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Abstract. The concept of a Binary Multi-track Sequential Generative
Adversarial Network (BinaryMuseGAN) used for the generation of music
has been applied and tested for various types of music. However, the con-
cept is yet to be tested on more specific genres of music such as traditional
Scottish music, for which extensive collections are not readily available.
Hence exploring the capabilities of a Transfer Learning (TL) approach
on these types of music is an interesting challenge for the methodology.
The curated set of MIDI Scottish melodies was preprocessed in order to
obtain the same number of tracks used in the BinaryMuseGAN model;
converted into pianoroll format and then used as training set to fine
tune a pretrained model, generated from the Lakh MIDI dataset. The re-
sults obtained have been compared with the results obtained by training
the same GAN model from scratch on the sole Scottish music dataset.
Results are presented in terms of variation and average performances
achieved at different epochs for five performance metrics, three adopted
from the Lakh dataset (qualified note rate, polyphonicity, tonal distance)
and two custom defined to highlight Scottish music characteristics (dot-
ted rhythm and pentatonic note). From these results, the TL method
shows to be more effective, with lower number of epochs, to converge
stably and closely to the original dataset reference metrics values.

Keywords: Generative Adversarial Network - Transfer learning - Convolutional
Neural Network - Scottish Music.

1 Introduction

The ability for Artificial Intelligence (AI) to generate music is a challenge that
has been taken on by many for various reasons. Music is known to assist humans
with emotional comfort and needs and thus the ability for a machine to create
such melodies to accomplish that is being looked into with the advancement of
technology [18].
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The first examples dated in 1957 and 1958 are known as the Illiac Suite,
which used a process of music composition through sequential record of experi-
ments performed by a computer [21]. The next occurred in 1960, when R. Kh.
Zaripov explored the use of a computer for creating short monophonic melodies,
with Zaripov later identifying the creation of melodies as being one of the most
important aspects of the process [1].

Progress continued throughout the years of 1975 and 1980, as Mark Steedman
investigated machine perception of musical rhythms [22] and David Cope’s exper-
iments in musical intelligence focused on imitating his own musical style [6]. This
paved the way for major companies like Google and Sony to begin development
in their own laboratories which have produced a number of computer-generated
music compositions. The Google Brain team, Magenta; took two approaches to
understand the progress of audio modelling. The first used the WaveNet style
auto-encoder that is used on temporal codes by the conditioning of an auto-
regressive decoder to learn from the raw audio waveforms. The second was the
introduction of a data set consisting of musical notes in the order of a larger
scale of similar public data-sets known as NSynth [9]. Sony’s technologies on the
other hand were used in various ways to create different types of music. The
first of these is titled “Daddy’s Car”, which was created with the inspiration of
the Beatles and another by SKYGGE to generate an album that consisted of an
Al-human collaboration titled ”Hello World” [2].

Generative Adversarial Networks (GANSs) are one of the methods used for
AT music generation. A GAN is a framework proposed by Goodfellow et. al. [11]
where two Neural Networks (NNs) are trained simultaneously in an adversarial
manner. One network is called the Generator and the other is called the Dis-
criminator. The Generator creates samples starting from uniformly distributed
random data and the Discriminator receives as input either the sample gener-
ated by the Generator network or real data. The goal of the Discriminator is
to learn weather the data that it receives as input are samples generated by
the Generator or are real data. The goal of the Generator is to learn how to
“trick” the Discriminator into making it believe that the samples generated by
the Generator are real data. In this way, the Generator learns how to produce
samples which resemble real data but are completely artificial [14].

