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Abstract: A forward-facing step (FFS) located half-way in an elongated duct subjected to a 
horizontal pressure gradient and a vertical temperature difference is considered as a simplified 
geometrical model to investigate numerically typical problems of internal non-isothermal flow in 
the presence of blunt obstacles. The sensitivity of this system to thermal buoyancy for each 
considered rate of fluid injection (measured through the related Richardson number, Ri) is explored 
by varying parametrically the corresponding Rayleigh number (Ra) over a large interval of orders of 
magnitude (up to the onset of chaos) and assuming two alternate paradigms for the bottom of the 
considered channel, namely an adiabatic or kept-at-constant temperature (hot) boundary. Through 
this conceptual framework, a kaleidoscope of situations are revealed in the (Ri, Ra) space, differing 
in terms of flow patterning behavior, thermal plume generation phenomena, intensity of heat 
exchange at the walls and bifurcation scenario. In particular, while for the isothermal floor case a 
higher Ri leads to an increase in the value of the Rayleigh number needed for transition to time-
dependent flow, the corresponding trend becomes non-monotonic if the same boundary is thermally 
insulated. In such a case the Nusselt number (Nu) calculated for the horizontal surface of the step is 
always smaller than the equivalent Nu evaluated for the vertical side. The latter is significantly 
lowered when the hot-floor condition is assumed.     
 
Key words: Mixed forced/buoyancy flow, heat exchange, instability and bifurcation in fluid 
dynamics. 
 
1. Introduction 
 

Isothermal and non-isothermal problems involving fluid flow and related instabilities are 

widespread in engineering ([1-6]). In particular, fluid motion in channels or other similar confined 

geometries in the presence of one or more obstructions constitutes an archetypal subject that is of 

great relevance to many technological and industrial processes. This explains why an overwhelming 

amount of results can be found in the literature about fluid behavior inside hydraulic circuits of 

various types used in chemical plants or food-processing industries. These pipe systems often 

display sudden changes in the cross-sectional area and/or ribs and baffles may be present, which are 

mounted in a direction perpendicular to the prevailing current. These geometrical features can 

significantly disturb the regular motion of the fluid and produce vorticity eddies or other types of 

(steady or oscillatory) disturbances (Molochnikov et al., [7]). Similar problems also affect the very 

general area of fluid machinery; indeed, in many situations connected with this specific field, flow 
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separation can produce an undesired increase in the frictional shear stress leading to significant 

energy losses (Hattori and Nagano [8]). A flow disturbed by localized protuberances or other types 

of blockage is also a typical subject of analysis for engineers concerned with the design of ground 

vehicles using wind tunnels (Dai et al. [9]; Redchyts et al., [10]) or plants for the production of 

wind energy (Sherry et al. [11]). 

These very common and relatively simple examples may be regarded as a justification for the great 

interest that the fundamental problem connected with the spatio-temporal behavior (steady, 

oscillatory or turbulent) of fluid motion in the presence of geometrical expansions, contractions or 

orifices has enjoyed over recent years. 

In particular, a specific configuration on which many studies have concentrated is the so-called 

forward-facing step (FFS). This paradigm has specifically been introduced as a simplified 

workhorse to support the analysis of fundamental aspects linked to the typical interaction of a 

flowing fluid with a blunt obstacle. Relevant examples pertaining to this line of inquiry are Refs 

[11-18]; notably, these works have been instrumental in revealing that if a duct exhibits a shrinkage 

in the cross-sectional area, the resulting dynamics can become very involved (often these flows can 

display a variety of possible responses, for which all the possible underlying cause-and-effect 

relationships have not been clarified yet).   

Interestingly, meaningful comparison with the companion “mirror” configuration (backward-facing 

step, BFS) has led over the years to the unexpected realization that the typical outcomes of the flow-

step interaction tend to be more complex when the decrease of the cross-sectional area occurs in the 

downstream direction (FFS case, [19-21]). Whilst for the BFS, only one separated region is 

produced (downstream of the geometrical expansion), with the forward-facing step, disconnected 

regions of intense vorticity can be created (typically, one being located upstream and the other 

downstream from the step). The second region with significant vorticity originates from the leading 

edge (top of the vertical step wall) and extends in the downstream direction leading to the formation 

of a “bubble” [18]. As illustrated by several authors [22-24], specific dynamics originating from this 

localized region of recirculating fluid can produce unsteadiness and other complex outcomes. 

Along these lines, some studies have shown that the emerging oscillatory or turbulent behavior can 

have a remarkable impact on the transport of chemical species and/or heat (Moosavi and Nassab 

[24]; Nassab et al. [25]; Oztop et al. [26], Xie and Xi [27]). It is also known that, in turn, these can 

take a much more active role and exert a back influence on the flow. This is especially true if a 

significant amount of heat is being exchanged between the fluid and the solid walls of the 

considered duct.  

When the fluid is in non-isothermal conditions mechanisms of buoyancy nature start to play a role. 

Typically, while relatively cold fluid tends to fall down, warmer fluid moves in the opposite 

direction and this results in the formation of vertical currents or thermal plumes. In horizontal ducts, 

such currents or plumes can have an impact similar to that of obstacles mounted in a direction 

perpendicular to the wall (see, e.g., [28-33]). They can produce recirculation regions, which in turn 

can deeply influence the performance of many devices.  
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Evidence for such behaviors can be found in chemical and energy production plants, environmental 

control devices, heat exchangers of various types, cooling systems for electronic devices and 

nuclear reactors, combustion chambers and cooling passages in turbine blades, etc., see, e.g., Sun 

and Jaluria [34]; Arrif et al. [35]; Nadjib et al., [36]; Lappa [37]). All these technological problems 

consistently bare the presence of thermal buoyancy convection and related instabilities, which 

require a proper understanding of the underlying mechanisms.  

A large cross section of fundamental research for the FFS problem can be found in Abu-Mulaweh et 

al. [22, 23] and Lappa and Inam [38]. These studies specifically concentrated on different ranges of 

the relevant control parameters. As an example, the former authors varied the Reynolds number and 

Grashof numbers (based on the step height) in the intervals, O(102)RehO(103) and 

O(103)GrhO(104)). They illustrated that, on increasing the thickness of the step, the spatial 

extension of the recirculation regions grows while the heat transfer rate from the heated downstream 

displays the opposite behavior (moreover, both quantities become higher as the inlet velocity 

grows). They also reported that in some situations no upper recirculation area is formed, while in 

other circumstances the mechanism leading the system from laminar to turbulent originates just in 

this region.  

Lappa and Inam [38] focused on a more compact geometry (a square cavity with a geometrically 

similar obstruction on the bottom) addressing a variety of cases stemming from different possible 

thermal boundary conditions for the floor of the cavity and the relative position of the inflow and 

outflow sections. These authors examined cases with the Rayleigh number (based on the cavity 

height) spanning the range O(103)RaO(108) and values of the Richardson number Ri= (pure 

buoyancy convection) and Ri1 (for which the relative importance of buoyancy and forces 

convection are the same).  

Their study has revealed that, for pure buoyancy heat islands can be formed in the lower part of the 

domain as a result of the insufficient mixing between the upper and lower fluid regions that is 

established when the flow pattern takes a specific topological configuration (at relatively high 

values of Ra). For hybrid convection, a variety of other patterns were observed, corresponding to 

different possible realizations of the route that cold fluid can take to reach the outlet. These possible 

multiple paths were interpreted taking into account the rich variety of possible interactions that can 

be established between the cold fluid injected in the cavity and the buoyancy flow of thermal nature 

originating from the hot surfaces (the latter can support or oppose to the transport of fluid from the 

inflow to the outflow section depending on the considered conditions). 

To the best of our knowledge, these are the only studies where the interplay of buoyancy and forced 

convection was intentionally investigated in FFS systems. However, partially relevant information 

can also be gathered from existing numerical studies about gravity-driven and hybrid buoyancy-

Marangoni flow in crucibles with different shapes used for the production of semiconductor or 

opto-electronic materials (see, e.g., [39-42]) or other studies concerned with building heating and 

ventilation or electronic devices cooling (Sun and Jaluria [34]; Yarin [43]; Venkatasubbaiah and 

Jaluria [44]; Morsli et al. [45]; Kachi et al. [46]). 
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As the reader might have realized at this stage, with the exception of the above efforts, it stands out 

that there is a surprising lack of information about the effect of buoyancy on forced flow in partially 

obstructed channels. This knowledge shortage is essentially a consequence of the variety of factors 

potentially influencing the resulting flow and the complexity of the dynamics per se. While each of 

these factors on its own presents significant challenges to a full understanding of the physics 

controlling fluid behavior over a FFS, when combined they may give rise to novel and/or 

unexplored phenomena. 

Motivated by this observational tide, in the present work we concentrate on such a problem in the 

framework of direct numerical simulation. In order to complement the earlier investigation by  

Lappa and Inam [38], where the analysis was limited to a compact (square) cavity with Ri1, here 

we consider an extended channel and a relatively wide range of values of the Richardson number, 

however, still allowing the Rayleigh number to span an extended set of orders of magnitude. 

