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Featured Application: The proposed optimal inverse kinematics method is suitable for space
robotics applications, e.g., space servicing and active debris removal (ADR). It is also suitable for
industrial robotics applications, e.g., in the planar operations of SCARA robots.

Abstract: The minimization of energy consumption is of the utmost importance in space robotics. For
redundant manipulators tracking a desired end-effector trajectory, most of the proposed solutions are
based on locally optimal inverse kinematics methods. On the one hand, these methods are suitable
for real-time implementation; nevertheless, on the other hand, they often provide solutions quite
far from the globally optimal one and, moreover, are prone to singularities. In this paper, a novel
inverse kinematics method for redundant manipulators is presented, which overcomes the above
mentioned issues and is suitable for real-time implementation. The proposed method is based on
the optimization of the kinetic energy integral on a limited subset of future end-effector path points,
making the manipulator joints to move in the direction of minimum kinetic energy. The proposed
method is tested by simulation of a three degrees of freedom (DOF) planar manipulator in a number
of test cases, and its performance is compared to the classical pseudoinverse solution and to a global
optimal method. The proposed method outperforms the pseudoinverse-based one and proves to be
able to avoid singularities. Furthermore, it provides a solution very close to the global optimal one
with a much lower computational time, which is compatible for real-time implementation.

Keywords: robotics; inverse kinematics; redundant manipulator; energy minimization

1. Introduction

In space robotics missions, both for space servicing or debris capture, the minimization
of the robot energy consumption and the minimization of the reactions transferred to the
base spacecraft are of crucial importance [1]. Both of these targets are related to a longer
system lifetime in orbit: while energy minimization allows longer operations by definition,
reactions minimization allows to keep the base spacecraft orientation unchanged, which
in turn means fuel savings due to the fact that attitude corrections are not necessary. In
the case of trajectory tracking of redundant manipulators, inverse kinematics methods
are usually adopted, which however only provide local minima along the end-effector
trajectory. Thus, as trajectories increase in length, they fail to follow the lowest energy path
in the robot joints space, and tend to be singularity prone.

Differential kinematic inversion has been extensively used for the solution of the real-
time motion of redundant manipulators, while minimizing a certain cost function [2–7].
It has been used in plenty of variations, as it has several interesting properties: it has fast
execution times, can be used to prioritize specific tasks over others, and it can be used to
optimize a variety of different cost functions while driving the robot end-effector through a
predefined path. However, this comes at a price: it only provides local optima, which can
be quite far from the global one [2], and it is subject to the problem of singularities. In field
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applications [8], like space or underwater robotics, avoiding singularities and using as little
energy and power as possible is important as robots usually run on limited energy sources,
such as batteries or solar panels. In such applications, local inverse kinematics frameworks
are not ideal, and, on the other hand, global optimization methods are too computationally
demanding. Minimization of energy consumption of robotic systems has been subject of
intense research, since it helps reducing operational costs, and allows us to use robots even
when resources are limited. Focusing on robot manipulators, many attempts to minimize
kinetic energy through inverse kinematics have been focused on minimizing the joint veloc-
ities norms. To the best of the authors’ knowledge, the first systematic review of this topic
has been proposed by Klein and Huang [9], which is a milestone in the research on the use
of the pseudoinverse of the Jacobian matrix for robot control. The paper outlines how the
pseudoinverse generally keeps the required instantaneous power low, since it minimizes
joint velocities, which has been considered as equivalent to approximately minimize the
kinetic energy. It also states that the pseudoinverse method, since it minimizes joint veloci-
ties, keeps the manipulator away from singularities, which was however proven incorrect
by Bailleul et al. [10]. Many of the subsequent works developed their algorithms starting
from the concept of weighted pseudoinverse, as presented by Whitney [11]. In particular,
several researchers have followed the direction of pointwise minimizing the joint torques as
a means to minimize the actuator energy consumption, associating such an algorithm with
positive results regarding the minimization of the kinetic energy integral along the whole
trajectory. Extensive analysis on this approach is presented by Hollerbach and Suh [12],
who however found out that a dynamics-based inverse kinematics resolution method can
lead to instabilities on longer trajectories. A more strictly energy-focused approach was
followed by Nedungadi et al. [13], who proposed a method for joint torques minimization
that holds some global properties. However, it does not allow to minimize kinetic energy
when initial conditions on joint displacements are imposed and, although less instable
than the previous work, still presents stability issues. The first research providing actuator
models for energy consumption minimization was presented by Vukobratovic et al. [14],
who introduced the dynamic models of hydraulic and electrical actuators and showed
that a major advantage of energy minimization compared to joint velocities minimization
is that it tends to move joints with lower inertia more than those with higher one, thus
reducing energy consumption. As pointed out by Nenchev [2] in his review, these early
studies made it very clear that a trade-off between local optimization performance and
global stability is generally unavoidable: pointwise minimization must always be relaxed
in order not to get stuck in singularities. Several works have been published on stabiliza-
tion of joint torques minimization methods: most of them are aimed at minimizing joint
torques without considering any robot payload (worthy of notice are [15] by Maciejew-
ski and [16] by Hu et al.); nevertheless, the minimization of torques in the presence of
external loads has also been addressed (Woolfrey et al. [7]). However, the solutions they
propose are only marginally useful for the methods that minimize kinetic energy. Other
recent developments of pseudoinverse-based methods are aimed at addressing specific
shortcomings of existing formulations; for example Kelemen et al. [6] presented a solution
to minimize computational times by setting a variable priority value for each end-effector
task. Alongside pseudoinverse-based methods, other inverse kinematics methods based
on Quadratic Programming have been proposed. These are considered promising since
they have been proven capable of solving inverse kinematics problems with equality and
inequality constraints [17]. These methods, however, have been proposed for joint torques
minimization [18] rather than kinetic energy minimization.