GANSs are used for several tasks, resulting in different types of GAN specific
to each task. A few of these are: cGAN, a type of conditional GAN used to aid
computer diagnosis systems in the localisation and detection of prostate tissue
on MRI scans [12]. CycleGAN, an image-to-image translation approach where
image mapping is learned using image pairs that are aligned [25], in addition
to being used for images they have also been applied to the concept of music
in the form of a symbolic music representation in MIDI format [4]. FusionGAN,
also used for generating music, is a type of fusion framework and an optional
use of dual learning that can be implemented on the styles of the provided
domains [5].There is also a style-based GAN architecture (StyleGAN) for image
modelling [15] and an Image Super-Resolution GAN (SRGAN) which uses a low-
resolution image to estimate a corresponding high-resolution image [16]. Overall,
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various types of GANs are used for art generation, whether it is a picture, a
video, or music. Some examples of their art generation capabilities involve the
generation of photographs of human faces [14], the generation of pictures from
a text description [24], the prediction of video frames up to a second [23], and
music generation [17].

A Binary Multi-track Sequential GAN (BinaryMuseGAN) is used for gener-
ating multi-track polyphonic music consisting of multi-track inter-dependency,
temporal, and harmonic and rhythmic structures. Two different scenarios were
taken to integrate the temporal model; one of these scenarios incorporates the
learning of a temporal structure from a human made track while the other is the
ability to make its own music without any human intervention. With the use of
these principles, private Generators are used for individual tracks; another used
with a combination of private generators for each track and their inputs that
are shared among tracks; and last is another approach with all tracks executed
at once with one Generator. When results are combined to view bars, Convolu-
tional Neural Networks (CNNs) are used to translate patterns [7]. In this paper,
BinaryMuseGANs will be used throughout for the unsupervised generation of
Scottish traditional music patterns.

The paper is divided in three more sections, excluding introduction, to high-
light the main contribution of the paper

— In Section 2 the curated Scottish music dataset is presented together with
the proposed instruments mapping used to associate Scottish traditional in-
struments into respective BinaryMuseGAN tracks list. Data curation and
preparation of Scottish traditional music for evolutionary approaches has
never been completed or studied before, hence it represents the first contri-
bution of our work.

— In Section 3 the training methodology used is presented. The main contribu-
tion of our paper is the utilisation of a TL scheme where a pre-learned model,
trained with BinaryMuseGAN on a dataset of non specialist music pianoroll
tracks (Lakh MIDI dataset), is fine tuned on the Scottish music dataset. This
has a double advantage: the model can be fine tuned effectively on smaller
datasets, the training can achieve greater performances because the core fea-
tures of music generation has already been learnt in the pre-learning phase.
TL approaches for music generation is a largely unexplored area, to the best
of our knowledge no previous approach has attempted anything similar.

— In Subsection 3.1 two new metrics, dotted rhythm and pentatonic note,
are defined, as deemed to be representatives of the key features of Scot-
tish music.

— Finally in Section 4, the training of the TL model is compared with the model
trained from scratch. The results show the superiority of a TL approach in
terms of robustness and metrics performances.

2 Data gathering and preprocessing

The training data consists of 137 midi files sequenced by Barry Taylor which
are traditional or contemporary Scottish tunes [3]. Here the process used to
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clean and preprocess the data is described. This is a non-trivial task as the data
have many differing characteristics. Starting with the time signatures, these are
used to narrow down the dataset to suitable files. Tracks in the raw dataset
are then assigned to new tracks in the processed dataset depending on their
instrumentation and certain other features as will be described. Finally, the
shaping of the data in a format which can be used to train the GAN is described.

2.1 Time signatures

First the time signature of each file is considered, which is stated in the midi
file metadata. In the original BinaryMuseGAN dataset [8], the authors only use
pieces with a time signature of 4/4. Traditional Scottish music often features
compound times such as 6/8 or 9/8, which would therefore be unsuitable to
allow TL. The proportions of the time signatures in the Scottish music dataset
are shown in Figure 1. Since 4/4 time signatures only make up 69.2% of the total
dataset, it was decided also to include 2/4 and 2/2 as these have a very similar
feel to 4/4. This reduces the valid dataset size to 78 files.