 

2. Mathematical and Numerical model 

 

As this is the first time that specific problem related to hybrid forced-buoyancy convection is 

considered in an elongated duct with a forward-facing step (FFS) located half-way, we follow a 

standard practice, which has already enjoyed a widespread use in the literature, i.e. we consider this 

new problem in the simplified framework represented by a two-dimensional (2D) configuration. We 

wish to remark that, historically, the development of the companion problem represented by 

standard buoyancy convection in differentially heated cavities (heated form below or from the side) 

took a similar path essentially as a result of the declared intention of investigators to discern three-

dimensional (3D) effects through comparison with simulations initially conducted under the 

constraint of two-dimensionality. The same concept also applies to earlier studies about forced 

(isothermal) convection for the forward-facing step (FFS) case. In the early stages of investigation 

of this problem, the simulations were carried out assuming the flow to be 2D. The present work 

should be seen as another example of such a practice or way of thinking (a “first step” along such a 

modeling/analysis hierarchy). 

 

2.1 The Geometry and related boundary conditions  

 

The considered physical domain is sketched in Fig. 1. It consists of a rectangular two-dimensional 

channel of transverse size d, and total length L=10d formally divided in two parts of identical 

horizontal extension by a sudden change in the available cross-sectional area (due to the presence of 

a forward facing step having thickness equal to half of the channel height, i.e. d/2).  
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Figure 1: Sketch of the considered FFS geometry and related kinematic and thermal boundary 
conditions.   

 

The top and bottom boundaries are solid and different thermal boundary conditions can be imposed 

for them. Here, the top wall is considered adiabatic for all cases with non-zero values of the 

Reynolds number, whereas it is assumed isothermal (at temperature Tcold) when the case of pure 

buoyancy convection is considered (i.e. Reynolds number Re=0, Uforced =0, for this case the left and 

right, inflow and outflow, sections are replaced by solid adiabatic walls). The situation with pure 

thermal convection is considered for the sake of completeness and to complement the earlier study 

by Lappa and Inam [38]. For Re0 the fluid injected into the channel is assumed to have initial 

temperature Tcold. 

A separate discussion is needed for the floor and the step boundary (consisting of a small vertical 

segment and the horizontal boundary which extends from its corner in the downstream direction). 

The floor is assumed either adiabatic or at constant temperature (set at the temperature Thot). The 

entire boundary of the step is considered at temperature Thot regardless of all the other thermal 

boundary conditions assumed for the top and bottom walls.  

 

2.2 Governing equations and characteristic numbers 

 

In order to make the outcomes of the present study more general, it is entirely formulated in terms 

of non-dimensional quantities. Accordingly, the following reference scales are used: /d as velocity 

scale (where  is the fluid thermal diffusivity), and 2/d2 and d2/, as reference quantities for 

pressure and time (where  is the fluid density), respectively. With this approach, the non-

dimensional equations for the balance of mass and momentum can be cast in compact form as: 

 
0 V             (1) 

 

  2 Pr g

V
p VV V RaT i

t




              (2) 

 

where  
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Pr Tg Td
Ra Gr





            (3) 

 

is the classical Rayleigh number. The parameter T appearing in its expression is the so-called fluid 

thermal expansion coefficient. From a formal point of view it follows from the so-called Boussinesq 

approximation by which the variations of density are linked to the corresponding changes of 

temperature through a linear relationship based on this parameter; moreover,  is the kinematic 

viscosity of the considered fluid (the ratio / being the well-known Prandtl number Pr, set to 1 in 

the present study). If the nondimensional temperature is defined as the ratio between the local 

temperature (after subtracting Tcold) and the imposed T, a nondimensional version of the energy 

equation can be written as  

 

  2T
VT T

t




               (4) 

 

The Reynolds number can be introduced on the basis of its classical definition, i.e.   

 

Re forcedU d


             (5) 

 

Most conveniently, Re and Ra can be combined into a single nondimensional parameter, known as 

the Richardson number: 

 

2 2Pr Re
T

forced

g Td Ra
Ri

U

 
            (6) 

 

The advantages relating to the use of this group rest on the idea that it can be used to estimate ‘a 

priori’ the relative importance of buoyancy and forced convection (the two limit cases 

corresponding to pure buoyancy convection or forced flow being recovered in the limit as the 

Richardson number tends to infinite or zero, respectively).  

Before starting to deal with the results, we wish to remark that, if the FFS geometry is considered, 

the former situation (Ri, only buoyancy being present, i.e. Re=0) deserves some attention since, 

even in the absence of forced flow, two different convective mechanisms can compete in 

determining the emerging flow pattern. In a geometry with a heated step, these two mechanisms can 

coexist because the structure of buoyancy convection greatly depends on the orientation of the hot 

surface generating it. If the surface is horizontal (and therefore the prevailing temperature gradient 

is vertical), the emerging flow is known as Rayleigh-Bénard (RB) convection ([47]). If the surface 

is vertical (responsible for the emergence of a horizontal temperature difference), then the flow is 

generally referred to as “Hadley convection” (e.g., [48]).  



Accepted for publication in Int. J. Heat Mass Transfer on 23 March 2021 
 

7 
 

Despite the similarities in terms of driving force and related processes, these two forms of thermal 

convection can display very different behaviors for what concerns their stability and transition to 

chaos (see, e.g., [49]). The presence of forced flow can obviously lead to a third independent 

convective process superimposed on those of purely buoyant nature. In the present study, we will 

therefore be addressing the triadic relationship among these three distinct mechanisms of 

convection.  

 

2.3 Boundary conditions 

 

By indicating with A the ratio L/d, the non-dimensional thermal boundary conditions for the FFS 

configuration can be summarized as follows: 

 

V=0 on all solid walls          (7) 

 

Step walls (x=A/2, 0y1/2 and y=1/2, A/2xA) T=1     (8) 

 

Floor (y=0, 0xA/2), T/y=0 (adiabatic)        (9a) 

 or T=1 (isothermal)           (9b) 

 

Top wall (y=1, 0xA) T=0 (isothermal, Re=0) or T/y=0 (adiabatic, Re0)   (10) 

A separate discussion is needed for the lateral boundaries located at x=0 and x=A. These boundaries 

are considered solid and adiabatic if no forced flow is considered, whereas, for Re0 the left and 

right boundaries are assumed to be inflow and outflow sections, respectively. Therefore:  

 

For Re=0, T/x=0 at  x=0 and x=A        (11) 

 

For Re0, x=0 (inflow, 0y1), T=0 and u= Uforced      (12) 

 

x=A (outflow, 0.5y1):  0
u u

D
t x

 
 

 
, 0

v v
D

t x

 
 

 
, 0

T T
D

t x

 
 

 
   (13) 

 

Equation (13) is known as the “prognostic’ equation (it is a “dynamic” boundary condition). The 

quantity D appearing there is a constant assumed to be equal to the averaged velocity perpendicular 
to the boundary ˆD V n   (this special condition is needed to mitigate non-physical fluctuations in 

the velocity and temperature at the outlet; the interested reader being referred to the works by 

Hattori et al. [50]; Dong et al. [51] for additional details about this well-known numerical problem).  

Moreover, the Nusselt for the vertical and horizontal walls of the step is defined here as: 
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1/2

0

2vert
step

T
Nu dy

x




    and 
1

/2

2horiz
step

A

T
Nu dx

A y




        (14) 

 

2.4 The Numerical method  

 

The set of equations (1), (2) and (4) and related boundary conditions have been solved numerically 

using the PISO (Pressure Implicit Split Operator) technique originally proposed by Issa [52]. This 

technique is available as an independent solver in the frame of the OpenFoam computational 

platform. 

This method relies on the so-called Hodge decomposition theorem (see, e.g., [53]), i.e. on the 

possibility to split any vector field into a divergence-free contribution and the gradient of a scalar 

potential (a curl-free part). An important outcome of this theorem is that a velocity field can be 

considered fixed when its curl (vorticity) and divergence (and normal component at the boundary) 

are known. The implications of this theorem can be used to implement a time-marching procedure 

where velocity and pressure (which appear at the same time in the momentum equation) are 

computed in a partially segregated manner.  

This modus operandi is at the basis of many techniques [54-58], generally known as projection or 

fractional-step methods. In practice, these methods take advantage of the mathematical property of 

any gradient of a scalar function to be annihilated when the curl operator is applied to the equation 

that contains it.  

This apparently innocuous observation implies that if the momentum equation is simplified by 

removing p, the resulting equation will produce a velocity field that features the same vorticity 

that would be possessed by the velocity field satisfying the original equation: 

 

 
*

2Pr Pr
V

VV V RaTi
t




               (15) 

  

This velocity field is generally called the “intermediate velocity” field V*. The asterisk is used to 

indicate that though it is physically consistent in terms of vorticity, however, it does not satisfy the 

incompressibility constraint mathematically represented by eq. (1).  

The next stage of this decomposition hierarchy obviously calls for a step where the flow is made 

solenoidal, i.e. it is forced to satisfy eq. (1). This is typically achieved by reintroducing the 

previously neglected pressure gradient and expressing formally the velocity as  

 

V= V*-p             (16) 

 

(where  is a constant generally set equal to the time integration step t). Taking the divergence of 

this expression and forcing it to be zero leads to another equation of elliptic nature (a Poisson 

equation): 



Accepted for publication in Int. J. Heat Mass Transfer on 23 March 2021 
 

9 
 

 
*2 1

p V
t

  


           (17) 

 

These formal passages can be turned into an effective numerical procedure by using the above-

mentioned Poisson equation to determine the pressure and then using eq. (16) to compute a final 

velocity field, which at the same time will be solenoidal (incompressible) and feature the correct 

amount of vorticity. 

