2015). The
more homogenous methods in the BA likely means
clustering patterns are less impacted by treatments
than in other regions. In an ideal validation data set
there would be no treatment impacts, all farms would
be active, and higher temporal resolution would exist
for lice counts. As this ideal data set does not exist
and would be difficult or impossible to collect any-
where, the currently utilised data set represents per-
haps the ‘best case scenario’ in terms of using farm
level sea lice abundance for validation purposes.
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Other techniques that have been utilised to vali-
date biophysical models of sea lice dispersion, in -
cluding plankton tows in the area to sample sea lice
larvae, as well as setting up sentinel cages near
farms to estimate infestation pressure on the farms
(Adams et al. 2012, Pert et al. 2014, Sandvik et al.
2016). However, these methods have their own prob-
lems. Plankton tow sampling for sea lice larvae rarely
yield sufficient samples for statistical analysis (Sa -
lama et al. 2011). For example, Adams et al. (2012)
found only 12 of 126 sampling events yielded non-
zero samples for sea lice larvae. Sentinel cages have
been shown to underestimate sea lice abundance on
the farms themselves (Ulgenes 2018), though this is
possibly due in part to self infestation on the farms.
Sentinel cages also poorly reflect the reality of patch-
iness in lice larvae distributions through the water
column, though Sandvik and colleagues developed
an improved method to ‘shift’ spatial correlations be -
tween observed sentinel cage counts and simulated
larval distribution data. This task was accomplished
by comparing observed lice counts from sentinel
cages to predictions of lice larval dispersion in large
grids in the simulation, rather than traditional point-
to-point comparisons (Sandvik et al. 2016, 2020). This
information leaves researchers with imperfect options
from which to validate the emergent properties of
biophysical models. The analysis conducted here,
therefore, may offer one of the ‘best’ options cur-
rently available.

Despite the difficulties regarding validating the
emergent properties of the simulated study, the cen-
tral question is whether the model is useful for man-
agement; as George Box’s often quoted aphorism
puts it, ‘all models are wrong, but some are useful’.
The simulation identified clusters of farms which
could be treated together in order to reduce the like-
lihood of outbreak scenarios. It identified areas that
may be preferred from a disease management per-
spective for future siting of additional farms, such as
near the ‘unconnected farms’ (e.g. in Sub-network 4),
or in areas that showed a cluster with a low risk for
sea lice. These clusters must be considered as guide-
lines, as the observed data set illustrated some farms
have elevated sea lice abundance not predicted in
the simulation and should receive additional surveil-
lance, due to some factor not included in the ABM.
Future simulations could explore known wild salmon
migrations as an additional source of infestation
pressure on the farms and expand the time frame of
the simulation to include time periods when sea lice
abundance levels are at their highest (in BC, this
would be the autumn and winter months).

5.  CONCLUSIONS

Validating sea lice dispersal simulations is a diffi-
cult task that does not yet have a ‘gold standard’
established in this field. Pattern matching between
observed data and simulation outcomes offers one
method to validate emergent properties from the
simulated data, though often the observed data in -
cludes complicating features (such as treatments)
which makes validation less than straightforward.
We adopted qualitative comparisons of quantitative
analysis, utilising spatio-temporal cluster analysis
(SaTScan) to identify clusters in the observed sea lice
abundance data to qualitatively compare to the clus-
tering previously identified in the simulated data. We
found empirical support for many patterns identified
in a previously published ABM that simulated sea
lice larval dispersion in the BA, BC.
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Appendix.

Fig. A1. Monthly motile sea lice abundance for each site, across all years (2005−2017). Box plot for motile sea lice abundance
counts, from 2005−2017, arranged by sub-network identified in the simulation study. The bisecting line in the boxes is the
median. Note that while the y-axis is only shown to 3.5 sea lice fish−1 in order to show the details of the boxplots themselves, just
under 10% of all monthly values were in excess of this level with around half of these outlier values occurring in 2005 and 2006. 

Numbers on boxes correspond to Farm no. (see Fig. 1)
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