26.9%

2/4
3/4
4/4
6/8
2/2
9/8
6/4

69.2%

43.6%

Fig. 1: Proportion of each time signature present in the Scottish music dataset -
exploded segments indicate the time signatures included in the processed dataset

2.2 Tracks and instrumentation

Now the instrumentation of each file is considered. Each track in a file has an
associated General MIDI program change number - equivalent to an instru-
ment [20]. BinaryMuseGAN generates 8 tracks with the following midi instru-
ments: Drums, Piano, Guitar, Bass, Ensemble, Reed, Synth Lead, and Synth
Pad. Effective TL requires the same number of tracks to be generated, however
the exact instrumentation used in their implementation is not suitable for a Scot-
tish ensemble. In our dataset, certain files contain multiple tracks of the same
instrument; for example, a file with 4 tracks could have all tracks with program
change number 1, which is an Acoustic Grand Piano. Most files have fewer than
8 tracks which is highlighted in Figure 2. As a result, the preprocessed dataset is
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sparse with respect to which of the 8 tracks are not empty. The instrumentation
was adjusted to the following: Drums, Piano, Guitar, Bass, Fiddle, Wind, Accor-
dion, and Clarsach. These are listed in Table 1 along with their corresponding
General MIDI program change number. The table also shows which program
change numbers (i.e. instruments) from the raw dataset are included in each
new track.

frequency
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1 2 3 4 5 6 7 8
number of tracks

Fig. 2: Histogram of the number of tracks in each file in the Scottish music
dataset.

Table 1: Instrument changes for scottish music generation

Track no.|Their instrument Our instrument Included instruments
0 Drums Drums Drums
1 Piano Piano (Acoustic Grand Piano - 1) 1,2,3,5,6,8
2 Guitar Guitar (Acoustic Guitar (steel) - 26) 25,26,31,106
3 Bass Bass (Electric Bass (finger) - 34) 33,34,36,37,43
4 Ensemble Fiddle (111) 41,42,49,51,111
57,58,59,62,66,67,
5 Reed Wind (Recorder - 75) 2,68,69,71,72,73,
74,75,76,77,80,110,11
6 Synth Lead Accordion (22) 22,2324
7 Synth Pad Clarsach (Orchestral Harp - 47) 11,15,16,89,95,47

We refer to the 8 tracks in the preprocessed dataset as “new tracks” and
tracks from files in the raw dataset as “old tracks”. Any new track for a given file
which contains one or more old tracks is referred to as a non-empty track, whereas
empty tracks do not contain any old tracks. Only using the transformations
shown in Table 1 results in very uneven distributions of old tracks among new
tracks which leaves many new tracks empty as shown in Figure 4. To avoid having
large numbers of new tracks in the dataset which do not contain any notes, the
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old tracks should be spread more evenly across the new tracks. To achieve this
balancing, heuristics are employed to change some of the tracks based on the
following features of each track: mean note, number of notes, and polyphonic
ratio.

Every note in any track is represented by a number from 0 to 127 which
defines the note’s pitch as per the General MIDI standard [20]. The processed
format of the dataset is a pianoroll, which is an array with a temporal dimension
and pitch dimension. Along the temporal dimension, every column contains 128
binary-valued pitches which indicate whether that pitch is being played at that
time or not. This requires the definition of a frequency parameter that controls
the effective resolution of the temporal dimension. The same frequency of 24 as
the original MuseGAN research was used, which means every quarter-note beat
has 24 timesteps and every bar of four beats contains 96 timesteps.

To calculate the mean note, number of notes (here denoted 1), and poly-
phonic ratio (herein referred to as “poly ratio”) for a given track it is first con-
verted to the pianoroll format. The number of notes is the number of nonzero
locations in the pianoroll. While this does not take into account notes which are
sustained for multiple timesteps, it can still give an indication of how many notes
are played in that track. The mean note is the average location of nonzero ele-
ments along the pitch dimension. Finally, the poly ratio is the ratio between the
number of locations along the temporal dimension with more than one nonzero
location to the number of locations along the temporal dimension with any
nonzero location. This indicates whether the track is playing mostly chords of
multiple notes or mostly single lines of notes.