With OpenFoam such equations are numerically solved in the framework of a collocated grid 

approach, i.e. the center of the cells is used to store all the variables (while good coupling of 

velocity and pressure is supported through the adoption of a special interpolation scheme for the 

velocity on the cell faces [59]). 

In addition to the above descriptions, we wish to highlight that in the present work both the 

convective and diffusive terms appearing in momentum and energy equations have been discretized 

using second order central difference schemes. The resulting system of algebraic equations has been 

treated using a Preconditioned Bi-Conjugate Gradient (PBiCG) with an Incomplete Lower Upper 

(DILU) preconditioner in the predictor step. A Generalized Geometric-Algebraic Multi-Grid 

(GAMG) method has finally been employed to determine the solution of eq. (17).  

 

 

2.5 Algorithm Validation  

 

In order to demonstrate the reliability of the algorithm described in Sect. 2.4 and its ability to 

address the problem set in the introduction, we have duly verified and validated it through 

comparison with available benchmarks and test cases. In particular, such a process has been 

articulated into three distinct stages of verification. Initially, two different archetypal settings have 

been considered, namely steady RB and Hadley convection in a square cavity (related validation 

results being summarized in Tables I and II, respectively).  

 
Table I: A=1, Rayleigh-Bénard convection in a square cavity with adiabatic sidewalls, Ra=105, 
Pr=0.71. Comparison with Table 2 of Ouertatani et al. [60], uniform mesh 128x128. Velocity scaled 
with u0=sqrt(gβTHΔT). 

Quantity Present Ouertatani et al. [60] 

Umax 0.3443 0.3442 

Vmax 0.3754 0.3756 

Nuh 3.9204 3.9097 
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Table II: Hadley flow, Ra=106, Pr=0.71, square cavity with adiabatic top and bottom wall, uniform 
mesh 100x100 (Legend: |ψ|max - Maximum absolute value of the stream function, vmax - Max 
vertical velocity component on a horizontal mid-plane, xmax - Position of vmax, umax - Max horizontal 
component on a vertical mid-plane, ymax - Position of umax. Nuhot - Average Nusselt number on the 
hot boundary. Numax,hot - Maximum Nusselt number on the hot boundary, yNu,max - Position of 
Numax,hot, Numin,hot - Minimum Nusselt number on the hot boundary, yNu,min - Position of Numin,hot). 
 
 

Parameter present De Vahl Davis and Jones [61] 

|ψ|max 16.919 16.750 

vmax 216.09 219.36 

xmax 0.0368 0.0379 

umax 64.97 64.63 

ymax 0.848 0.850 

Nuhot 8.913 8.817 

Numax,hot 18.193 17.925 

yNu,max 0.0368 0.0378 

Numin,hot 0.970 0.989 

yNu,min 1 1 

 
 
 

As a second stage of validation, the ability of the present numerical approach to capture properly 

the transition from steady to oscillatory flow has been assessed (the outcomes of this dedicated 

study being summarized in Figs. 2 and Table III). This type of instability corresponds to the so-

called “Hopf bifurcation” for which, using the typical terminology of the linear stability analysis 

(LSA), an eigenvalue of the Jacobian matrix (in general a complex conjucate pair of eigenvalues) of 

the governing equations crosses the imaginary axis (i.e. the real part of the eigenvalue becomes 

positive with a corresponding value of imaginary part that is not zero [62]). For such a comparison, 

we have considered classical buoyancy convection in a cavity heated from below and cooled from 

above with conducting solid sidewall. As shown by Mizushima and Adachi [62] for Pr=7, this 

apparently innocuous system can take many and complicated routes to attain equilibrium or chaotic 

states, which involve (but are not limited to) textural transitions and ‘multistability’. The latter 

concerns the ability of the flow to evolve along distinct branches of solutions, which exist in 

parallel in the space of parameters and stem from different initial conditions (coexisting ‘attractors’). 

In particular, we have considered the specific dynamics occurring in the interval 47000<Ra<50000  

where, according to [62] (see Figs. 6 and 8 in their paper), the flow undergoes a subcritical Hopf 

bifurcations along a branch of evolution that originates from the point Ra49600. Such a 

bifurcation is properly captured by the present solver as witnessed by the temperature and velocity 
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fields in Figs. 2 (showing the ‘diagonal mode’ of convection emerging as a result of the bifurcation) 

and the data (frequency of oscillation) in Table III.  

 

a)        b) 

 
Figure 2: Snapshots of streamlines (a) and temperature distribution (b) for Rayleigh-Bénard 
convection in a square cavity with conducting sidewalls (Pr=7, Ra=48000, time-periodic state, see 
Table III for the related frequency). 

 

Table III: Non-dimensional frequency f defined as 2fDim L2/ where fDim is the dimensional 
frequency of the oscillation (Newtonian fluid, Pr=7, Rayleigh-Bénard convection in a square cavity 
with conducting sidewalls, uniform mesh: 10000 nodes, Hopf bifurcation, comparison with the 
results by Mizushima and Adachi [62]).  
 

Data source f 
Mizushima and Adachi [62] 16.31  

Present solver 16.19 
 

Finally, some of the cases specifically considered in the present work (the FFS problem) have been 

also simulated (for different representative values of Ra and Ri) using different computational 

platforms, i.e. a commercial software (ANSYS Fluent) and the same code that [37] used to analyze 

the dynamics of thermal plumes in cross flow. Both rely on 2nd order upwind schemes (standard 

central differences being employed for the diffusive terms only). However, the software developed 

by [37] is completely explicit in time, whereas ANSYS Fluent is based on an implicit approach 

(moreover, in order to accelerate convergence, it takes advantage of a classical Algebraic Multigrid 

scheme (AMG) with standard parameters, i.e. the so-called Gauss-Seidel smoother [63]). Although 

OpenFoam (Sect. 2.4) and these alternate computational platforms rely on quite different numerical 

implementations, as witnessed by Table IV, the values obtained for the Nusselt number and the 

(non-dimensional) angular frequency of oscillation () are in good agreement (the maximum 

percentage difference in the worst case being 5%). 
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Table IV: Properties of Hybrid Forced-buoyancy flow in the FFS configuration for various 
representative conditions. Comparisons of results obtained with different computational platforms 
( is the non-dimensional angular frequency; for unsteady regimes the time-averaged value of the 
Nusselt number is considered) . 
 

 

 

 

2.6 Mesh resolution and Kolmogorov length scale   

 

The identification of a proper mesh, by which the dynamics that characterize the considered 

problems over different scales can be properly captured, requires a dedicated (separated) 

assessment. A relevant mesh must guarantee that the emerging solution does not depend on the used 

grid spacing. A parametric investigation must therefore be carried out considering different spatial 

resolutions until the percentage variation experienced by a representative physical quantity (e.g., the 

maximum fluid velocity or the flow frequency in the case of oscillatory solutions) falls below a 

given threshold (e.g., 2 or 3%). This is indeed the approach that has been used in the present work 

to identify the relevant uniform mesh for small or moderate values of the flow governing 

characteristic numbers, i.e. values of Ra up to O(106). Some results representative of the grid 

refinement study are summarized in Tables V and VI. 

Ri Ra Floor Regime Parameter Parameter 
 106 Adiabatic Quasi-

periodic 
Present 

horiz
stepNu : 9.86  

Code by [37] 
horiz
stepNu :  9.98 

vert
stepNu  17.52  
vert
stepNu 17.94 

 106 Hot Periodic Present 
horiz
stepNu : 10.83  

Code by [37] 
horiz
stepNu :  10.80 

vert
stepNu  3.01  

vert
stepNu 3.1 

100 105 Adiabatic steady Present 
horiz
stepNu : 3.23  

ANSYS Fluent 
horiz
stepNu : 3.19 

Code by [37] 
horiz
stepNu :  3.30 

vert
stepNu  10.64  
vert
stepNu 10.52  
vert
stepNu  10.66 

1 107 Adiabatic Unsteady with 
dominant 
frequency 

Present 
horiz
stepNu : 39.07  

Code by [37] 
horiz
stepNu :  40.12 

vert
stepNu  45.41  
vert
stepNu 45.11 

1 107 Hot Unsteady with 
dominant 
frequency 

Present 
horiz
stepNu : 38.10  

Code by [37] 
horiz
stepNu :  39.50 

vert
stepNu  16.58  
vert
stepNu 16.25 

30 107 Adiabatic Periodic Present : 6280  
Code by [37] :  6543 

 

1 107 Adiabatic Unsteady with 
dominant 
frequency 

Present : 3.58 104  
Code by [37] : 3.77 104 

 

1 107 Hot Unsteady with 
dominant 
frequency 

Present : 3.38 104  
Code by [37] : 3.2 104  
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Table V: Non-dimensional frequency for different mesh sizes for the case of hybrid 
forced/buoyancy convection (Ri=100) with adiabatic bottom wall and Ra=4.7x105. 

  
Mesh Size f 
1500x150 1.200 x103 
1600x160 1.214 x103 
1700x170 1.218 x103 

 
 
Table VI: Non-dimensional frequency for different mesh sizes for the case of hybrid 
forced/buoyancy convection (Ri=30), with hot bottom wall and Ra=3x105. 
 