Alongside local inverse kinematics methods, offline methods based on optimal control
have been pursued. These techniques are slower, but allow for better optima of the cost
function, although at the price of much longer computation times. Their cost function is
usually a sum of the end-effector position error and a control cost (usually kinetic energy
or actuators torque) computed on a specific set of points. The set may correspond to the
whole trajectory or to a finite number of points after the last completed integration step.
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In [19], Gregory et al. presented an optimal control method for energy optimization along
a trajectory subject to holonomic constraints based on Euler–Lagrange equations. However,
this method has only proven efficient for non-redundant manipulators. A different optimal
control approach, based on Pontryagin maximum principle, is proposed in [20] by Halevi
et al. for electromechanical linear actuators. In this work, a mathematical model of the
actuators to be included in the cost function is presented, but the adaptability of this
approach to manipulators with revolute joints is doubtful. Several other works address the
issue of minimizing the energy required to perform the whole robot trajectory using offline
methods. Among those, an early attempt was presented by von Stryk et al. [21], featuring
an optimal control based minimization of the squared joint velocities along the trajectory,
as a means to reduce the kinetic energy in the operations of a non-redundant manipulator.
In [22], Saramago et al. investigated an offline path planning method for non-redundant
manipulators using a multi-objective cost function involving both trajectory time and
mechanical energy. In [23], Field et al. presented a solution of the energy minimization
problem based on dynamic programming. Their intuition does not serve the purpose of
finding the global optimum, since each one of the iterations only explores a subspace of
the search space; however, it manages to avoid mediocre local minima, and keeps the
execution time reasonably low avoiding the curse of dimensionality usually involved with
dynamic programming. Nurmi et al. [24] recently presented an energy optimal solution for
hydraulically powered redundant manipulators based on dynamic programming. Their
approach, which has been developed for hydraulic actuators, performs sensibly better
than general energy minimizing algorithms in the considered application, proving that
actuator models might be beneficial for specific problems. However, the related burden of
computational complexity means that this method cannot be used in real time. Recently,
Tringali et al. [25] proposed a globally optimal inverse kinematics method for redundant
manipulators, which allows for the optimization of different integral cost functions, such as
kinetic energy and joint torques norm, can provide solutions with a variety of constraints,
both linear and nonlinear, and is suitable for multi-objective optimization. Finally, Faroni
et al. [26] presented a fast online predictive method to solve the task-priority differential
inverse kinematics of redundant manipulators under kinematic constraints.