To balance the tracks, we derived heuristics based on these metrics for moving
old tracks from non-empty tracks which contain three or more old tracks to other,
“target” new tracks. These heuristics are designed to move old tracks to target
new tracks with suitable instrumentation, e.g., tracks which play low notes go
to bass, tracks which play more chords go to piano. The heuristics used are
summarised in Algorithm 1.

Algorithm 1 Psuedocode of the heuristic used to balance the tracks

1: if mean note < 50 then

2 move to bass

3: end if

4: if mean note > 60 and npote > 100 then
5:  move to fiddle or wind

6: end if

7: if poly ratio > 0 then

8: move to piano

9: end if

10: if poly ratio < 0.1 then

11:  move to any empty track except drum or bass
12: end if
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The final heuristic in Algorithm 1 (lines 10-12) is used in case not enough
suitable tracks are found using the other rules. The decision to move an old
track to a different new track using the heuristics depends on the number of
old tracks in the current new track and sometimes on the number of old tracks
already in the target new track, as described here. Let n,,. denote the number of
non-empty new tracks, n’,,, denote the number of old tracks in new track i, and
nt . denote the number of old tracks in a target track ¢ to which an old track
could be moved. To balance the new tracks, the aim is to have all nf,, <= 2
and n,, >= 3. First new tracks with nf_, > 2 are found and the rules above
are applied to those tracks until all n?,,, <= 2. Then if n,, is still less than 3,
the tracks where nf,,, = 2 are considered and the rules are applied again. This
is shown schematically in Figure 3 which describes which tracks are moved and

the conditions necessary for moving.

If nfew > 2 If nlpew > 2 If npe <3

O,
@)
®
O,

T
®
@

Key:

poly rato<0.1  ----- nt

polyratio>0 e

mean note < 50

mean note > 60 and npote > 100

Fig. 3: Graph showing the heuristics used to balance the new tracks. Line colour
indicates the condition applied to the old track to be moved. Dashed or dotted
lines indicate the condition on the number of old tracks in the target track. Track
0 is drums and is not shown here since no tracks are transferred to or from this
track.

Figure 5 shows the number of non-empty tracks and the distribution of old
tracks after applying these balancing heuristics. Compared to Figure 4, the num-
ber of non-empty tracks for each file is greater on average with none having fewer
than 3 non-empty tracks. Moreover, considering the number of old tracks in each
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new track, the maximum is now 2 for all new tracks except drums and the av-
erage is more evenly distributed across the new tracks.
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(a) Histogram showing numbers of new
tracks for each file in the Scottish music
dataset
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Fig. 4: Balance of tracks in the dataset after applying track conversions from

Table 1.
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Fig. 5: Balance of tracks in the dataset after applying track conversions from
Table 1 and further track balancing from Figure 3.

2.3 Data shaping

The final step in preprocessing the data is shaping the pianoroll array. As dis-
cussed previously, the pianoroll format has a temporal and pitch dimension. This
new dataset should also be the same shape as the original BinaryMuseGAN
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dataset to effectively apply TL. In the original work, the array is cropped in the
pitch dimension to 84 notes between 24 (C1) and 107 (B7) and the same was
done here. Since none of the notes in the Scottish music dataset are outwith this
range, this does not cause any notes to be lost.

Along the temporal dimension, data are split into bars of 96 timesteps. Each
point in the dataset contains 4 bars. The final dimensions of the array are then
[number of data pointsx 4 (bars)x 96 (timesteps)x 84 (note pitches)x 8(tracks)]. For
the original BinaryMuseGAN dataset, each piece has 6 4 bar phrases randomly
sampled and added to the dataset. Due to the limited number of files in the
Scottish music dataset, all of the 78 valid pieces are instead divided into 4 bar
phrases of 96 timesteps and all of these are included in the dataset. This gives
1047 data points.