Mesh Size f 
1600x160 6.983 x102 
1700x170 6.912 x102 
1800x180 6.924 x102 

 

As an example, it can be seen that for the case with Ri=100, adiabatic bottom wall and Ra=4.7x105, 

for an increase of 200 points along the horizontal direction, the corresponding percentage variation 

in the frequency of oscillation lies below 2% (which explains why a mesh 1500x150 has been 

selected).  The same concept applies to the case with Ri=30, hot bottom wall and Ra=3x105 for 

which the percentage variation is even smaller.  

A more sophisticated strategy, however, has been implemented for larger values of Ra to ensure 

that the turbulent properties of the flow (eventually emerging in this range of the control parameter) 

are properly captured. 

For such cases, we have estimated the needed resolution on the basis of the concept of Kolmogorov 

length scale (). By definition this characteristic length indicates the smallest flow feature present in 

the considered flow (typically the size of the eddies where kinetic energy is dissipated due to 

viscous effects). It can also be seen as the length scale that bounds from below the process of 

energy transfer from large scales to smaller scales (which is typical of turbulent flow, [64-66]).       

As it represents the scale where the energy injected into the system due to an external driving effect 

(it being inertia due to an imposed injection fluid velocity or buoyancy for forced and natural 

convection, respectively) is finally dissipated (converted in internal energy due to friction), the 

length  obviously depends on the characteristic numbers that measure the relative importance of 

such effects (namely the Reynolds and/or the Rayleigh number). Available correlations in the 

literature indeed confirm this way of thinking.  

According to (Pope [67]), as an example, for forced flow, the Kolmogorov length scale can 

conveniently be evaluated as: 

 
3/4

Re Re              (18) 
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Similarly, for thermal convection,  can be put in direct connection with the Rayleigh number. In 

this case, however, available correlations differ depending on the dominant mechanism driving 

buoyancy (which is of the Hadley or RB type depending on whether the prevailing temperature 

gradient is perpendicular or concurrent to gravity, respectively).  

In the first case, as indicated by Paolucci [68] and Farhangnia et al. [69]:  

 
3/8

16Pr
Ra Ra

 
   
 

           (19) 

 

In the second situation, according to Kerr [70] and De et al. [71]: 

 
0.32

|| 1.3Ra Ra             (20) 

 

A conservative approach for the situation in which many concurrent mechanisms of convection are 

effective is generally based on the selection of the smallest possible value of  (see, e.g., Lappa and 

Gradinscak [72], Lappa and Inam [38]), i.e. 

 

 Re ||min , ,Ra Ra              (21) 

 

In agreement with the earlier study by Lappa and Inam [38], for all the situations considered in the 
present work with Ra>O(105) we have found ||Ra  to be the most restrictive condition controlling 

the size of the mesh regardless of the considered value of Ri. For turbulent states, mesh convergence 

has been judged on the basis of the frequency spectrum (by verifying that the (-5/3) scaling trend 

predicted by the Kolmogorov law is independent from the mesh in terms of velocity amplitude and 

related frequency distribution, see Sect. 4 for the related plots). Using the set of criteria described in 

the present section, the required numerical resolution has been determined for each considered case 

(the needed number of point ranging from a minimum of 400x40 to a maximum of 2000x200 

depending on the considered value of the Rayleigh number).  

 

3. Results   

 

The layout of this section is as follows. Each sub-section represents a self-contained discussion of  

the patterning behavior for a fixed value of the Richardson number. In particular, Sect. 3.1 is 

concerned with the results for pure buoyancy convection (formally corresponding to Ri); Sect. 

3.2 describes the outcomes of the simulations for circumstances where, though forced convection is 

present (finite values of Ri), buoyancy still plays a dominant role (Ri=100 and Ri=30); Sect. 3.3 

examines small-Ri behavior (representing the idealized situation in which forced flow and buoyancy 

convection have a comparable magnitude). The value of the Prandtl number has been fixed to Pr=1. 
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A critical comparison of the different situations, leading to general conclusions on the overall 

bifurcation and heat transfer scenarios, is finally elaborated in Section 4.  

 

3.1 Pure buoyancy case 

 

As outlined above, the first section contains material that provides a foundation for the rest. Being 

entirely focused on pure buoyancy convection, it immediately supplies the reader with a clear 

account of the considered interval of values of the Rayleigh number and the typical convective 

modes that this type of flow can produce in such a range of Ra (for the two variants of thermal 

boundary conditions at the bottom wall defined by eq. (9)). Related results are summarized in Figs. 

3-6. As further elaborated in Sect. 4, these dynamics can be used as a basis to disentangle the role 

played by buoyancy effects in more complex situations where the Richardson number takes finite 

values.  

 

 

 
 

a) 
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b) 
 

 
 

c) 
 

 
 

d) 
 
Figure 3: Snapshots of velocity field and temperature distribution for the case of pure buoyancy 
convection and cavity with adiabatic bottom wall: a) Ra=104, b) Ra=105, c) Ra=106, d) Ra=107.  
 

Following a logical approach we start from the simplest possible case that is the situation with 

Ra=104 and bottom wall (0<x<A/2) with adiabatic conditions. As evident in the velocity 

distribution (see the top view reported in Fig. 3a), a strong circulation is created in the left part of 

the domain (the region characterized by larger cross-sectional area). As also revealed by the 

inclined thermal plume originating from the corner of the step, this circulation of the Hadley type is 
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essentially driven by the vertical heated sidewall of the step. Less evident in this figure is the 

presence of small rolls formed in the shallow region constrained between the top rigid boundary and 

the top surface of the step. Unlike the other larger vortex (occupying the region x<A/2), these (nine) 

rolls may be regarded as the manifestation of the almost pure Rayleigh-Bénard convection, which 

emerges as a result of the prevailing vertical temperature gradient established for x>A/2. These rolls 

are weak as witnessed by the presence of an almost undisturbed thermal boundary layer, which is 

relatively thicker in comparison to the one formed on the vertical wall. The Hadley flow being 

developed in the left part of the domain (x<A/2) is dominant in terms of strength. Despite the 

inherent complexity of the overall convective configuration (which features two coexisting modes 

of convection), the two convective mechanisms exist in an almost independent way and the overall 

flow is steady. 

For Ra=1x105 (Fig. 3b), the Hadley flow and RB convection have comparable strength. An 

interesting change can also spotted in the number of small rolls located above the step, which 

increases from nine to eleven. A big transverse roll (Hadley flow) is still steadily located in the 

entire left portion of the cavity. The maximum velocity magnitude is attained just before the section 

where there discontinuity in the cross-sectional area occurs, i.e. along the vertical heated wall of the 

step (xA/2). In terms of temperature distribution, well-defined thermal plumes are formed for 

x>A/2 whereas for x<A/2 the fluid is relatively cold and undisturbed. As time passes the plume 

lobes remain distinct and are not significant deformed. A hot thin boundary layer is formed on the 

vertical wall of the step. The flow is still steady. 

If the Rayleigh number is further increased (Ra=1x106 in Fig. 3c), interestingly, there is a decrease   

in the number of flow features visible in the right portion of the cavity. The number of velocity rolls 

formed in this case comes back to nine (same as for Ra=1x104). As revealed by Fig. 3c, this effect is 

the result of the coalescence of the first roll of RB nature with the larger circulation of the Hadley 

type developing in the left part of the domain. Notably, in such conditions each plume has a thin, 

sharp stem with a well-defined cap and lobes that are significantly deformed by vortex structures, 

which means that the plumes established in the cavity for Ra=1x106 pertain to the so-called IVND 

regime (the so-called Inviscid-Nondiffusive Regime according to the classification originally 

elaborated by Hier Majumder et al. [73]). This regime takes place for high Rayleigh number (Ra > 

O(106) and Prandtl number near 1. Most remarkably, for such conditions the flow is unsteady 

(quasi-periodic) as shown in Fig. 4.   
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Figure 4: Velocity (horizontal component) signal for Ra=106 and adiabatic bottom measured by a 
numerical probe located at (0.25, 0.75).  
 

 

Finally, for Ra=1x107 (Fig. 3d), a further decrease in the number of RB rolls occurs due to 

enhancement of the aforementioned coalescence process (by which the RB rolls are absorbed by the 

elongated circulation occupying the left region). The most evident change, however, concerns the 

region with large cross-sectional area. The initially unicellular (Hadley) roll established there is 

broken into distinct vortices, which travel continuously from left to the right (their average number 

in time being three). This phenomenon is produced by a wave travelling towards the left along the 

top boundary of the duct (clearly visible in the temperature distribution). More precisely, it 

manifests itself through the periodic shooting of ‘packets’ of hot fluid in the cold fluid located in the 

left region of the cavity. Such disturbances originate from the head of the plume formed close to the 

corner of the step (xA/2) and travel towards the left, i.e. in the downstream direction (in other 

words, the wave uses the leftward-directed branch of the Hadley cell as a substrate for propagation 

(we will come back to this phenomenon, which is typical of the Hadley flow for Pr1 in cavities 

subjected to horizontal temperature gradients, later).  
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Figure 5: Frequency spectrum for Ra=107 and adiabatic bottom. The red straight line indicates the 
(-5/3) scaling trend predicted by the Kolmogorov law.   