In this paper, a novel inverse kinematics method for redundant manipulators is
presented, which is able to provide a solution near to the global optimal one, is able to
avoid singularities, and is suitable for real-time implementation. The proposed method is
based on the optimization of the kinetic energy integral on a limited subset of future end-
effector path points, making the manipulator joints to move in the direction of minimum
kinetic energy. Rather than optimizing the cost function at every time step, the cost function
is updated at larger intervals, and the appropriate choice of the update interval and the
number of future exploration points allows a limited computational cost. The proposed
method is tested by simulation for a three degrees of freedom (DOF) planar manipulator
in a number of test cases, and its performance is compared to the classical pseudoinverse
solution and to the one computed with a global optimal method.

The paper is organized as follows: Section 2 presents and discusses the proposed
optimization method and its main parameters; then, Section 3 presents the simulation setup
and results and, in particular, a comparison between the simulation results obtained with
the proposed method, the classical pseudoinverse solution, and a global optimal method.
Finally, Section 4 concludes the paper.

2. Materials and Methods
2.1. Mathematical Formulation

A kinematically redundant manipulator is a manipulator with more DOF than con-
trolled end-effector variables. The tracking problem of a redundant manipulator is the
problem of following a reference end-effector trajectory xref, expressed as a function of time
t in the Cartesian space. This requires to find the joint variables q(t) such that:

xref(t) = x(q(t)) (1)
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in which x is the actual end-effector trajectory.
The redundancy implies that the problem expressed by (1) may have an infinite

number of solutions in the joints space. The method hereby presented is based on the
general solution computed with the Moore–Penrose pseudoinverse:

.
q = J+

.
x +

(
I− J+J

) .
q0 (2)

in which J is the manipulator Jacobian, J+ =
(
JTJ
)−1JT is its Moore–Penrose pseudoinverse,

.
x is the desired end-effector velocity, I is the identity matrix, and

.
q0 is an arbitrary vector.

The first part of (2) is a least-squares solution based on the minimization of the joint
velocities norm and is related to the primary task (end-effector trajectory tracking), while
the second part is related to a secondary task that can be imposed by exploiting the null-
space operator [27]

(
I− J+J

)
. The arbitrary vector

.
q0 can be chosen so that it results in

the minimization of an integral cost function along the specified end-effector trajectory,
whereas the precision tracking is provided by the pseudoinverse solution (first term in (2)).
A general expression of an integral cost function subject to the kinematic constraint related
to the tracking of the desired end-effector trajectory is:

minimize
x

∫ t f in
t0

C
(
q,

.
q,

..
q, t
)
dt

subject to xref(t) = x(q(t))
(3)

where C
(
q,

.
q,

..
q, t
)

is a cost function to be integrated along the manipulator trajectory, t0
and t f in are the initial and final times. Final time t f in does not need to be the time when the
manipulator motion is completed: it is possible to define a time horizon h′, much shorter
than the whole motion time, so that the integral cost is optimized in a time window from
t0 to t0 + h′, and then updated during the motion (using each time an updated t0), until
t0 + h′ corresponds to t f in. This method is used here to optimize the kinetic energy integral
of a serial manipulator, leading to the following discrete formulation:

minimize
q

t0+h′

∑
i=t0

1
2

.
qT

i Mi(qi)
.
qi∆t

subject to x(qi) = xi,ref f or i = t0..t f in

(4)

where xi,ref is the reference end-effector position at time i, x(qi) the actual end-effector
position at time i, qi the joints position vector at time i,

.
qi the joints velocity vector at

time i, Mi(qi) the inertia matrix at time i, and ∆t the discrete time step. For finite horizon
optimization, as in the case presented here, t f in in (3) is dropped in favour of a closer time
t0 + h′, where h′ is a finite time horizon.

The integral cost function is used to obtain a velocity vector
.
qprediction pointing to

the direction in which the kinetic energy integral is minimum for the chosen trajectory.
This velocity vector is used as an extra (secondary) task added to the manipulator motion
through the Jacobian null space as per (2).