3 GAN model

The technique chosen in this work to train a network able to learn from the
curated dataset of Scottish music, is an adaptation of the GAN model developed
by Dong et. al. [8]. They developed a deep convolutional GAN that employs
binary output neurons to generate music in the pianoroll format described in
Section 2. The model developed in [8] is depicted in Fig. 6 and is composed by:

— a Generator network shared among all the tracks, G5 in Fig. 6, which is
responsible of generating a high-level representation of the output music
shared by all the tracks. The shared Generator is composed by an input
dense layer with 1536 neurons and five transposed convolutional layers.

— A private Generator network for each track, G, in Fig. 6, which convert the
high-level music output provided by the shared generator into the final piano-
roll output for the corresponding track. Each private Generator network is
composed by three transposed convolutional layers.

— A Refiner network for each track, which refines the real-valued output of
the Generators into binary ones. In this network, the tensor size remains
unaltered.

— A private Discriminator for each track, D, in Fig. 6, which extracts low-level
features from the corresponding track. Each private Discriminator network
is composed by three convolutional layers.

— A Discriminator network shared among all the tracks, D, in Fig. 6, which
extracts a high-level abstraction. The shared discriminator is composed by
two convolutional layers.

— An onset/offset stream Discriminator, D, in Fig. 6, formed by three convo-
lutional layers.

— An chroma stream Discriminator, D, in Fig. 6, formed by two convolutional
layers.

— A final Discriminator, D,, in Fig. 6, which takes as input the outputs of Dy,
D, and D.. This last Discriminator is composed by one convolutional layer
and two dense layers respectively with 1536 and 1 neurons.

The output of the Generator group (shared plus private ones) has the shape
R4x96x84X8 "which is the same of the input for the Discriminator group. The
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output of the Discriminator group has shape R'. The total number of parameters
for the BinaryMuseGAN model is 3735737, 1580440 in the Generator group
and 2155297 in the Discriminator one. For more detailed informations on each
network topology and on the onset/offset and chroma streams, please see [8].

ITraining Data I

Generator Group Discriminator Group

2

Or

v

Refiner Network

=T =]
IZH: m = - BinaryMuseGAN Model

Fig. 6: High level depiction of the BinaryMuseGAN model. The separate images
were taken from [8]. This image depicts the high level interaction between the
three type of networks. The Generator group receives as input random data and
it produces a music sample by first passing through the Refiner network which
produces a binary output. The Discriminator group takes as input either training
data or the samples produced by the generator and try to determine if the input
was either real or fake data.

Such GAN model can be either trained from scratch or via a Transfer Learn-
ing framework as shown in Fig. 7 by using a pretrained model. Transfer Learning
is a Machine Learning (ML) technique where a model trained on a set of data
is used as a starting point for training on a new set of data. It can be used
to enhance the generalisation capabilities of the pretrained model, by training
it again on different kinds of data; or it can be used to speed up the training
process on a set of training data similar to the one used for the pretraining
phase; or it can be used to train complex model where large datasets are not
available. In this last case, the model is pretrained on a larger alike dataset and
then fine tuned on the dataset of interest. In this work the aforementioned GAN
model was tested both by training it from scratch on the dataset presented in
section 2 and via transfer learning with the pretrained model provided by Dong
et. al. [8]. The dataset used to pretrain the model is the piano-roll version of the
Lakh dataset, which is a collection of 176,581 unique MIDI files from the Million
Song Dataset. This dataset was proposed by Raffel [19] and was converted into
piano-roll format by Dong et. al. [7].
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Fig. 7: Schematic of the Transfer Learning framework employed in this work

3.1 Performance Metrics

To evaluate the results obtained, the same metrics employed in [8] were used, plus
two new metrics here which are features typically observed in Scottish music [10],
the Dotted Rhythms and Pentatonic Notes. The full set of metrics used are:

— Qualified note rate: evaluates the ratio of the number of qualified notes to
the total number of notes. A qualified note is a note no shorter than three
time steps. Hence a low qualified note rate value means that the produced
track is overly-fragmented.

— Polyphonicity: is the ratio of the number of time steps where more than two
pitches are played simultaneously to the total number of time steps.