 

 

 

In such conditions the flow is moderately turbulent as witnessed by the frequency spectrum shown 

in Fig. 5 (see also Table VII). In agreement with the expected behavior of turbulence on small 

length scales (the so-called self-similarity property of turbulence, [63-66]), the spectrum aligns with 

a ω-5/3 law in a certain range of (high) frequencies. 

After discussing the different situations for the cavity with a hot step and adiabatic bottom wall, it is 

also worth examining the other configuration (differing in regard to the thermal boundary condition 

used for the bottom wall, kept at constant temperature, see Fig. 6).   
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a) 
 

 
 

b) 
 

 
 

c) 

 



Accepted for publication in Int. J. Heat Mass Transfer on 23 March 2021 
 

21 
 

 
 

d) 

 
Figure 6: Snapshots of velocity field (left) and temperature distribution (right) for the case of pure 
buoyancy convection and cavity with hot bottom wall: a) Ra=104, b) Ra=105, c) Ra=106, d) Ra=107. 

 
  
 

As qualitatively illustrated by Fig. 6a, for Ra=1x104 again nine weak small velocity rolls can be 

seen in the shallow region above the step (as for the adiabatic-floor case). However, five medium-

sized velocity rolls are now present in the left half portion of the cavity. They are clearly rolls of RB 

nature as indirectly demonstrated by the simultaneous development of evenly spaced thermal 

plumes. The different distortions undergone by the temperature field in the left and right regions of 

the cavity qualitatively substantiate the realization that convection produced for x<A/2 is much 

stronger than that of the same nature emerging for x>A/2. This trend can be immediately explained 

simply taking into account the cubic dependence of this form of convection on the vertical 

extension of the considered layer of fluid (d/2 for x>A/2 corresponding to an effective value of the 

Rayleigh number Raeff=Ra/8). The flow is steady in both sides of the cavity. 

On increasing Ra to 105, thermal plumes become a pervasive feature of the temperature pattern (Fig. 

6b). All plumes have a vertical stem with the exception of that originating from the step corner, 

which is inclined to the left. The number of small (right region) and large (left region) rolls 

increases from nine to twelve and from five to six, respectively, which indicates that (as expected) 

the Rayleigh number has a significant influence of the emerging wavenumber. The most remarkable 

change, however, concerns the spatio-temporal behavior of the flow, which becomes unsteady.  

This finding indicates that transition to time-dependent flow can be obtained with a smaller value of 

the Rayleigh number when the configuration with the heated bottom is considered (Ra had to be 

increased to Ra=106 to observe similar phenomena for the adiabatic wall case; we will come back to 

these aspects in Sect. 4 where detailed information about the hierarchy of bifurcations will be 

provided). 



Accepted for publication in Int. J. Heat Mass Transfer on 23 March 2021 
 

22 
 

For  Ra=1x106 (Fig. 6c), there is a decrease in the number of rolls (from twelve to eleven) in the 

right portion of the cavity (the same process was observed for the adiabatic floor case). A similar 

trend is effective for the rolls located in the left region (their number being reduced from six to four).  

The shrinkage in the number of rolls essentially results from roll coalescence phenomena. 

When the Rayleigh number is finally increased to Ra=1x107 (Fig. 6d), no change occurs in terms of 

patterning behavior. However, the flow becomes weakly turbulent (see Table VIII) and we ascribe 

the less chaotic nature of the flow (with respect to the equivalent case with the adiabatic floor) to 

the lack of a wave-propagation mechanism such as that visible in Fig. 3d (requiring the presence of 

horizontal currents of the Hadley type).  

 

 

 

3.2 Mixed convection for Ri=100 and Ri=30 

 

 

We turn now to considering the case where the buoyancy flow, naturally produced by the heated 

surfaces embedded in the physical domain, interacts with cold fluid being injected from the left, 

which leads to a typical problem of mixed forced-buoyancy convection (Figs. 7-9).  

On the basis of the same approach undertaken in Sect. 3.1, snapshots of the thermo-fluid-dynamic 

fields for increasing values of the Rayleigh number and Ri=100 are orderly collected in Figs. 7 and 

8 for the two aforementioned archetypal situations with adiabatic and hot bottom wall, respectively.    

The simplest situation is that presented in Fig. 7a for Ra=1x104. It is shown that the cold fluid 

entering through the inlet continues to travel straight with a moderate velocity until it comes in 

contact with the hot obstruction (the step). The hot step causes the velocity to increase due to the 

contraction of the cross-sectional area and the incompressibility constraint. Moreover, a thick hot 

boundary layer develops along the entire length of the horizontal and vertical walls of the step. The 

increasing thickness of the thermal boundary layer in the downstream direction is obviously a 

consequence of the heat being released by the hot surface of the step in the region x<A/2.  

The next figure of the sequence (Fig. 7b) simply illustrates that if the Rayleigh number is increased 

by one order of magnitude (Ra=1x105 and Re grows accordingly due to the Ri=const=100 condition, 

i.e. Re31.6), the thickness of the boundary layer becomes smaller. This can obviously be ascribed 

to the larger amount of cold fluid being injected in the system per unit time as a consequence of the 

increase in the Reynolds number. The flow remains steady as it was for Ra=104.  
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a) 
 

 
 

b) 
 

 
 

c) 
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d) 
 
 
Figure 7: Snapshots of velocity field (left) and temperature distribution (right) for the case of 
hybrid forced/buoyancy convection (Ri=100), coaxial inflow and outflow sections and cavity with 
adiabatic bottom wall: a) Ra=104, b) Ra=105, c) Ra=106, d) Ra=107. 
 
 

A notable change, however, starts to affect the dynamics for Ra=1x106 (Fig. 7c). A Hopf bifurcation 

takes place and the flow evolves accordingly from a steady regime to a time dependent one. Some 

sinusoidal distortions can be seen in the topological development of the main current located above 

the step. These disturbances seem to be directly correlated to the thermal features that can be seen in 

the temperature distribution. Where the concavity of the stream centerline is towards the bottom 

(velocity field), a thermal plume is visible in the temperature field and, vice versa (concavity 

towards the top corresponds to plume absence). These convective and thermal localized phenomena  

appear at a certain distance from the leading edge, i.e. the corner of step (approximately a non-

dimensional distance 5 times the height of the fluid located above the step, i.e. l  5/2). The number 

N of visible convective distortions is on average equal to 3. These plumes do not hold a fixed 

position, rather they continuously travel in the downstream direction. However, it is important to 

remark that the fluid has not yet entered the turbulent phase (the flow being still in a quasi-periodic 

condition, not shown). 

A further increase in the order of magnitude of the Rayleigh number (Ra=1x107, Re316, Fig. 7d) 

causes (as expected) transition to a more chaotic state. The thermal boundary layer becomes very 

thin. The distortions affecting the main stream above the step are no longer regular and evenly 

distributed in space (this being reflected by an equivalent behavior of the thermal plumes). The 

increase in Ra at fixed Ri has also another notable consequence. Plumes are produced at a much 

smaller distance from the leading edge (l  2). Moreover, their extension in the vertical direction is 

generally smaller than that seen for Ra=1x106, which can be interpreted taking into account the 

dual influence of a simultaneous increase of Ra and Re. In such a context, indeed, it is worth 

recalling that in standard RB convection, plume caps are known to become progressively smaller as 
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the Rayleigh number becomes higher (see, e.g., Lappa [74]). Superimposed on this is the effect of 

the Reynolds number. As this parameter (the inflow velocity) grows, plumes have less time to 

develop in the vertical direction before they are transported towards the outflow section and leave 

the domain through it (the reader being also referred to Lappa [37] for some equivalent 

considerations elaborated in the case of thermal plumes interacting with a free cross flow).  
  

 

 

 

a) 

 

 

 

b) 
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c) 

 

 

 

d) 

 
Figure 8: Snapshots of velocity field (left) and temperature distribution (right) for the case of 
hybrid forced/buoyancy convection (Ri=100), coaxial inflow and outflow sections and cavity with 
hot bottom wall: a) Ra=104, b) Ra=105, c) Ra=106, d) Ra=107. 

 

Figure 8 shows the equivalent dynamics when the condition of adiabatic floor is replaced with that 

of wall at constant temperature. 

In line with what one would expect on the basis of simple physical arguments (see Fig. 8a), “heat 

island” effects can be produced in the region located above the step (as a result of the increased 

amount of heat being transferred for x<A/2 from the solid boundary to the fluid). A significant 

change also becomes effective in the left portion of the cavity. A roll, adjacent the top wall and 

stretched in the horizontal direction, is created just after the inflow section. Owing to this 

convective effect, the fluid entering the system from the left is deflected towards the bottom and its 

velocity greatly increases (the maximum velocity being comparable to that obtained in the region of 
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fluid located above the step). The cold fluid takes a downward route and travels very close to the 

floor for a while (x<A/2). As soon it reaches the hot step (xA/2) it is forced to rise, spreads itself in 

the right half portion of the domain and then continues to travel undisturbed in the downstream 

direction. For Ra=1x105 (Fig. 8(b)), no significant differences can be highlighted with regard to the 

flow topology and structure. In terms of temperature distribution, however, a mitigation of the 

above-mentioned heat island effect can be noticed (due to the increased amount of cold fluid being 

injected in the cavity per unit time).  