The steps of the proposed method, called Predictive Minimization of Kinetic Energy
(PMKE) method, are presented in Table 1.
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Table 1. Steps of the Predictive Minimization of Kinetic Energy (PMKE) method.

Step nr. Operation

1 A horizon h is selected (h is a positive integer number).

2 A prediction step size ∆T is selected. It is a multiple of the pseudoinverse algorithm step size ∆t and it is generally
much larger.

3 An update interval size I is selected. It is a multiple of the pseudoinverse step size ∆t, but it is generally smaller
than ∆T.

4

Expression (4) is optimized with sampling times t = t0, t0 + ∆T, . . . , t0 + h∆T. Any deterministic optimisation
algorithm can be used, and the Matlab fmincon Sequential Quadratic Programming (SQP) function has been used in this
work. This provides a prediction of the optimal joint variables for a future window that is defined here as prediction
window Tp = h ∗ ∆T.

5

The optimization at point 4 outputs a set of h joint configurations, for the h + 1 sampling times

t = t0, t0 + ∆T, . . . , t0 + h∆T. The set of these vectors is from now on referred as
{

qprediction

}
. A specific vector in the

set is referred with its sampling time as a subscript, with a notation such as qh∆T for the sampling time t0 + h∆T (q0 for
t0).

6

A 4th order spline interpolation from q0 to qh∆T is computed, which intersect all the points in the set
{

qprediction

}
.

Endpoint conditions of the interpolation are set so that
.
q and

..
q at q0 are always set equal to the ones reached by the

manipulator at time t0, and are set to zero at qh∆T. This ensures that the resulting spline has not large derivatives in the
interval of interest. The resulting spline is from now on referred as qprediction = f(t).

7
For each step i in the update interval I, the joint velocities are computed as per (2), using the error between the previous
joint variables qi−1 and the computed value of qprediction divided per ∆t as arbitrary vector:

.
q0 =

qprediction−qi−1
∆t

8 Once time I has passed, steps 4 to 7 are repeated for the new update interval, using the last time step of previous
interval as t0.

9 Steps 4–8 are repeated until the amount of time before the end of the trajectory is Tp.
10 The steps left at this point are computed with the last computed qprediction.

2.2. Parameters Description

The main parameters involved in the PMKE method are the inverse kinematics discrete
time step ∆t, the prediction step size ∆T, the horizon h, and the update interval I. This
section explains their meaning and the value that has been chosen for the simulations
performed for the purposes of this work.

Inverse kinematics discrete time step ∆t: this parameter is the time step used to
numerically perform the integration of the inverse kinematics equation (2). It has been set
to 0.01 s for the implementation hereby presented.

Prediction step size ∆T and horizon h: these altogether determine the prediction
window Tp, which is related to the ability of the method to take into account future (up to
Tp after the current time t0) issues that could undermine the quality of the solution. The
two parameters must be balanced considering that, for example, for a fixed Tp, having a
higher h and a smaller ∆T allows for better resolution of the prediction, making it less likely
for the method to pursue local improvements over global ones. However, it also implies
longer computational times. For the 3-DOF manipulator model used in the simulations
(see Section 3), good results are reached with h = 2. Thus, this value is used to avoid
the computational complexity related to higher h values. This means that ∆T = Tp/2,
and leaves the question open about how to choose Tp. Increasing it does not change the
computational complexity, which is only influenced by h, however a prediction too far in
the future might feature a reduced influence on the current path point. Furthermore, it is
hard to establish a proper Tp because a value that is good for certain trajectories does not
necessarily fit other ones: some of them might benefit from a longer prediction window,
while some others might benefit from a shorter one, which makes it difficult to develop a
tuning strategy. The value of the prediction window is set to 20% of the total simulation
time. This means that, for trajectories with simulation time of 10 s such as the ones used in
the following section, the method will perform the optimization of the cost function up to
2 s, corresponding to 200 inverse kinematics time steps. This means that ∆T is equal to 1 s.
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Update interval I: the update interval is the variable that decides how often the
optimization of the cost function is updated. It should be ideally set as big as the time step
∆t, but this would slow down the method. For the simulations presented in this paper,
an update interval of 0.5 s is chosen to show that this is sufficient to obtain good results.
However, much shorter I intervals are also possible if computational time is not a concern.
The computational time required for the PMKE method is discussed in more detail in
Section 3.2.