— Tonal distance: is the distance between the chroma features (one for each
beat) of a pair of tracks in the tonal space [13]. As for what was done is [8],
also here the tonal distance was measured between the piano and guitar
tracks. A larger tonal distance implies weaker inter-track harmonic relations.

— Dotted rhythms: these rhythms feature regularly in Scottish music which
are a dotted quaver (18 timesteps) followed by a semiquaver (6 timesteps)
or vice versa. In particular, the rhythm of a semiquaver followed by a dotted
quaver is often referred to as a “scotch snap” due to its prevalence in tradi-
tional Scottish music. This metric assesses what proportion of beats (i.e. 24
timesteps) in a section of a piece contain a dotted rhythm.

— Pentatonic Notes: the pentatonic scale is commonly used in Scottish music,
as well as many other styles of music due to its versatility. Since an indication
of key signature for the pieces in the Scottish music dataset is not provided,
the pentatonic scale to which compare the notes to must be inferred, based
on the notes in the piece. To do this, each samples section of a piece was
compared to all possible pentatonic scale (starting on each of the 12 possible
semitones) and see which gives the highest proportion of pentatonic notes.

The Qualified note rate and the Poliphonicity are defined as intra-track met-
rics, since they capture the features of the different track separately, while the
tonal distance is defined as an inter-track metric since it captures the relation
between different tracks. For more informations on these metrics, please see [7,8].
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4 Results

As explained in the previous sections, the aim of this work is to use a GAN
model to create original music samples from a training database consisting of
traditional Scottish music. The used code and the training data can be found at
https://github.com/strath-ace/HAGGIS, while the produced results are avail-
able from the University of Strathclyde KnowledgeBase at https://doi.org/10.
15129 /4ae2ebTe-678d-4644-90ad-1cf2a953287f. To assess the effectiveness of this
approach, the training process of the model described in Section 3 was repeated
a total of 40 times: 20 times where the model was trained from scratch and 20
times where TL was used. Each training simulation was run for 100 epochs to
asses its convergence. The obtained results are reported in Table 2 and in Figures
8 and 9.

In Table 2, the values of the metrics of the Scottish dataset are used as
reference to quantify the performance of the proposed methodology. The aim is
to achieve closer values of the metrics of the results obtained to the reference
ones. Besides the reference values, the values of the metrics evaluated on the
produced samples at 10, 20 and their average between 20 to 100 epochs are
listed. These results are expressed in terms of median and standard deviation,
except for the values from 20 to 100 epochs, which represent an average of the
median and standard deviation values obtained in the considered epochs range.
Data are not available for the dotted rhythm and pentatonic notes metrics prior
to 20 epochs because the new metrics were evaluated on MIDI samples output
from the training, which by default were produced starting from epoch 20.

Table 2: Median and standard deviation metrics values at 10, 20 and between 20
and 100 Epochs. Scratch refers to the model trained from scratch while TL to the
one trained using Transfer Learning. Training refers to the corresponding metric
values of the training data. The highlighted values are those with a median value
closer to the Training values for each case.

Trainin 10 Epochs 20 Epochs 20-100 Epochs
g Scratch TL Scratch TL Scratch TL
Q“al}ii:?eNOte 0.987 |0.2054 0.091|0.58340.055| 0.450+ 0.162 |0.583+0.053| 0.715+0.083 | 0.582+ 0.040
Poliphonicity | 0.393 |0.077+ 0.061]0.094+0.019] 0.053= 0.015 |0.097+0.012| 0.077+ 0.022 |0.126+0.018
DiTSCt’zzlce 1.394 |0.728+ 0.283|1.381+0.156| 1.3744-0.394 | 1.334+ 0.201 | 1.3354 0.301 |1.34240.143
Dotted
0.063 - - 0.023+ 0.029|0.115+ 0.032 |0.085+ 0.050|0.120+ 0.039
Rhythm
Pe;tjtt’smc 0.594 ; ; 0.542+ 0.1210.4664 0.066 |0.487+ 0.080|0.437+ 0.061