The complexity of the velocity field starts to grow as soon as the Rayleigh is set to the value 

Ra=1x106 (Fig. 8c). The flow becomes time-dependent. As it is evident from the temperature 

distribution, thermal plumes now originate directly from the surface of the hot floor (x<A/2) and 

travel to the right. When a plume of such a series meets the hot vertical surface of the step, it 

merges with the related (vertical) thermal boundary layer producing a disturbance (a bulge in the 

thickness of the boundary layer) directed upwards. This disturbance is then transferred to the 

horizontal branch of boundary layer (developing from the leading edge of the step in the same 

direction of the prevailing flow, i.e. from left to right). Accordingly, a train of traveling plumes can 

be recognized above the entire horizontal surface of the step, which formally behaves as a wave 

propagating in the downstream direction.  

The final increase in the Rayleigh number to Ra=1x107 (Fig. 8(d)), makes the velocity field more 

involved. Again plumes originating from the extended surface of floor (x<A/2) and step (x>A/2) 

can be seen. The plumes have thin, sharp stem with well defined cap and lobes that are considerably 

deformed by vortex structures. As the reader will immediately realize by inspecting Fig. 9b, the 

velocity frequency spectrum is moderately turbulent and relatively similar to that obtained for the 

configuration with adiabatic bottom (Fig. 9a). Both align with the Kolmogorov law for  in the 

range between 4x103 and 105.  

 

a) b) 
Figure 9: Frequency spectrum for Ri=100 and Ra=107: a) adiabatic bottom, b) Hot bottom. The 
dashed line indicates the corresponding trend for the pure buoyancy case (Ri). 
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Comparison with the corresponding trend obtained in the pure buoyancy case (see the dashed line), 

indicates that the overall spectrum is shifted to the right, i.e. that for Ri=100 the energy tends to 

reside on smaller temporal scales (which indirectly confirms that new instability mechanisms are 

enabled with respect to the situation with pure buoyancy convection considered in Sect. 3.1). 

We do not show the snapshots of temperature and velocity fields for Ri=30 as they are qualitatively 

similar to those for Ri=100. However, precise information about the dependence of heat transfer on 

the problem parameters (as quantitatively substantiated through the Nusselt number vs Ra and Ri) is 

reported in the form of dedicated tables (the Reader being referred to Tables VII and VIII).  

 

a) b) 
 
Figure 10: Velocity (horizontal component) signals for Ri =30 and Ra=107 provided by probes 
located in the region with reduced cross-sectional area (x>A/2): a) adiabatic floor case (probe point 
(9.5, 0.6)), b) hot floor case (probe point (5.5, 0.7)). 

 

For this specific value of the Richardson number (Ri=30), we limit ourselves to considering the 

behavior of the velocity signals for Ra=107. Insights into the role played by the thermal boundary 

conditions for this condition can immediately be gathered from Fig. 10. Indeed, as a fleeting 

glimpse into the right and left panels of this figure would immediately reveal, the signal for the 

adiabatic case displays a much more contained amplitude and a simpler frequency spectrum; this 

apparently innocuous observation should be regarded as an important clue for a notable difference 

in the related hierarchy of bifurcations (as we will clarify further in Sect. 4.1).  

Figures 10a and 10b are instructive also for another reason. They clearly illustrate that every time a 

thermal plume passes through a given observation point (the probe location indicated in the figure 

caption) a peak is produced in the corresponding horizontal component of the velocity. Such an 

increase can obviously be ascribed to the additional ‘blocking’ effect produced by the vertical 

eruptions of hot fluid (formally behaving as an additional obstruction in the flow forcing it to 

increase locally its horizontal velocity in order to conserve the volumetric flow rate).  
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3.3 Mixed convection for Ri=1 

This section is devoted to the situation where forced and buoyancy convection have comparable 

strength, i.e. Ri=1. Since the numerical results for Ra=104 and 105 simply show regular and laminar 

(steady) flow, for the sake of conciseness, we do not describe them in detail (the reader being 

referred again to Tables VII and VIII for some related quantitative details).  

Interestingly, as revealed by Fig. 11a, though for Ra=106 and adiabatic floor no thermal plumes can 

be identified, some “corrugation” pops up in the shape of both the kinematic and thermal boundary 

layers developing along the top wall of the step (x>A/2). A further increase in the Rayleigh number 

to Ra=1x107 (Fig. 11b) results in a slightly more complex velocity field. A horizontally stretched 

recirculation zone can be clearly observed on the surface of top wall of the step just after the corner.  

 

 
 

a) 
 

 
 

b) 
 
Figure 11: Snapshots of velocity field (left) and temperature distribution (right) for the case of 
hybrid forced/buoyancy convection (Ri=1), coaxial inflow and outflow sections and cavity with 
adiabatic bottom wall a) Ra=106, b) Ra=107. A bubble of recirculating flow originating from the 
leading edge (the step corner) can be seen in all cases. 
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Though its horizontal extension changes slightly in time, this zone always originates from the 

leading edge, i.e. the corner of the step. However, it is not the only recirculation region located on 

the top boundary of the step. Notably, for x>A/2 the kinematic boundary layer separates and 

reattaches continuously and, in light of the earlier results for larger values of the Richardson 

number, we  argue  that  an  explanation  for  this intermittent behavior should be sought in the 

temperature field. Plumes are located at those specific points where the flow is seen to be rising. 

Plume formation forces the fluid to rise and as result causes the fluid to separate from the horizontal 

wall of the hot step. However, the flow re-attaches quickly (the small space that is left behind on the 

surface can be viewed as a bump). Put simply, the plumes formed in this case do not have enough 

time to extend in the vertical direction as the imposed horizontal flow continuously bends them. As 

evident in Fig. 11b, while plumes are transported by the dominant flow in the downstream direction, 

they can give rise to some fascinating spiral-like configurations . 
 

 
 

a) 

 
 

b) 
Figure 12: Snapshots of velocity field (left) and temperature distribution (right) for the case of 
hybrid forced/buoyancy convection (Ri=1), coaxial inflow and outflow sections and cavity with hot 
bottom wall: a) Ra=106, b) Ra=107. A bubble of recirculating flow originating from the leading 
edge (the step corner) can be seen in all cases. 
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Figure 12 refers to the other case in which the floor is kept at a constant temperature.  

The most striking change with respect to the situations with larger values of the Richardson number 

(see again Fig. 8) essentially concerns the pre-step area, i.e. the region with x<A/2. Remarkably, for 

Ri=1 no bulges or corrugation of the thermal boundary layer can be detected in the left part of the 

domain even if the largest possible value of the Rayleigh number is considered (Ra=107 in Fig. 12b), 

which means that the boundary layer is essentially stable from a fluid-dynamic point of view in the 

considered range of Ra.  
 
 

a)  
 
Figure 13: Velocity signals for Ri =1 and Ra=107 provided by a probe located in the region with 
reduced cross-sectional area (7.5, 0.75): a) adiabatic floor case (3.58x104), b) hot floor case 
(3.38x104).  
 

The velocity plot for Ra=107 (Fig. 13) however shows that the flow is highly unsteady in the region 

located above the step, where the complex interplay between thermal plumes responsible for 

vertical fluid motion and the horizontal forced flow results again in a series of “bubbles” (localized 

regions of vorticity) more or less uniformly spaced along the boundary (which travel continuously 

in the downstream direction; the behavior being similar to that observed for the adiabatic floor case). 

Since a bubble of recirculating flow steadily attached to (originating from) the leading edge of the 

step can be seen in all cases, we come to the conclusion that hydrodynamic effects play a much 

important role in these cases, i.e. when relatively small (unit) values of the Richardson number are 

considered (the primary source of disturbances, which  for larger values of Ri is represented by the 

relatively strong thermal plume stemming from the step corner is gradually transferred to a strongly 

unsteady bubble of hydrodynamic nature located in the same area; we will elaborate further this 

concept in Sect. 4). 

As already discussed to a certain extent before, however, bubbles are also present along the entire 

extension of the top surface of the step. On the basis of the present framework, relying on direct 
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comparison of the statistics of the temporally evolving velocity field with the corresponding 

temperature field, we argue that these bubbles should be simply seen as the limiting condition 

attained by thermal plumes folding in on themselves due to the fluid coming from the left. As shown 

by both Fig. 11b and 12b, regardless of the specific thermal condition used for the floor of the duct, 

their appearance in space is surprisingly ordered (flow eruptions being created at periodic intervals), 

this observation being also supported by the regularity of the corresponding velocity fluctuations 

measured in a fixed point (Fig. 13).  
 

 

4. Discussion 

 

In this section some general arguments are elaborated to interpret the trends displayed by the 

considered system. In particular, such a discussion is supported by the precise determination of the 

conditions for the onset of the first Hopf bifurcation (namely, the critical Rayleigh number to be 

exceeded to produce oscillatory flow for different values of Ri). We intentionally use these data and 

the structure of the related fluid-dynamic “disturbances” to get additional insights into the 

mechanisms that govern the onset of unsteadiness and the ensuing evolution towards chaos.  

We wish to remark that, given the nature of the numerical strategy used in the present study (relying 

on the direct solution of the balance equations for mass, momentum and energy in their complete, 

time-dependent and non-linear form, as illustrated in Sect. 2), the transition Ra has been determined 

by means of numerical experiments (by increasing it until the flow becomes oscillatory and then 

increasing/decreasing it in a certain neighbor of the previously found value). The final value has 

been determined through extrapolation to zero of the amplitude of oscillations. Moreover, the 

spatial structure of the fluid-dynamic disturbances responsible for the transition from steady to 

oscillatory flow has been determined ‘a posteriori’, i.e. by subtracting the time-averaged 

thermofluid-dynamic field to the instantaneous one for conditions located slightly above the 

transition point (i.e. Ra slightly larger than Racr).  