The values of the main parameters of the PMKE method used in this work are sum-
marized in Table 2.

Table 2. Main parameters of the PKME method.

Parameter ∆t [s] ∆T [s] h I [s]

0.01 1 2 0.5

3. Results and Discussion
3.1. Simulation Setup

A 3-DOF planar manipulator model (with three revolute joints) is considered, which
corresponds to a real robot prototype for space applications that has been used in previous
works [3–5,25]. The two end-effector Cartesian coordinates are controlled, x and y, thus
leaving one degree of kinematic redundancy. Geometrical and inertial characteristics of the
manipulator, which is depicted in Figure 1, are presented in Table 3.
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Figure 1. Space robot prototype considered in this work.

Table 3. Manipulator geometrical and inertial parameters.

Link nr. Mass
(kg)

Length
(m)

Moment of Inertia (Barycentric)
(kgm2)

Center of Gravity
(m)

1 0.615 0.176 0.001811 0.0950
2 0.615 0.176 0.003173 0.0717
3 0.307 0.1375 0.002103 0.0526

A simulator of the manipulator inverse kinematics has been developed using the
Matlab programming language, except for the code used for steps 4–5 of the PMKE method
described in Section 2.1, which corresponds to the minimization of the kinetic energy
integral: the routine for this optimization has been first written in Matlab exploiting the
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fmincon function, and then translated into C, compiled, and interfaced to the inverse
kinematics simulator.

In order to show the effectiveness of the presented method, four trajectories have been
simulated with both the PMKE and a traditional method, based on the Moore–Penrose
pseudoinverse and performing the minimization of the joint velocity vectors through
local least-squares optimization. This method is called here Least Squares Velocities (LSV)
minimization method. Moreover, a further comparison is made with the results computed
with a global optimal method [25] recently published by the authors.

Simulations 1–2 feature two short end-effector trajectories aimed at demonstrating
the PMKE method general performance. Simulation 3 features a trajectory in which the
LSV method encounters a singularity. Finally, simulation 4 features a trajectory whose
length causes a significant degradation of the performance of the LSV method. All of the
proposed trajectories start from the same end-effector position xinit = [0.468; 0] m and
robot initial configuration qinit = [0; 0.327;−0.754] rad, and run for a total time T = 10 s.
The considered trajectories and their characteristic dimensions are presented in Table 4.

Table 4. Simulated trajectories.

Simulation nr. Shape Characteristic Dimension Length [m]

1 Rectilinear Length 0.10
2 Circular Radius 0.05
3 Rectilinear Length 0.40
4 Rectilinear Length 0.70

The end-effector velocity profiles have been chosen in order to have sufficiently
smooth accelerations (continuous and with continuous derivative), as shown in Figure 2.
The equation of the derivative of the curvilinear abscissa of the end-effector used is:

ds
dt

=


2 ∗
(

L
2

( T
2 )

2

)
∗
(

t2

2 + (2∗β)−2 ∗ cos((2∗β)∗ t)− (2∗β)−2
)

, t ≤ T
2

L −
(

2 ∗
(

L
2

( T
2 )

2

)
∗
(

(T−t)2

2 + (2∗β)−2 ∗ cos
(
(2∗β)∗

(
T
2 − t

))
− (2∗β)−2

))
, t > T

2

(5)

where T is the total motion time, L the overall length of the considered trajectory, and
β = 2π

T .
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3.2. Simulation Results

Table 5 compares the kinetic energy integral for all the considered methods and
trajectories, both in absolute and relative terms. The PMKE method presented in this
paper is used as a reference and highlighted in grey. PMKE computational times have also
been included, as measured on a machine featuring an Intel i7 ninth generation exa-core
processor with 32 GB RAM, SSD mass storage, and using Windows 10 and Matlab version
2019b.