From these results, it can be observed that in the three reported cases (10,
20, 20-100 epochs), the TL approach achieves better results on the majority of
the considered conventional metrics in terms of median and standard deviation
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values. About the two cases that go against this trend, namely the Tonal Distance
at 20 Epochs and the Qualified Note Rate at 20-100 Epochs, it can be observed
that, in both cases, the model trained from scratch achieves a slightly better
median value despite having a standard deviation about twice than the one
achieved by the model trained with TL. Regarding the standard deviation, it
is clear that for all cases the value measured on the model trained with TL is
always smaller than that of the model trained from scratch. Hence more robust
results are obtained using the TL approach. This can also be observed by looking
at Figures 8a-8f. These plots represent the evolution of the metrics during the
training process. In these six figures, the plots on the left are up to 20 epochs
to give greater resolution over the initial epochs, while those on the right are up
to 100 epochs. It is clear that the use of TL obtains more robust results with
respect to these conventional metrics, i.e. with a lower standard deviation, and
also with a less oscillating behaviour.

As briefly discussed in Section 3, one motivation for using TL is to obtain
superior results with fewer training epochs than the model trained from scratch.
This is demonstrated by the results of the TL case after 10 Epochs, which are
very close to those obtained at 20 Epochs or to the average computed from 20 to
100 Epochs. On the other hand, the model trained from scratch tends to produce
better results as the number of epochs increases.

While the TL approach shows better performance for most metrics, this is
not the case for the results of the Scottish metrics. As can be seen from Table
2, at all epochs where data are available, even though the results of TL and
learning from scratch are close to each others, the median values of the learning
from scratch approach are the ones closer to the reference value of the training
data. This is also shown in Figure 9. This suggests that although TL generates
most aspects of what can be considered “good” music more quickly, it does not
capture the characteristics of a new dataset as well as training from scratch. To
obtain values of the Scottish metrics closer to the reference values using the TL
strategy, one approach could be integrating these metrics into the formulation
of the loss function of the second stage training. This would steer the learning
process to the characteristics of Scottish music, while taking full advantage of
the robustness and performance recorded for the other metrics.

5 Conclusions

The paper presents an application of the Binary Multi-track Sequential Genera-
tive Adversarial Network (BinaryMuseGAN) to generate original Scottish music
from a reduced dataset of songs by exploiting a TL approach. The GAN model
is first trained on a larger and diverse music collection, to learn representative
features of music in general, and then fine tuned on the smaller dataset of tra-
ditional Scottish music. The proposed approach demonstrates that more robust
and performing results can be obtained via a TL method than by training the
same network from scratch with the sole smaller dataset. The results are evalu-
ated with three standard metrics, taken from the literature and two novel metrics
defined here to highlight Scottish music characteristics. The results obtained for
these last two metrics show that, despite the TL approach achieving superior
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Fig. 8: Qualified Note Rate, Polyphonicity and Tonal Distance evolution during
the training process. The plots on the left are up to 20 Epochs, while those on
the right are up to 100. On the right plots, the vertical line represents where 20
epochs is.

training performance according to standard metrics, the most relevant features
of Scottish music are lost in the process if compared to a learning from scratch
approach. This is mainly due to imbalance between the two datasets used and
no adaptation of the loss function formulation during the fine tuning training
step. While the proposed approach is an initial step in generating original music
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Fig. 9: Pentatonic notes and Dotted rhythms metrics evolution during the train-
ing process.

from reduced datasets of specific music kind, some limitations are highlighted for
future studies. While for the TL approach the BinaryMuseGAN network topol-
ogy needs to be invariate from the one used in the pretraining phase, for the
learning from scratch approach, the topology of the network can be further opti-
mised to improve the results. In addition, unsupervised analysis techniques such
as clustering or principal components analysis could provide further insights into
differences between datasets and outputs when using TL, as opposed to using
human generated metrics.
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