Towards the end to elaborate an exhaustive picture of the overall thermofluid-dynamic scenario, we 

also discuss the quantitative data obtained for the heat exchange taking place between the fluid and 

the wall of the heated step (i.e. its vertical and horizontal boundaries) for the different situations 

examined in Sect. 3. For the convenience of the Reader, all this information is organized in the form 

of synthetic tables and ‘maps’ where the critical conditions and the Nusselt number are reported as 

function of Ra and Ri.  

 

4.1 Influence of the Richardson number on the bifurcation scenario 

 

The bifurcation scenario for the system with adiabatic floor is presented in Fig. 14. Snapshots of the 

related disturbances have been collected in Fig. 15.  
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Figure 14: Bifurcation scenario for the adiabatic floor case. 

  

On the basis of the numerical results shown in Figs. 3, it could have already been concluded that for 

pure buoyancy with the adiabatic floor the transition from stationary to oscillatory conditions occurs 

somewhere between Ra = 105 and Ra = 106. By means of an extensive parametric investigation 

conducted by refining iteratively the value of the Rayleigh number in this interval, we could 

determine the value of Ra required for the Hopf bifurcation as Racr6.2x105 (see the line 

corresponding to Ri in Fig. 14). 

A snapshot of the related disturbances (obtained by subtracting the time-averaged velocity field 

from the instantaneous one) is shown in Fig. 15a. This figure is instrumental in showing that the 

perturbations behave essentially as a wave traveling to the left region of the domain (using the 

upper branch of the Hadley circulation as a substrate for propagation as explained in Sect. 3). This 

wave apparently originates from the rolls of RB nature located above the step in proximity to the 

corner (A/2<x<3A/4). Accordingly, we argue that the main source of the instability is located just 

above the step, in the area where the coalescence between the main Hadley circulation and the first 

roll of the RB series occurs. This observation, in turn, indicates that the transition process is 

essentially driven by a competition of the RB and Hadley mechanisms in a very localized region. 

The existence of a wave travelling towards the left (visible in the left part of the cavity) should 

therefore be seen as a secondary effect induced by such a process. Put simply, the interplay of RB 

and Hadley flow in proximity to the corner is the main oscillatory mechanism that produces a local 

‘forcing’ able to excite a shear-driven wave travelling in the left part of the cavity (where the 

Hadley flow is dominant). Mechanisms of such a kind have been extensively observed in purely 

Hadley flow problems (buoyancy convection in rectangular containers heated from the side, Le 

Quéré and Behnia [75] where the forcing needed for the excitation the wave is generally provided 

by boundary layer instabilities or similar phenomena (Ferialdi et al. [76], Gelfgat [3, 4]). 
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a) 
 

b) 
 

c) 
 

d) 
 
Figure 15: Snapshot of the velocity disturbances for the cavity with the adiabatic floor (first Hopf 
bifurcation), a) Ri, Ra6.6x105, b) Ri=100, Ra4.3x105, c) Ri=30, Ra4x106, d) Ri=1, 
Ra1x106.  

 

For Ri=100, (Fig. 14, second line from the top) the value of the critical Rayleigh number decreases 

appreciably with respect to that obtained in the limit as Ri. Remarkable changes can also be 

seen in the mechanism underpinning the instability (as revealed by Fig. 15b). The disturbances still 

manifest themselves in the form of a wave. The location and sense of propagation of this wave, 

however, are completely different. It is now located in the right part of the domain (the region 

x>A/2 with reduced cross-sectional extension). Moreover, the disturbances travel in the downstream 

direction with respect to the forced flow, i.e. from left to right (it was in the opposite sense for 

Ri). 
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The key to understanding this behavior lies in considering the competition between convection of 

the RB type and forced flow. While the former tends to create localized eruptions of hot fluid 

directed upwards (thermal plumes), the latter tends to displace fluid in the horizontal direction. The 

instability is essentially a result of the interplay of these two concurrent convective mechanisms 

along the entire top surface of the step.   

A further decrease in the Richardson number (Ri=30), make obviously the contribution brought in 

by forced convection more important. This is indeed reflected by the morphology of disturbances. 

As a fleeting glimpse into Fig. 15c would confirm, -shaped disturbances essentially develop inside 

the thermal and kinematic boundary layers (which for Pr=1 have obviously comparable thickness). 

The required value of the Rayleigh number undergoes a significant increase, and a justification for 

this behavior can be rooted directly in the nature of the disturbances per se (which, unlike those 

shown in Fig. 15b, are now forced to grow inside the boundary layer). 

Figure 15d is extremely useful as it reveals that the main mechanism responsible for the 

development of unsteady flow is transferred from that associated with the propagation and growth 

of disturbances in the boundary layer for Ri=30, to a different process where disturbances are 

essentially produced inside the recirculating bubble of limited extension, which originates from the 

leading edge for Ri=1.  

As a concluding remark for this analysis, we wish to highlight that the continuous switch from one 

instability mechanism to another as the Richardson number is varied should be regarded as a 

relevant justification for the scattered appearance of the critical points in Fig. 14. 

The distribution of critical parameters for the companion configuration with the hot floor is 

illustrated in Fig. 16.  

 

 

Figure 16: Bifurcation scenario for the hot floor case. 
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This figure and the companion sequence of fluid-dynamic disturbance snapshots collected in Fig. 17 

indicate that interpreting the role played in such dynamics by the thermal conditions adopted for the 

floor (x<A/2) is not as straightforward as one would imagine.   

As implicitly evident in Fig. 16, the instability scenario dramatically changes. As already indicated 

by the preliminary analysis (Sect. 3.1) conducted by progressively increasing the order of 

magnitude of the Rayleigh number, the transition to oscillatory flow for pure buoyancy flow (Ri) 

takes place earlier for the hot floor in comparison to the adiabatic case (for a smaller Ra, i.e. 

Racrx104, determined using the same approach discussed before, see the line of Fig. 16 

corresponding to Ri). A striking difference can be spotted when the spatial structure of the 

related disturbances is considered (Fig. 17a). Fluid-dynamic perturbations keep on originating from 

the corner of the step as a result of the significant amount of vertical shear produced by the inclined 

thermal plume located there (as shown in Fig. 6 this plume is always inclined to the left). In this 

case, however, no wave traveling to the left is generated owing to the lack of a horizontal current of 

the Hadley type which can support it.  

An explanation for the decrease in the value of the critical Rayleigh number with respect to the 

equivalent configuration with the adiabatic floor can be elaborated in its simplest form on the basis 

of the argument that the system is entirely dominated (over its entire horizontal extension) by pure 

RB convection. This leads to a significant increase in the strength of the main thermal plume 

originating from the corner of the step and in the ensuing associated shear stress (responsible for the 

onset of the oscillatory instability, [77-80]).  

As revealed by Fig. 17b (Ri=100), if a forced flow is superimposed on thermal convection, the 

disturbances generated by the corner plume (which changes its inclination in order to align with the 

forced flow) are transported in the downstream direction, thereby exciting a response that develops 

in the form of weak rolls superimposed on the horizontal current (it can be seen that the amplitude 

of this disturbance is amplified as it travels towards the outlet).   

Interestingly, as quantitatively substantiated by the data reported in Fig. 16, a decrease in Ri has in 

general a beneficial effect in terms of critical Rayleigh number, i.e. Racr becomes higher (the trend 

is monotonic). In other words, the presence of forced flow has a stabilizing effect on the overall 

dynamics, which requires a proper interpretation too.  

The reader could be led to a heuristic realization of the related underlying cause-and-effect 

relationship by simply considering that, as already explained to a certain extent in the previous text, 

the instability of mixed forced-buoyancy convection is essentially driven by the competition of 

these two different mechanisms of convection. The tendency of hot fluid to rise vertically and the 

effect of the imposed horizontal flow that tends to bend it to the right (eventually causing the 

reattachment of the boundary layer) is the main mechanism leading to the unsteady production of 

vorticity in the form of “bubbles” which travel in the downstream direction. A decrease in Ri, i.e. an 

increase in the relative importance of forced flow with respect to thermal buoyancy, must 

necessarily correspond to higher values of the Rayleigh number needed to excite the competition of 

buoyant and forced flow in the duct.  
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a) 

 

b) 

 

 

 c) 

 

d) 

 
Figure 17: Snapshot of the velocity disturbances for the cavity with the hot floor, (first Hopf 
bifurcation), a) Ri, Ra7.89x104, b) Ri=100, Ra1.5x105, c) Ri=30, Ra3x105, d) Ri=1, 
Ra1x106.  