It can be noticed that the LSV method is outperformed by the PMKE one for all the
trajectories: non-singular trajectories feature relative differences ranging from 30.1% to
47.4%, while the trajectory that is singular using the LSV method (trajectory 3) is not
singular using the PMKE method, resulting in a very high improvement of kinetic energy
integral (relative difference of 187.36%). The absolute value of the difference between
PMKE solutions and global optimal solutions, on the other hand, is very small (0.13%) for
short trajectories and grows with the length of the trajectory (up to 23.6%). This can be
explained by observing that, the longer the distance covered by the end-effector, the higher
the chance of an energy consuming motion taking place beyond the PMKE prediction
window. Kinetic energy integral profiles are shown in detail in Figure 3.

Table 5. Simulation results.

Simulation
nr.

PMKE Result
[Js]

LSV Result
[Js]

Global Result
[Js]

PMKE Computational
Time [s]

1 5.98 × 10−3 8.81 × 10−3

(+47.4%)
5.97 × 10−3

(−0.13%)
0.915

2 4.08 × 10−3 5.37 × 10−3

(+31.7%)
3.87 × 10−3

(−5.03%)
0.934

3 7.57 × 10−3 2.17 × 10−2

(+187%)
6.09 × 10−3

(−19.5%)
0.961

4 3.97 × 10−2 5.17 × 10−2

(+30.1%)
3.03 × 10−2

(−23.6%)
0.914
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It has also to be noticed that the execution times of the PMKE method (see Table 5)
allow for a real-time kinematic inversion, as it is discussed below. The core of the PMKE
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method performs two operations: the optimization (steps 4–5 of the method as described
in Section 2.1), and the generation of the coefficients of the 4th order splines used for
interpolation (step 6). A hybrid C-Matlab implementation has been deployed to perform
these operations. As a result, the optimization of steps 4–5 is performed in C in an average
time of ~0.0011 s, while the computation of the spline coefficients of step 6 is performed in
Matlab in an average time of ~0.0010 s. The overall average computational time for the
two operations is ~0.0021 s, which is compatible with real-time implementation, since the
considered time step ∆t is equal to 0.01 s. Even faster computation can be obtained by
implementing both of these operations in C/C++ and optimizing the code.

In order to make a more detailed comparison of the results obtained with the PMKE
and LSV methods, Figures 4–7 show (top to bottom) the stroboscopic views of the robot
motion, joint positions, and joint velocities for both the PMKE (left) and LSV (right)
methods. In each stroboscopic plot, the joint 1 (which allows the rotation between link 1
and the base frame) is in the origin and, in the joint positions and velocities plots, joint 1 is
shown in blue, joint 2 in red, and joint 3 in yellow.
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PMKE results for trajectories 1 and 2 feature a behavior that has been previously
noticed when using kinetic energy saving algorithms [5,13]: the joints that are closer
to the end-effector feature higher velocities compared to those closer to the base of the
manipulator. This behavior is explained by considering that, when a joint is rotated, the
same rotation is also transferred to the successive joints; thus, the moment of inertia of
a link is constituted by the sum of its own moment of inertia and an additional term for
each of the successive joints. While the LSV method simply minimizes the joints velocity
norm, the PMKE method, similarly to other methods that minimize kinetic energy, takes
into account the fact that the motion of the joints closer to the base are more energetically
expensive. Stroboscopic and joint velocities plots in Figures 4 and 5 confirm that the LSV
method features a joint motion more uniform than that of the PMKE method. In fact, for
trajectory 1, the first joint features a maximum velocity of 0.063 rad/s in the LSV solution
and 0.017 rad/s in the PMKE solution, while the third joint reaches up to 0.197 rad/s in
the LSV solution and 0.203 rad/s in the PMKE solution. While the maximum velocity of
the third joint is around three times the velocity of the first one in the LSV solution, the
third joint is more than 10 times faster than the first one in the PMKE solution. Similarly,
for trajectory 2, the first joint has a peak velocity of 0.196 rad/s in the LSV solution and a
peak velocity of 0.095 rad/s in the PMKE solution, while the third joint velocity reaches
0.529 rad/s in the LSV solution and 0.613 rad/s in the PMKE solution.