 

As witnessed by Fig. 17c, as Ri is decreased from 100 to 30, there is a small variation in the 

required value of the Rayleigh number and disturbances still take their energy from the main plume 

that originates from the leading edge. Comparison with the equivalent case with the adiabatic floor 

(Fig. 15c), indicates that the much higher value of Racr in that case is due to the lack of the strong 

thermal plume located at xA/2 (among other things, this observation also provides a justification 

for the different level of complexity displayed by the signals in the left and right panels of Fig. 10; 

the more complex spectrum for the hot floor case is obviously due to the two orders of magnitude of 

distance between Ra=107 and the Racr). 
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For Ri=1, the corner plume finally collapses in a region of recirculating flow attached to the leading 

edge, thereby making the main instability mechanism for the hot floor case equivalent to that 

already discussed for the adiabatic floor configuration (as also indirectly confirmed by the fact that 

the critical Rayleigh number is essentially the same). Another way to think about this behavior is to 

consider that for such circumstances the dynamics produced by buoyancy convection in the pre-step 

area (x<A/2) have an almost negligible influence on the mechanisms supporting the instability 

(which further confirms our interpretation about the more important role played by hydrodynamic 

disturbances in this case).   

 

 

 

4.2 Heat Exchange 

 

With the only exception of the purely diffusive state, in general, for the adiabatic floor configuration  
vert
stepNu >

horiz
stepNu  (Table VII). This result is not unexpected. For the case of pure buoyancy convection, 

a simple rationale for this behavior can be elaborated taking into account the relative importance (or 

magnitude) of the buoyancy forces at work in the left (x<A/2) and right (x>A/2) regions of the 

physical domain. As the intensity of this force is known to scale with L3 where L is the effective 

depth of the considered region, this fundamental dependence is the key ingredient needed to 

formulate a justification for the different magnitude of the Nusselt number related to the two sides 

of the step. Under a slightly different perspective, the same concept could be re-introduced basing it 

directly on the ‘effective’ Rayleigh number experienced by the fluid in the two sides of the cavity 

(that affecting the fluid located in the region x>A/2 being eight times smaller than that effective for 

x<A/2). Put simply, as the vertical side “feels” the strong convective cell of the Hadley type 

established in the left portion of the domain, the intensity of heat exchange along this wall will 

obviously be higher (while the horizontal side is only subjected to the weak rolls of the RB type 

emerging there). 

A similar argument holds when finite values of the Richardson number are considered (though this 

case calls for a complementary explanation). For such a situation, for a given value of the Rayleigh 

number the velocity of fluid rising along the vertical side of the step is even higher than that 

produced for pure buoyancy convection. Such an increase in velocity obviously follows from the 

presence of two concurrent mechanisms driving the fluid along the vertical wall, namely, the 

buoyancy effect (which forces fluid to rise) and the additional upward velocity produced by the 

imposed flow (which forces fluid to turn around the step). Therefore, the reason for the even larger 

difference between  
vert
stepNu  and

horiz
stepNu when the values Ri = 30 and =100 are considered resides in 

the presence of these two aiding (reciprocally reinforcing) effects.   
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Table VII: Nusselt number as a function Ra and Ri for the adiabatic floor case. 

 

Ra Ri 
horiz
stepNu  

vert
stepNu  Regime 

0 N/A 2.0417 1.6731 Purely Diffusive

104  2.0077 4.6240 Steady

105 - 5.6375 9.4742 Steady

106 - 9.8594 (average) 17.5227 (average) Quasi-periodic 

107 - 16.5836 (average) 30.9278 (average) Moderately 

Turbulent

104 100  1.2987 5.6315 Steady 

105 - 3.2347 10.6367  Steady

106 -  6.3597(average) 19.7056 (average) Multi-frequency 

spectrum 

107 - 16.5881(average) 35.8678(average) Moderately 

Turbulent

104 30 2.2856 5.8999 Steady 

105 - 4.1605 10.8647 Steady

106 -  6.1746 (average) 20.0669(average) Steady

107 - 13.1961 (average) 36.3426 (average) Time-periodic 

104 1 5.1047 9.2652 Steady

105 - 7.6590 15.6639 Steady 

106 -  12.7710 (average) 26.4171 (average) Quasi-Periodic 

107 - 39.07695 (average) 45.4150 (average) Unsteady with 

dominant frequency 

 

 Table VIII:  Nusselt number as a function Ra and Ri for the hot floor case. 

 

Ra Ri 
horiz
stepNu  

vert
stepNu  Regime 

0 N/A 2.0329 0.8782 Purely Diffusive

104  2.0113 0.9457 Steady

105 - 5.6299 1.6408 Periodic

106 - 10.8293 (average) 3.0102 (average) Periodic

107 - 18.6177 (average) 8.0191 (average) Weakly Turbulent 

104 100 0.2390 0.3284 Steady

105 -  1.4868 2.0256 Steady 

106 -  5.5144 (average) 7.1233 (average) Multifrequency

107 - 14.2736 (average) 19.5536 (average) Moderately 

Turbulent
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104 30 1.0157 0.9922 Steady

105 - 2.6784 2.7333 Steady

106 -  6.1050 (average) 8.2020 (average) Multifrequency

107 - 16.1624 (average) 24.7982 (average) Moderately 

Turbulent

104 1 3.6248 2.5971 Steady 

105 - 5.4746 4.8390 Steady

106 - 10.2654 (average) 8.9180 (average) Quasi-Periodic

107 -  38.1026 (average) 16.5762 (average) Unsteady with 

dominant frequency 

 

The data for the companion case with hot floor are quantitatively presented in Table VIII. Careful 

comparison with Table VII reveals a significant lowering of 
vert
stepNu , which requires a proper 

justification.  

In particular, a straightforward interpretation can be sought directly in the temperature distribution. 

In this regard, coming back to the results shown in Figs. 6, 8 and 12 is extremely useful; once again, 

these figures clearly show the presence of well-defined thermal (hot) boundary layers developing 

along the (hot) horizontal floor of the duct. To emphasize further the significance of this 

observation, one should keep in mind that, unlike the configuration with the adiabatic bottom 

(where all the fluid transported towards the step is cold), for these cases, fluid that has already 

acquired a significant amount of heat tends to be entrained into the boundary layer developing along 

the vertical step wall. The reduced temperature difference between the incoming fluid and the 

temperature of the step itself can obviously be regarded as the main factor contributing to the 

generalized observable shrinkage in the values of 
vert
stepNu . 

 

5. Conclusions 

 

The main conclusions of the present study can be summarized as follows: 

 When the floor of the region preceding the step is adiabatic a change from the condition 

Ri= to finite Ri causes a dramatic variation in the system oscillatory response and related 

patterning behavior. While for pure buoyancy the Hopf bifurcation must be ascribed to an 

instability of the leftward directed current of the Hadley type originating from the step 

corner, for finite Ri=100, it manifests in the form of plumes that periodically nucleate at a 

certain distance (in the downstream direction) from the step corner and travel to the right.   

 An increase in Ra at fixed Ri (yet for the thermally insulated floor) has a very interesting 

effect. Plumes are produced at a much smaller distance from the leading edge. Moreover, 

their extension in the vertical direction becomes progressively smaller, which can be 

interpreted taking into account the dual influence of a simultaneous increase of Ra and Re 
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(the former contributing to make plume caps smaller, the latter reducing the available time 

for their stem to grow before they leave the domain through the outflow section). 

 Regardless of the considered thermal condition for the floor preceding the step, when 

turbulent conditions are attained the overall frequency spectrum is shifted to the right with 

respect to the case of pure buoyancy, i.e. for Ri=100 the energy tends to reside on smaller 

temporal scales (which indicates that new instability mechanisms are enabled with respect to 

the situation with pure buoyancy convection). 

 A decrease in Ri (Ri=30), forces the disturbances to develop inside the thermal and 

kinematic boundary layers (which for Pr=1 have the same thickness). 

 When the Richardson number is finally reduced to 1, the primary source of disturbances, 

which for larger values of Ri is represented by the relatively strong thermal plume 

originating from the step corner is gradually transferred to a strongly unsteady bubble 

located in the same area; hydrodynamic effects play a much important role in these cases; 

the kinematic boundary layer along the upper surface of the step separates and reattaches 

continuously (due to plumes being continuously formed and the imposed horizontal flow 

that quickly bends them). 

 Another outcome of the focused comparison of the fundamental situations with adiabatic 

and bottom floors is that the dynamics of the boundary layer established along the vertical 

side of the step can play a crucial role in determining the heat exchange in this region.  

 For the adiabatic floor case, the vigorous upward fluid motion is responsible for the higher 

values taken by the Nusselt number along the vertical wall (with respect to the 

corresponding value for the horizontal side of the step).  

 When the bottom wall of the duct is kept at fixed hot temperature, the additional heat 

entrained into the vertical boundary layer is the main reason for which 
vert
stepNu  undergoes an 

appreciable decrease. 

 

As an additional concluding remark, we would like to point out that, although, as illustrated above, 

useful generalizations can be built using the main outcomes of two-dimensional numerical 

simulations (which allow much more efficient exploration of the space of parameters), future 

studies shall be devoted to overcome this constraint and tackle more realistic 3D configurations. As 

the required number of high-fidelity evaluations, however, would become impractical (if wide 

ranges of the controlling parameters like those examined in the present study were considered), 

there is therefore a strong need to adopt alternate strategies. These could be based on suitable 

turbulence models by which the inherently chaotic behavior displayed by these systems in certain 

regions of the space of parameters (as indicated by the present study) is properly captured without 

resorting to computationally prohibitive grid densities. This may be seen as a spur to continue the 

line of inquiry initiated in the present work (which given the absence of relevant information to 

properly constrain the ‘parameters’ needed by turbulence models has been initially limited to 2D 

flow).   
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