This behavior is typical of local kinetic energy minimization algorithms. However,
PMKE is able to depart from it when required to obtain improved optimization results. A
very clear example of this case is provided by trajectory 3, for which the simulation results
are presented in Figure 6. This trajectory is singular using the LSV method, while, on the
other hand, the PMKE method is able to avoid the singularity. This remarkable behavior is
allowed by the fact that the PMKE method, although generally striving to keep the first
joint velocity low, moves it (and the other ones) away from singularities when required, if
they fall within its prediction window. The stroboscopic plots in Figure 6 show that, while
LSV (right) hits a singularity at t = 6.5 s, PMKE (left) features a different motion altogether,
with first and second joints reaching higher velocities (excluding the singularity in LSV):
first joint reaches 0.250 rad/s in the PMKE solution and 0.186 rad/s in the LSV solution,
while second joint reaches 0.261 rad/s in the PMKE solution and 0.023 rad/s in the LSV
solution.
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Finally, the PKME–LSV comparison for trajectory 4 is presented in Figure 7. This is the
longest trajectory that has been simulated, and it would be impossible to cover its whole
length while also limiting the motion of the first joint. In this case PMKE and LSV feature
similar joint velocity profiles, and PMKE features a consistently higher first joint maximum
velocity (sitting at 0.780 rad/s, against 0.512 rad/s in the LSV solution). In this case, the
PMKE method provides a solution with a lower kinetic energy integral by making the robot
to assume configurations that feature lower coefficients of the inertia matrix, compared to
those obtained with the LSV method.

In order to verify that the coefficients of the inertia matrix are lower for the PMKE
solution, a possible indicator is the maximum eigenvalue of the manipulator inertia matrix,
which is known as its spectral radius. In fact, the spectral radius of a square matrix A is
defined as:

ρ(A) = max {|λ1|, . . . , |λn|} (6)

where λ1, . . . , λn are the eigenvalues of the matrix A. Figure 8 shows the evolution of the
spectral radius of the inertia matrix of the robot manipulator along trajectory 4 for both the
LSV (dotted line) and PMKE (dashed line) solutions.
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The figure shows that the maximum eigenvalue of the inertia matrix for the PMKE
trajectory is always lower than the maximum eigenvalue for the LSV one, indicating that
the matrix coefficients are generally lower. Particularly, the maximum eigenvalue for PMKE
is as low as 0.0556 for t = 6.33 s, while for LSV its minimum value is 0.0998 for t = 5.71 s.

While the comparison with the LSV method can help to understand how the PMKE
method stands with respect to another local method, it is also worth noticing that the
solutions obtained with the PMKE method for the considered trajectories are very similar
to the globally optimal ones. Figures 9–12 show the PMKE solutions on the left and the
global optimal solutions on the right, both stroboscopic plots and joint variables.
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For trajectories 1 and 2, the similarity can be easily noticed in both the stroboscopic
and joint variables plots. The longer trajectories (3 and 4) feature some difference in terms
of joint positions; however, the solutions are still very similar as it can be noticed in the
stroboscopic plots. A complete overlap is not possible with the limited prediction window
of the PMKE method: the longer the trajectory is, the higher the chance that local effects
will influence the final energetic cost. However, the PMKE method is able to compute the
best joint velocities to perform kinetic energy minimization with the chosen prediction
window, and these are very similar to the ones of the global optimal solution.

4. Conclusions

In this paper, a novel inverse kinematics method for redundant manipulators, called
Predictive Minimization of Kinetic Energy (PMKE) method, is presented, which is able
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to provide a solution near to the global optimal one, is able to avoid singularities, and is
suitable for real-time implementation. The PMKE method has been tested by simulation
for a three degrees of freedom (DOF) planar manipulator in a number of test cases, and
its performance has been compared to the classical pseudoinverse solution and to the
one computed with a global optimal method. The simulations showed that the proposed
method outperforms the pseudoinverse-based one and is suitable to avoid singularities.
Furthermore, it provides a solution very close to the global optimal one with a much lower
computational time, which is compatible for real-time implementation. The optimization
of different cost functions (e.g., torques norm integral), the simulation of the performance
in 3D and higher-DOF manipulators, a more optimized C/C++ implementation of the
method to allow for faster computation, and the implementation in a real robot prototype
will be part of future work.
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